
PHYSICAL REVIEW B 96, 165434 (2017)

Nonlinear frequency transduction of nanomechanical Brownian motion
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We report on experiments addressing the nonlinear interaction between a nanomechanical mode and position
fluctuations. The Duffing nonlinearity transduces the Brownian motion of the mode and of other nonlinearly
coupled ones into frequency noise. This mechanism, ubiquitous to all weakly nonlinear resonators thermalized to
a bath, results in a phase diffusion process altering the motion: two limit behaviors appear, analogous to motional
narrowing and inhomogeneous broadening in NMR. Their crossover is found to depend nontrivially on the ratio
of the frequency noise correlation time to its magnitude. Our measurements obtained over an unprecedented range
covering the two limits match the theory of Y. Zhang and M. I. Dykman [Phys. Rev. B 92, 165419 (2015)], with
no free parameters. We finally discuss the fundamental bound on frequency resolution set by this mechanism,
which is not marginal for bottom-up nanostructures.
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I. INTRODUCTION

Emerging from the tremendous development of micro- and
nanotechnologies, nanoelectromechanical systems (NEMSs)
have opened unique capabilities to both engineers and physi-
cists. In the first place, they serve as ultrasensitive probes for
force sensing [1] with applications, e.g., to mass, charge, and
even single electronic spin detection [2–4]. In the second place,
these objects are extremely fruitful (weakly) nonlinear devices
that are able to implement useful functions like mechanical
frequency mixing [5], amplification [6], and bit storage [7].
On the fundamental level, high-quality NEMS structures can
be thought of as model systems in which basic phenomena
can be advantageously reproduced, one example being the
ubiquitous bifurcation mechanism [8–10].

Ultimately, when coupled to a quantum-limited detection
scheme such as a microwave cavity or a single-electron
transistor, their sensitivity can be brought to the quantum limit
[11,12]. This leads to a unique platform realizing the “ultimate
force detector” foreseen by Caves in the 1980s [13]. Such
moving structures that are macroscopic relative to the atomic
scale but follow the laws of quantum mechanics are currently
under development for tests of quantum foundations [14–16].
Furthermore, they are thought to be a unique new quantum
electronics component enabling, e.g., coherent photon conver-
sion from the microwave to the optical domain [17,18].

Essentially, all applications require in the first place the
resonance frequency of the mechanical mode in use to be as
stable as possible. As such, the understanding of the sources
of frequency fluctuations in nanomechanical devices becomes
an essential technical topic [1,19–23]. But in the first place, it
is also a fundamental research goal: the measured frequency
noise in actual devices is much larger than all expectations
[22,24–26], demonstrating even nonlinear features for carbon-
based systems [27,28]. Thus, attempts have been made to
model noise sources [29,30] or to create model experiments,
experimentally demonstrating the underlying mechanisms
[19,31–33].
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Clever driving schemes taking advantage of nonlineari-
ties have been devised to significantly suppress frequency
noise [34,35]. But what will be an “ideally frequency-noise
minimizing” nanomechanical system in the first place? We
know that at lowest order, the dynamics of a mechanical
structure can be described by a family of normal modes which
are nothing but independent harmonic oscillators. Pushing to
the next order, these modes are weakly nonlinear (so-called
Duffing resonators) and are dispersively coupled to one another
[36–38]. Since all of the modes are unavoidably coupled to a
thermal reservoir (ideally, the same one), Brownian motion of
each of the modes will transduce into a frequency noise on
all the others [19,22,29,33,39] and also on itself. Even in a
system realized with ideal materials with no internal sources
of noise, this built-in mechanism shall fix an ultimate limit
to the mechanical resonance frequency stability at T �= 0.
Only in the limit of T → 0, when all the modes are in
their quantum ground states, do the dispersive couplings
lead to a simple frequency renormalization of the resonances
through the zero-point fluctuations of each of them: a sort of
mechanical Lamb shift that dresses all the modes [40].

