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Missing Shapiro steps and the 8z -periodic Josephson effect in interacting helical electron systems
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Two-particle backscattering in time-reversal-invariant interacting helical electron systems can lead to the
formation of quasiparticles with charge e/2. We propose a way to detect such states by means of the Josephson
effect in the presence of proximity-induced superconductivity. In this case, the existence of e/2 charges leads
to an 8 -periodic component of the Josephson current which can be identified through measurement of Shapiro
steps in Josephson junctions. In particular, we show that even when there is weak explicit time-reversal symmetry
breaking, which causes the two-particle backscattering to be a subleading effect at low energies, its presence can
still be detected in driven, current-biased Shapiro step measurements. The disappearance of some of these steps
as a function of the drive frequency is directly related to the existence of non-Abelian zero-energy states. We
suggest that this effect can be measured in current state-of-the-art Rashba wires.
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I. INTRODUCTION

One of the most promising experimental avenues for the
discovery of Majorana fermions [1-5] as quasiparticles in
solid-state systems [6—14] has been quantum wires with
spin-orbit coupling. In such one-dimensional (1D) wires,
the combined effects of Rashba spin-orbit coupling (RSOC)
or helical nuclear order [15-17], proximity coupling to a
superconductor, and an externally applied magnetic field
[13,14] open a band gap in the single-particle spectrum of
the wire. This gap only closes at the ends of the wire, leading
to localized zero-energy states which are believed to behave
as Majorana fermions. Related, but more exotic, bound states
have been predicted to descend from strongly correlated phases
which display charge fractionalization, such as the edges of
fractional quantum Hall systems [18-21] or fractionalized
helical states [22,23].

However, unambiguous confirmation of such Majorana
quasiparticles remains elusive. Several experimental systems
have shown signatures that are consistent with Majorana bound
state [24-27], but a common objection is that such tests are not
directly sensitive to the specific properties of Majorana states.
Recently, more targeted experimental tests have been used
to rule out other possible causes. Measured current-voltage
curves for proximitized III-V nanowires with RSOC have
shown the disappearance of odd-numbered “Shapiro steps”
[28,29]. The disappearance of the odd steps is consistent with
theoretical predictions [30,31] that there are tunneling states
with charge e, rather than the usual 2e for Cooper pairs, leading
to a 4 -periodic component of the Josephson current. Shapiro
step measurements have also been made for proximitized
edge states of HgTe [32], where 4 periodicity is also seen
in the Josephson current, possibly arising from an intrinsic
mechanism of time-reversal symmetry breaking [33]. These
experiments provide a proof of concept for the experimental
setup.
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Crucial to the localization of bound states in these Majorana
systems is the opening of a gap in the spectrum at the
Dirac point at k =0 (see Fig. 1). This so-called helical
gap can be opened by applying a magnetic field. However,
previous work on the edge states of two-dimensional (2D)
topological insulators has shown the possibility of a helical
gap even without the application of a magnetic field, but
instead due to two-particle backscattering [34]. Proximity
coupling such a time-reversal-invariant system to an s-wave
superconductor then leads to the appearance of fourfold-
degenerate zero-energy bound states, i.e., Z4 parafermions
[33-35]. This system hosts quasiparticles with fractionalized
e/2 charge, which will result in an 87 -periodic component of
the Josephson current in a weak-link superconductor-normal-
superconductor (S-N-S) junction. Recently, we showed that
an analogous spin-umklapp scattering can open a helical gap
without magnetic field in strongly interacting wires with RSOC
[36]. This prompts the question of whether an 8w -periodic
Josephson current can be detected in Rashba wires as well.

Theoretical works have also turned to unproximitized
wires with RSOC [37-42], and experimental studies have
investigated transport in these wires too. Without induced
superconductivity, the system only has a partial gap, and
so does not contain localized bound states. Recent data [43]
show a dip in the conductance of InAs wires with an applied
magnetic field, consistent with the appearance of a helical gap.
The same authors also find a similar signature without applied
field, possibly arising from a partial spin-umklapp gap. We
note that the theoretically required interaction strengths have
already been reached in similar quantum wires [44], and that
the opening of the spin-umklapp gap may also have been seen
in other systems (e.g., Ref. [45]).

In this paper, we investigate a measurement scheme for
an 8m-periodic Josephson current in systems which support
two-particle backscattering. This unusual periodicity of the
Josephson current can be seen in Shapiro step experiments,
even when we allow for a weak breaking of time-reversal
symmetry (TRS). Breaking TRS lifts the fourfold degeneracy,
so we no longer have tunneling of e/2 quasiparticles in the

©2017 American Physical Society


https://doi.org/10.1103/PhysRevB.96.165429

PEDDER, MENG, TIWARI, AND SCHMIDT

PHYSICAL REVIEW B 96, 165429 (2017)

@ | !

vy, | Yo\ YR, YR

€

(b)

Y gsc gu
!

ea(k)

k

FIG. 1. (a) Shows the position of the chemical potential and the four low-energy linearized modes used to bosonize the system.
(b) Shows the reconstruction of the band structure as a result of the RG-relevant interaction processes between these modes. Umklapp
scattering opens a helical gap of size gy between the two modes near k = 0 and proximity-induced s-wave superconductivity opens gaps for
the outer modes at k = +2may of size gsc, resulting in a fully gapped system.

ground state. However, we will show that even allowing for
dominant tunneling of Cooper pairs and charge-e quasiparti-
cles, driven Shapiro step experiments can still be tuned to a
regime where the disappearance of Shapiro steps reveals the
presence of the 87 -periodic term in the Josephson current.
The structure of this paper is as follows. In Sec. II, we
introduce the specific model we choose to study: an interacting
Rashba wire proximity coupled to a superconductor. We then
bosonize this model in Sec. III, and present a renormalization
group (RG) analysis for the flow of the system parameters.
We find there exist regimes in which fourfold-degenerate
localized states can be found. In Sec. IV, we describe the
implications of the degenerate ground state for Josephson
effect measurements, and suggest a definitive Shapiro step
measurement to identify the 8w contribution to the Josephson
current arising from these states, even when this contribution
is subdominant. In Sec. V, we describe the situation in the
absence of TRS breaking, and construct the Z, exchange
statistics of the localized states, described by non-Abelian,
parafermionic operators. Finally, in Sec. VI, we discuss the
relevance of our work for experimental investigations.

II. MODEL

We focus on the specific case of a long, quasi-1D nanowire
aligned along the x direction which is harmonically confined
in the y and z directions. The interplay of the intrinsic spin-
orbit coupling of a material and the breaking of inversion
symmetry by a particular geometric arrangement, due to either
the presence of a substrate or to the application of an out-
of-plane electric field, gives rise to RSOC [46]. In the latter
case, the strength of the electric field may be used to tune
the magnitude of the RSOC, denoted as az. The dynamics
in the z direction is not affected by the Rashba coupling and
can be safely ignored. Thus, we can model a finite-width wire
by using the following 2D Hamiltonian including RSOC with
strength a g [47-49]:

_pitp
T 2m

1
H + Ema)ZyZ + aR(pry - prx)s (1)

where p, and p, are the momentum components in the x
and y directions, and o, , are Pauli matrices. The transversal
confinement is modeled as a harmonic potential with frequency
. The system has translational invariance along the x direction
but is strongly confined along the y direction, which leads
to the appearance of higher excited bands separated from the
lowest band by a spacing determined by the inverse width of the
wire. As described in Ref. [36], changes of subband come with
a spin flip, which in tandem with a spin-conserving interaction
can generate spin-umklapp scattering when the chemical
potential is at the Dirac point. This scattering converts, e.g.,
two spin-up particles into two spin-down particles (see Fig. 2).