In the present paper, we report on a model experiment in
which we use very high quality silicon nitride NEMSs cooled
down to Kelvin temperatures. A single mode is driven by
a stochastic force, leading to effective temperatures as high
as 109 K for only this mode. We extract the effect of this
“artificial out-of-equilibrium heating” on the mode itself, both
by measuring the spectrum of the motion and by measuring
the simultaneous response of the same mode to a sine-wave
excitation. The effect on a nearby mode is measured with the
sine-wave excitation scheme. The setup is carefully calibrated
[41], while the devices’ characteristics are obtained by both
measurements and calculations; the agreement with theory is
obtained with no free parameters. In addition, the experiment
is performed on different devices, proving the reproducibility
of the results.

We demonstrate experimentally the two regimes of the
Brownian motion transduction, named after analog phenom-
ena present in nuclear magnetic resonance (NMR): “motional
narrowing” and “inhomogeneous broadening” [31]. Based
on Ref. [39] and simple expansions of the Euler-Bernoulli
theory (including nonlinear coefficients [37,38,42]), we give
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the analytic tools enabling the calculation of the “ultimate
frequency stability” reached by any doubly clamped device,
depending on stress, dimensions, and temperature T [43]. For
bottom-up structures like, e.g., carbon nanotubes with a high
aspect ratio, this limit is not marginal [29].

II. RESULTS

A. The nanoelectromechanical systems

The devices under study are doubly clamped silicon nitride
nanobeams with width w = 300 nm and thickness eSiN =
100 nm. Two high-stress (1 GPa) beams of L = 300 μm
length have been measured along with a 250-μm one (samples
300 μm-1, 300 μm-2 and 250 μm-1), together with one low-
stress (100 MPa) L = 15 μm shorter beam (15 μm-1). A thin
layer of aluminum (eM about 30 to 90 nm thick) has been added
on top to create electrical contacts. The experiments are per-
formed at 4.2 K in cryogenic vacuum (pressure <10−6 mbar).

Figure 1(a) shows a schematic of the setup. For each
device and each mode n (or m) studied, we perform a careful
calibration based on the technique developed in Ref. [41]. We
can thus infer forces Fn and displacements xn in SI units and
compute the device characteristics (namely, mass mn, spring
constant kn, and nonlinear coefficients βn,m). These match
the expected calculated values; note that particular care has
been taken in the calibration of the noise source. The only
fit parameter is, indeed, an overall correction of the force
noise not exceeding 15% in amplitude (same order as in
Ref. [10]). Actuation and detection are performed with the
magnetomotive scheme [41,44]. A drive current (composed of
both the Gaussian noise component centered around resonance
frequency ω1 and a sine-wave of frequency ω close to ωn,
with n = 1 or n = 3) is injected in the NEMS metallic layer
through a home-made adder and a 1-k� bias resistor. In
an in-plane dc magnetic field orthogonal to the beams, this
generates an out-of-plane driving force Fn(t) with harmonic
component F 0

n cos(ωt). The motion is detected through the
induced voltage by means of a standard lock-in detection. We
obtain the two quadratures, in phase (X) and out of phase (Y )
with respect to the local oscillator.

In order to preserve our calibration capabilities, the lock-in
has also been used for the spectral measurements Sn

X(ω) of
the Brownian motion of mode n = 1. Moreover, this enables
us to measure fluctuations on each of the two quadratures,
X,Y , independently (plus their cross correlations). When the
sinusoidal excitation is weak (or nonexistent), the spectra on
X and Y are equivalent, and no correlations are detected;
this is the range of validity of the work presented here.
However, signatures of squeezed statistics of motion [45]
can be observed on measured spectra when the sinusoidal
excitation is too large. Details on the measurement technique,
calibrations, and calculated parameters can be found in the
Supplemental Material [43].

B. Dispersive coupling driven by stochastic motion

Linear motion of thin nanobeams is very well described
by the Euler-Bernoulli equation [46]. The basic ingredients
involved are the inertia (through the density ρbeam), the
Young’s modulus Ebeam, and the tension T0 generated by

the in-built stress. For doubly clamped beams, the nonlinear
behavior is well understood: it arises from the stretching of the
device under transverse motion x [37,38,42]. This geometric
nonlinearity results in a tensioning T0 + δT of the beam with
δT ∝ x2, which can be incorporated into the beam equation
[42]. This leads to a frequency shift of the modes that is
proportional to the square of the displacement. When only
two modes n,m are under study, we write

ωn = ω0
n + βn,nx

2
n + βn,mx2

m, (1)

ωm = ω0
m + βm,mx2

m + βm,nx
2
n, (2)

where we introduced the linear resonance frequencies ω0
n,ω

0
m

and the Duffing nonlinear coefficients βi,j [38]. We remind
the interested reader of the mathematical derivation of these
expressions in the Supplemental Material [43].

Equations (1) and (2) can be adapted when one of the
motions, say, xn, is a stochastic variable: xn = x0

n + δxn, with
x0

n being the certain component and δxn being the Gaussian
and centered random component. In order to introduce
the phenomenon, let us first consider the case depicted in
Fig. 1(b), where only one mode n is addressed. We apply
on n = 1 a Gaussian random force δFn(t) of spectrum
Sn

F (ω) whose strength can be converted into an effective
temperature Teff through the fluctuation-dissipation theorem
Sn

F = 2kBTeffmn�ωn. �ωn is the linewidth of the resonance
of mode n (with Qn = ω0

n/�ωn being the quality factor),
and Sn

F (ω) is white around only the mode studied (and
negligible elsewhere). The mechanical mode thus experiences
position fluctuations (Brownian motion) linked to Sn

F through
the mechanical susceptibility, whose spectrum Sn

X(ω) peaks
around ω0

n. Since Teff � 4.2 K, the experimental temperature,
we safely neglect all other sources of fluctuations while
enabling a thorough tuning of the Brownian motion amplitude
of only mode n.

C. Transduction mechanism

From the Duffing equations, the random motion δxn is trans-
duced into a frequency noise Sδω(ω). Since this dependence is
quadratic, the frequency noise is neither Gaussian nor centered.
Its spectrum depicted in Fig. 1(b) consists of a low-frequency
part and a high-frequency component that peaks around 2ωn.
The high-frequency fluctuations are essentially filtered out
by the mode dynamics, as can be seen in a rotating-wave
approximation. Thus, driving the mode with a sine-wave force
F 0

n cos(ωt) weak enough to remain in the linear response limit,
the motion x0

n will adiabatically follow the slow frequency
fluctuations, experiencing both a frequency shift and a spectral
broadening [39]. The measurement scheme itself is always
slow enough to ensure that all fluctuations are spanned while
acquiring data. Note that the Brownian fluctuations do not need
to be small for the theory to apply.

The phenomenon is nontrivial and depends strongly on
the correlation time of the fluctuations τc = 1/�ωn. Defining
	δω = 4βn,n�x2

n as a frequency noise amplitude parameter
(essentially, the standard deviation ∝ [

∫
Sδωdω]1/2 of the

stochastic frequency), two regimes should be distinguished
depending on the magnitude of the product τc × 	δω [see
Fig. 1(c)]. The process can be understood in terms of phase
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FIG. 1. (a) The nanomechanical beams (left) are driven by means of a dc magnetic field B and an ac current consisting of the sum of two
components (top): a sine wave whose frequency is swept around a chosen mode (n = 1 or n = 3 here) and a Gaussian white noise filtered
around mode n = 1. The motion is detected with a lock-in amplifier through the induced voltage V , leading to the two quadratures, X and
Y , for each mode n = 1 and n = 3 (right; lines are Lorentz fits, and images are ANSYS numerical simulations). Data correspond to beam 300
μm-1 in the linear regime. (b) The Gaussian noise force applied onto the mode (here mode 1, middle) is equivalent to an effective temperature
Teff (right). The motion transduces into a frequency noise (spectrum on the left) because of the Duffing nonlinearity β1,1 due to tensioning.
Only the low-frequency part of these fluctuations is relevant (in blue, with the dc average marked by an arrow); the high-frequency term (red)
is filtered out by the dynamics of the mode (adiabatic picture in the rotating frame of the motion). (c) Depending on the amplitude of frequency
fluctuations 	δω (their standard deviation ∝ [

∫
Sδωdω]1/2) with respect to their correlation time τc (here 1/�ω1, with �ω1 being the linewidth

of the noisy mode), two regimes are distinguished: “motional narrowing” and “inhomogeneous broadening.” This is due to the underlying
dynamics of phase diffusion experienced by the mechanical mode, leading to the averaged frequency distribution depicted below the horizontal
arrow (green and violet).