Putting the chemical potential at the Dirac point leads
to four low-energy modes at momenta k = 0, &= kr (where

OT\‘*~£L

k- [mag]

FIG. 2. A plot of single-particle spectrum of a Rashba spin-orbit
coupled nanowire showing the two lowest transverse subbands, whose
spin character as a function of momentum is shown by the color
coding. Virtual transitions between subbands come with a spin flip,
and electron-electron interactions allow us to couple states in different
subbands. The inset shows the exact process responsible for spin-
umklapp scattering, where the virtual transition between subbands
(denoted by g) changes the spin character of two incoming particles,
and then the four-particle interaction vertex (denoted by V') couples
these, resulting in a process in the lowest subband where two spin-1
particles are scattered into two spin-|, particles.
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krp = 2mag) as shown in Fig. 1. Correspondingly, for small
energies, we can split the field operators up into four modes:

Y (x) & e Yrpp (1) + Y (x), @
YL (0) & Yry(x) + e g (x). 3

Projecting the density-density interaction Hamiltonian be-
tween the physical fermions onto the lowest subband leads to
three different types of interaction processes. First, we obtain
a density-density interaction term which reads as [36]

V(O)Z / A Py (X) pas (X), )

where the fermionic densities are defined as usual as pys(x) =
wis(x)lﬁm(x) where @ € {L,R}ands € {1,]}. L is the length
of the wire. V(g) is the Fourier transform of the interaction
potential V (r) projected to the lowest subband.

Moreover, we obtain a spin-flip term, which due to
momentum conservation only mixes terms near k = O:

Vo = g f dx[Wh, ¥k )@ W)Y, +Hel,  (5)

where vy is a dimensionful parameter characterizing the
strength of the spin-umklapp scattering.

Finally, we obtain spin-exchange terms, most of which can
be expressed as density-density interactions, leading merely to
changes in the coefficients of the terms in Eq. (4). We separate
out the single non-density-density term

Vo=us [ dxw whovivn +He) ©)

which corresponds to an interaction between inner and outer
bands with strength vs. In the limit in which this term
dominates, it results in a spin-density wave state at ¢ = 2kp,
and has been discussed in detail in Ref. [49].

Finally, we allow for the possibility of proximity-induced
coupling to an s-wave superconductor, which pairs spin-up and
-down electrons, and so has an effect at all the Fermi points in
Fig. 1(a). This pairing contribution to the Hamiltonian is

Vee = use [ dx@lyl, + vl +He) @)

where vgc is determined by the strength of the proximity
coupling to the superconductor. We now analyze the com-
petition between these three possible interaction channels,
parametrized by vy, vs, and vsc.

III. BOSONIZATION AND RENORMALIZATION
GROUP ANALYSIS

To further analyze the interacting system, we write the
Hamiltonian in terms of bosonic operators ¢4 and 61 (for
the details of the bosonization proceedure, see, e.g., [50,51]).
We define the operators

R  —i(p,—6,) RV —itp-—0-)
VIR = € U ) wR = e 5
' 2ma ' V2na
MLt ip_+6_) MY ia+6y)
Yy = ——e s YL, = e (8)
f 2ma ‘ V2ma
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where 14, are Klein factors and a denotes the short-distance
cutoff, related to the large-momentum cutoff A by a ~ A~L.
Here, ¢,(x) and 6,(x) are canonically conjugate bosonic
operators for degrees of freedom near k = +kp where kp =
2mag, whereas ¢_(x) and 6_(x) describe modes near k = 0.
In these variables, the Hamiltonian consists of two Luttinger
Hamiltonians for the + and — species, with approximately
equal Luttinger parameters K 1, and interaction terms reflect-
ing Egs. (5) and (6). Moreover, one obtains derivative terms
which couple the two species k30 ¢ 0, P and kp0,6,.0,6_.
Following Ref. [49], we diagonalize the quadratic parts
of the Hamiltonian by going to the charge-spin basis ¢, , =

(p+ £ ¢_)//2and 6, , = (0 £ 6_)/+/2 so that

Ho= Y 5= / [(a"’” +K(ae>2] ©)

a=p,a

where v, , are the respective sound velocities of the modes.
For repulsive interactions, we have K, < 1 and K, < 1 [49].
In addition to Hj, we obtain the two competing interaction
terms

_ &8s
Vs = Gra? / dx cos[2v/26,1, (10)
Vu = (2;‘: - / dx cos[2v2(¢, — ¢,)). (1)

Proximity-induced s-wave superconductivity gives a contribu-
tion which reads as in bosonized form

8sc
Vsc = Grap / dx();cos[\/z(ép + ab,)]. (12)

For weak interactions, the parameters of the model can
be determined precisely in the bosonization procedure (see
Ref. [36]). However, for strong interactions it is more conve-
nient to regard the parameters v, , and K, , as well as the three
coupling strengths gs, gu, and gsc as effective parameters,
which may flow independently under renormalization as we
change the cutoff a.