diffusion for the mode studied, the dynamics being averaged
over all realizations of the fluctuating resonance frequency δω,
namely, x0

n(t) ∝ 〈ei
∫ t

0 δω(t ′′)dt ′′ 〉 [39]. The frequency-domain
data can thus be described by a convolution of the linear
response by a complex-valued distribution of frequencies, as
seen from the NEMS [bottom of Fig. 1(c)]:

FT

[
exp(+
nt)

cosh(ant) + 
n

an
(1 + 2iαn) sinh(ant)

]
(ω), (3)

where FT indicates Fourier transform, with 
n = �ωn/2 being
the mode’s relaxation rate, an = 
n

√
1 + 4iαn, and αn =

	δω

2
n
= τc × 	δω being the motional narrowing parameter.

By analogy with nuclear magnetic resonance, when τc ×
	δω 
 1, the certain component’s dynamics is said to be in
the motional narrowing (MN) limit, while for τc × 	δω � 1 it
lies in the inhomogeneous broadening (IB) limit. In the former
case, the fluctuations are too fast to enable the resolution of the
small frequency changes 	δω [31,47]: the random variable’s
dynamics loses memory too quickly, and only a fraction of
the frequency fluctuations impacts the driven motion. This
leads to a certain frequency shift which is nothing but the
average of the frequency fluctuations proportional to �x2

n ,
together with a (weaker, second-order) symmetric broadening
quadratic in �x2

n [bottom left distribution in Fig. 1(c)]. In
the latter case, the fluctuations are slow enough that the full
range of frequency fluctuations can be explored by the x0

n sine-
wave response [32,48]: there is a large asymmetric broadening,
which reflects the actual distribution of frequency fluctuations
[bottom right in Fig. 1(c)]. When mode m = 3 is sine wave

driven and detected while force noise is still applied onto mode
n = 1, the treatment is identical to the replacement 	δω =
2βm,n�x2

n [39]. In addition, an equation similar to Eq. (3)
holds for the direct calculation of nonlinear Brownian spectra
[39]. A brief description of the theoretical tools developed in
Ref. [39] is given in the Supplemental Material [43].

In the next section, we present the experimental data
and the theoretical calculations corresponding to these two
situations. The displacement noise spectrum of mode n = 1
is also directly measured. We reach the limit where this
spectrum itself is imprinted by the Duffing nonlinearity [19]
and match it to the theory [39]. Since Brownian motions
of two m �= n distinct modes are not correlated, from these
elementary measurements one can then deduce the generic
situation where N thermalized modes of the same structure
are coupled together.

D. Measured resonance properties

In Fig. 2(a) we present the direct measurement of the
Brownian noise spectra Sn

X(ω) on mode n = 1 for sample
300 μm-2. No sine-wave excitation is applied on either
n = 1 or m = 3 modes. The noise level is quoted in terms
of standard deviation �x2

1 instead of Teff (or force noise
intensity) since this is the physical parameter of importance.
For small Brownian excitations, the peak remains Lorentzian.
However, when the amplitude of motion becomes large, the
nonlinear term β1,1 starts to impact the line shape: the peak
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FIG. 2. (a) Brownian motion spectra measured on mode n = 1 of
sample 300 μm-2 (Duffing spectra). (b) In-phase (X) and quadrature
(Y ) components measured for mode n = 1 while driving noise on
the same n = 1 mode for sample 300 μm-2 (intramode). (c) Same
measurement performed on mode n = 3 while driving fluctuations
on n = 1 for sample 300 μm-1 (intermode coupling). The standard
deviation �x2

1 (i.e., Brownian motion level) is increased from left
to right (essentially, from the MN to IB regime; see Fig. 3), and
sinusoidal drives are kept in the linear regime. The gray data are the
references obtained for very weak noise levels. The vertical dashed
lines are the resonance position without Brownian transduction, and
other lines are theoretical calculations (see text).

broadens and becomes asymmetric [19,33]. As expected, the
resonance peak globally shifts towards higher frequencies [see
Fig. 3(a) for a summary of the spectrum characteristics]. The
lines are the exact theory from Ref. [39], computed with no
free parameters: we call them Duffing spectra [43]. Note that
no deviations from standard Gaussian statistics are measured
in these conditions, which is as it should be for high-Q
devices [49]: spectra on the X quadratures are equivalent
to the ones measured on Y , and no cross-correlations are
detected [43].

We turn next to the case of the intramode coupling. We
still drive mode n = 1 with white noise, but we also measure
and drive it with a sine-wave signal. Mode m = 3 is left
unexcited. Data and theory from Ref. [39] are compared in
Fig. 2(b) with no free parameters. The X line shapes look
like the peaks obtained in the Duffing spectrum case (Fig. 2).
The effect of the added force noise on the mode is again
twofold: first, the resonance peak slightly shifts towards higher
frequencies, and second, it broadens (consequently flattens)
and acquires an asymmetric shape. In Fig. 3(b) we summarize
the characteristics of the measured resonance lines on device
300 μm-2 (obtained from the X quadrature).

Measured resonance lines and calculations in the intermode
case (sine-wave driving and measuring mode m = 3 while
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FIG. 3. Frequency shift (left) and broadening (from FWHH,
right) for (a) the (Duffing) spectra measured on mode n = 1 for
sample 300 μm-2, (b) the sine-wave excitation of mode n = 1,
with Brownian motion on the same mode for sample 300 μm-2
(intramode case), and (c) similar result for sine-wave excitation of
mode m = 3, with Brownian motion of mode n = 1 for sample
300 μm-1 (intermode). The thin lines are the motional narrowing
(MN) analytic expansions, with the dot-dashed vertical lines corre-
sponding to the crossover towards inhomogeneous broadening (IB)
when τc × 	δω = 1. The solid lines are from the complete theoretical
model (see text).

adding force noise on mode n = 1) are shown in Fig. 2(c).
They resemble the intramode results of Fig. 2 very much, even
though the quality of the data did not enable us to reach as
high fluctuation levels [see Fig. 3(c)]. More data can be found
in the Supplemental Material [43].

The three basic situations are compared in Fig. 3: we
show the characteristics of the measured spectra and res-
onance lines on 300-μm devices in terms of frequency
shift (position of the maximum of the resonance peak) and
broadening (measured from the full width at half height,
FWHH). The same characteristics for 250 and 15 μm
devices are also shown in the Supplemental Material [43]:
since the nonlinear coefficients depend strongly on the
length L of the structures, the agreement between the-
ory and experiment demonstrates the robustness of the
effect.

The global agreement between data and theory is re-
markable. Essentially, Duffing spectra and intramode and
intermode Brownian frequency transduction display the same
characteristic features. This agreement highlights that the
main ingredient is the dynamics of the noisy mode, not
the one of the chosen probe. From Fig. 3, we see that we
span the whole range of the phenomenon from motional
narrowing to inhomogeneous broadening. In the motional
narrowing limit, indeed, the first-order effect is a global
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mode n = 1 of device 250 μm-1. Force noise is applied on the same
mode, n = 1, such that �x2
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linear theory, which clearly does not fit the data (squares and dashed
guiding line). The inset corresponds to the largest drive measured
peak.

frequency shift proportional to �x2
n . On the other hand, in

the inhomogeneous broadening range the main feature is the
asymmetric broadening, which is nothing but the image of
the frequency distribution (inhomogeneity in the time domain,
as opposed to the position domain for NMR [32]). Further
technical discussions of these two limits can be found in the
Supplemental Material [43].

However, the theory of Ref. [39] applies for sinusoidal
excitation strengths lying within the linear response range.
When the motion amplitude is increased beyond this limit,
new phenomena are expected to take place, e.g., the para-
metric squeezing of the Brownian motion [45]. One signature
obtained experimentally that fails to be reproduced by the
theory is shown in Fig. 4: for large sine-wave excitations,
the amplitude of the detected mechanical peak lies below the
calculation, as if the impact of frequency noise were stronger
than expected. In the Supplemental Material [43], we show
that the noise spectra measured on mode n are indeed altered
by the back-action of the sine-wave response x0

n; the X and Y

quadratures are not equivalent anymore, and cross correlations
are nonzero at some peculiar frequencies. Further work, both
theoretical and experimental, is required to explore this new
dynamical range.