In terms of the dimensionless flow parameter £, given in
terms of the initial cutoff ay by a = apet, we calculate the
flow of the various coupling constants using real-space RG
calculation based on operator product expansions [52]. We
find the following first-order RG equations for the coupling
constants of the cosine terms:

dgs 2
=S _2— 2 )gs, 13
70 ( K(,)gs (13)
ng
=2(1-K, — K , 14
T ( 0)8U (14)
dgsc 1 1
— =\|2- , 15
de ( 2K, 2K )gSC (1%

implying that the spin-density wave term is always irrelevant
for repulsive interactions (K, < 1) [49]. The spin-umklapp
term, by contrast, can become relevant for strong interactions
where K, 4+ K, < 1. Finally, the superconducting term is
relevant for K ' + K;' < 4.

We would like to point out that for g = 0, the system
becomes SU(2) invariant. In that case, the spin-umklapp term
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vanishes because spin is conserved and one finds the well-
known Kosterlitz-Thouless RG flow which brings K, — 1 as
gs — 0. In contrast, for ap # 0, K, is not constrained and
strong repulsive interactions lead to K, < 1.

We start the RG flow from an initial value a = ag and flow
towards a ~ L, the length of the wire. Generically, the RG
flow will stop at a finite value a», < L as soon as one of the
dimensionless coupling constants gsc,u/Vs,, approaches one.
The bare value of gsc(ap) is determined by the strength of the
proximity coupling to the superconductor, which can be ex-
perimentally optimized. The bare value gy(ap) depends on the
separation between the lowest subbands, and so depends on the
transverse confinement (i.e., the physical width) of the wire.

To generate zero-energy bound states, spin-umklapp scat-
tering must gap out the modes near k = 0, whereas proximity-
induced superconductivity should open a gap for the modes
at k = £kr [see Fig. 1(b)]. Superconductivity affects all
modes, so this is only possible if at the end of the RG flow
lgu(aco)| > |gsclas)| > 0. Strong electron-electron interac-
tions resultin K, < 1/2and K, < 1/2, which a priori makes
the spin-umklapp term relevant and the superconducting term
irrelevant. However, since the RG flow is cut off at a finite
length scale, one will generally find a nonzero |gsc(doo)| > 0
at the end of the RG flow, meaning that a superconducting gap
will still open.

IV. JOSEPHSON EFFECT AND SHAPIRO STEPS

A zero-bias conductance peak is a possible experimental
signature of localized Majorana fermions associated to a
helical gap. However, such peaks could arise from other
mechanisms, e.g., disorder [53,54], and do not directly indicate
the degeneracy of the states involved. In particular, the
umklapp gap, and associated fractionally charged states we
previously proposed in Ref. [36], would lead to a similar
zero-bias anomaly in a system with proximity-induced su-
perconductivity as that caused by Majorana fermions, albeit
at vanishing magnetic field. To uniquely discriminate these
particular bound states, we instead propose to discover their
presence via the periodicity of the Josephson effect, similar to
the corresponding proposal for Majorana fermions [10,28,29].

To investigate the role of fractionally charged tunneling
states on the Josephson effect, we follow the logic of [34,35]
and consider an arrangement with two superconducting con-
tacts with phase difference ¢ placed under a Rashba wire
partially gapped by spin-umklapp scattering (see Fig. 3), in an
analogous arrangement to the experimental setup of Ref. [28].
In the absence of TRS breaking, the wire adjacent to the
edges of the superconductors will host zero-energy modes
with charge e/2, which will dominate the transport at low
energies and for a short junction [36]. Tunneling of a single
quasiparticle through the junction will change the parity of
the end states. In order to satisfy the boundary conditions
due to the applied superconducting phase difference, four e/2
quasiparticles must tunnel via the bound states, leading to an
8 -periodic Josephson effect [35]. The TRS breaking caused
by the superconducting phase difference causes a slight lifting
of the fourfold degeneracy, but for realistic parameters this
shift is negligible [35].