E. Application to a thermalized family of modes

For a physical thermal bath, the device is always in the
motional narrowing limit. In this case, the linear response of
mode n to a weak sinusoidal drive remains Lorentzian, with
a resonance frequency “dressed” by the Brownian motion of
all modes (global frequency shift proportional to T ). This
is essentially analogous to a mechanical Lamb shift [40]
in the classical domain. Furthermore, the linewidth of the
resonance is impacted by a T 2 term, a “thermal decoherence”
effect.

Reproducing results from Ref. [39], frequency dressing and
thermal decoherence can be written at lowest order in terms of
simple expansions for mode n:

ωn = ω0
n + 4βn,n�x2

n +
∑
m�=n

2βn,m�x2
m +

∑
m′

2β̄n,m′�y2
m′ ,

(4)

�ωn = �ω0
n + 2

(
4βn,n�x2

n

)2

�ω0
n

+
∑
m�=n

2

(
2βn,m�x2

m

)2

�ω0
m

+
∑
m′

2

(
2β̄n,m′�y2

m′
)2

�ω̄0
m′

. (5)

The validity of these expansions has been experimentally
verified in the present work for only two modes (Fig. 3). They
can be extended in this simple way to many modes since the
Brownian motion for n �= m is uncorrelated. For the sake of
completeness, we also added the sum over the other family
of transverse modes (in the �y direction), whose coefficients
are designated with an overbar and whose index is indicated
with a prime (the position standard deviation is simply written
�y2

m′ ). Indeed, the nonlinear coupling between flexural modes
of different families has been studied recently [50]. We shall
not discuss the coupling to longitudinal and torsional modes,
which is outside of the scope of beam mechanics; these depend
directly on Poisson’s ratio and will be very weak.

Equations (4) and (5) can be easily evaluated for doubly
clamped beams by means of mode parameters calculated
using the nonlinear extension of Euler-Bernoulli beam the-
ory [37,38,42]. With the simple equipartition result �x2

n =
kBT /kn,�y2

m′ = kBT /k̄m′ we can rewrite these expressions
such that

ωn − ω0
n

ω0
n

∝
(

EbeamA

2L3

)
(kBT )(

2k2
n

) , (6)

�ωn − �ω0
n

�ω0
n

∝
(

EbeamA

2L3

)2 (kBT )2(
2k4

n

) Q2
n, (7)

with A = we being the cross section. In the Supplemental
Material we summarize the mode parameters obtained in
the two extreme limits of Euler-Bernoulli theory: low stress
(beam) and high stress (string) [43]. Two key facts have to
be highlighted: first, the prefactor in Eqs. (6) and (7) that
gives the strength of the effect depends on material properties
and strongly on geometry. Second, increasing the stress in the
structure does reduce the sensitivity to Brownian transduction.

III. CONCLUSION

By artificially heating a single mode of a NEMS structure,
we have demonstrated experimentally the nonlinear frequency
transduction of the Brownian motion of this mode onto itself
and onto a nearby one. Beyond harmonic mode coupling
[36–38], the correlation time τc of fluctuations impacts the
dynamics. Two regimes are observed depending on the
strength of the stochastic force applied: motional narrowing
when the frequency fluctuations are small with respect to
1/τc and inhomogeneous broadening when they are large.
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The data have been compared to the theory from Ref. [39]
that spans the whole range, and we have demonstrated
excellent agreement without free parameters. The present
work has presented a complete experimental analysis of this
fundamental (classical) phenomenon, analogous to nuclear
magnetic resonance (quantum); effective temperatures up to
109 K for the mechanical mode under study were required to
reach the inhomogeneous broadening limit.

When extending these results to the case of a family of
modes thermalized to a bath at temperature T , we found
that for typical high-stress top-down structures like the ones
used here, the Brownian transduction phenomenon is clearly
negligible. However, for much smaller low-stress structures
with a high aspect ratio, the effect is foreseen to be limiting
in sensing applications [43]. In addition, the certain frequency
shift arising from the thermal dressing can also be a source of
frequency instability if temperature T is fluctuating. Finally,

when addressing the issue of intrinsic sources of decoherence,
it is mandatory to control this phenomenon. Note that other
authors reached the same conclusions with a different approach
specific to nanotubes [29].
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