PHYSICAL REVIEW B 96, 165429 (2017)

FIG. 3. Experimental setup for the measurement of the 8m-
periodic Josephson effect. Two superconductors underneath a Rashba
wire are held at a phase difference ¢. The blue portions of the wire are
gapped by superconductivity, whereas the gray section is gapped by
umklapp scattering. Fractionally charged bound states are indicated
by red spheres.

In real material samples, TRS may also be weakly broken
by magnetic impurities, thereby lifting the fourfold degeneracy
to a twofold one. In our finite-length Rashba wire, there will
generically be a nonzero overlap of the modes at each end
of the wire and so the degeneracy between the modes will
be split, although this effect is exponentially suppressed in
the length of the wire. In any case, the undriven Josephson
current is no longer 8w periodic. This raises the question of
whether remnants of the 87 periodicity can be observed in
such a nonideal setting.

A possible answer was proposed for similar problems in
Majorana nanowires [30], where a 47 periodicity is reduced
by parity-flipping perturbations to a trivial 2z periodicity:
by driving the current in the junction at a finite frequency,
we allow Landau-Zener tunneling between the different low-
lying states. Then, Shapiro step measurements [55] can still
distinguish higher periodic components even when those are
very weak, as in the case of a 47 periodicity recently reported
in experiments on Majorana nanowires [28,29].

In the case of a driven junction, Landau-Zener tunneling
gives us access to all the low-energy modes, even when they
are subject to a small splitting. Allowing for the possibility
of Josephson tunneling of Cooper pairs, as well as for the
tunneling of charge e and charge e¢/2 quasiparticles through
the weak link in our system, the total Josephson current flowing
is given by

I[p(1)] = i sin[@(1)] + i,y sin [%} +i,sin [?}

(16)

The amplitude i, accounts for the current due to the tunneling
of Cooper pairs (this is the critical current above which
the junction becomes “normal”). The parameters i,, and i,
similarly account for the tunneling of fractionalized charge
e and charge e/2 quasiparticles through the junction. Note
that these contributions to the Josephson current are peri-
odic under shifts ¢(¢) — @(t) 4+ 27, ¢(t) — ¢(¢t) + 47, and
o(t) — @(t) + 8w, respectively.

We now consider the relative sizes of these contributions.
A finite-size nanowire has more than one subband, and most
of these subbands will contribute charge-2e Cooper pairs
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FIG. 4. The equivalent circuit diagram for our current-biased
Josephson junction arrangement. The combination of the constant
current source with a small ac offset provided by microwave
irradiation of the junction gives the total current source. The transport
through the junction divides into a tunnel current [[¢(f)] from
tunneling of quasiparticles through the junction, and a resistive cur-
rent in parallel which comes from transport through unproximitized
above-gap states of the nanowire.

when proximitized. We therefore expect to find a dominant
27 contribution to the Josephson current, i.e., ic > iy,i,.
Furthermore, the charge-e contribution to the current is robust
to weak breaking of time-reversal symmetry, whereas the
e/2 contribution will be reduced by this, so in a typical
experimental setting we expect i,, > i,, leading to the overall
ordering we will use, that i, > i, > i,.

The Josephson equation relating the rate of change of the
superconducting phase ¢ to the voltage across the junction
reads as

. 2e
o) = ?V(I)- (17

We follow the resistively shunted junction (RSJ) model of
[30,56] and current bias our Josephson junction using a
constant current with a small ac component Iy + I; sin(wt)
(see Fig. 4). The current through the junction consists of two
parallel components. First, there is a tunnel current given by
I[p(1)], which describes the tunneling of charge-2e, charge-e,
and charge-e/2 quasiparticles through the junction. Second,
in order to capture the physics of a real, physical junction,
we include in parallel a resistive current due to Ohmic charge
transport through the unproximitized above-gap states of the
nanowire. Larger values of the resistance R of this channel
indicate weaker coupling between the bound states and the
above-gap states in the wire.

Using the Josephson equation, we compute the voltage drop
across the junction to be V (¢) = h¢(t)/(2e). This voltage drop
also exists across the Ohmic channel. The current flowing
in the Ohmic channel is therefore 1(¢) = hig(t)/(2eR), and
Kichoff’s law then gives that the gauge-invariant phase ¢(¢) is

PHYSICAL REVIEW B 96, 165429 (2017)

described by the dynamical equation

I+ Iy sin(@r) = i sinl(t)] + iy sin [@]

2
+ipsin [@] +

ho(1)
Writing Eq. (18) in terms of the rescaled variables T =

. 18
2¢R (18)
2eRi.t/h and @ = hw/2eRi., we find the equation

o(T) = ag + o Sin(@t) — sin (1)

— oy, Sin [@} — o sin [@] (19)

This equation must be solved numerically.

In order to see that the 87 periodicity can win out, even
when a. =1 > a, > ), we first solve Eq. (19) without the
ac drive current, i.e., ; = 0 (see Fig. 5). For a generic choice
of the dc bias current, «, the superconducting phase is 2w
periodic, reflecting the dominance of the Cooper pair tunneling
[Fig. 5(a)]. However, we find that as we approach a critical
value of o, we first see the 4 -periodic term due to the charge-
e quasiparticles [Fig. 5(b)] and then the 87 contribution from
the charge-e/2 quasiparticles [Fig. 5(c)] becomes dominant.

The winding up of the superconducting phase is not a
property which is easy to directly measure, so to give an
experimentally accessible measurement, we must drive the
system to see the degeneracy of the low-lying modes. To
do this, we switch on the small ac component to the bias
current o) (experimentally achieved by irradiating the junction
with microwaves). Tuning the driving frequency allows us
to access three distinct regimes, in which steps occur in
the experimentally measurable I-V curves for the junction
at distinct multiples of the driving frequency &. For high
frequencies, we find Shapiro steps are present at all integer
multiples of the driving frequency, indicating that the transport
is dominated by conventional Josephson tunneling of Cooper
pairs through the junction. Reducing the frequency of the drive,
we recover the results of Ref. [30] that only the even-numbered
Shapiro steps remain. Finally, for lower frequencies still,
there exists a regime in which only every (4n)th Shapiro step
survives (see Fig. 6).

The appearance of extra steps can be caused, e.g., by dis-
order or strongly nonadiabatic driving. However, mechanisms
other than the one described by which Shapiro steps may
disappear seem to be unknown. As the disappearing Shapiro
steps are robust even when the 2w and 47 contributions to
the Josephson current are dominant over the 87 component,
they therefore provide a highly selective test of the existence
of an interaction-generated helical gap, even in the presence
of weak TR symmetry breaking.

In order to get clear 87 Shapiro steps, it is important
that temperature 7 is much smaller than the gap opened
by umklapp scattering. As pointed out in Ref. [56], another
crucial condition for the disappearance of Shapiro steps in a
voltage-biased arrangement is that the time scale over which
the bound states switch must be long compared to the time scale
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FIG. 5. Numerical solutions to Eq. (19) with a dc bias current (¢; = 0), showing different periodicity behavior depending on the amplitude

of the dc current. We have made the representative choice ,, = 75 and ,,

=L

= 100 Which is consistent with our expectations of the relative size

of the contributions to the Josephson current from Majorana fermions and parafermions (see main text). (a) Shows the superconducting phase
changing in 27 steps for the choice oy = 1.5, whereas (b) is plotted for oy = 1.1, and shows residual small steps at 27 and dominant steps at
47 which correspond to the dominant transport being via tunneling of Majorana fermions. In (c), we choose oy = 1.08, and recover jumps of

87 in the superconducting phase due to tunneling of parafermions.

over which the superconducting phase can adjust through the
external circuit.!

V. BOUND STATES

Several works [57,58] have suggested that in a spinless,
one-dimensional system, the greatest achievable topological
degeneracy is twofold, leading to the statement that only
Majorana fermions can exist in one-dimensional systems. Our
system does not contradict this theorem because in our case the
ground-state degeneracy is not entirely topological. Indeed, it
can be viewed as a twofold topological degeneracy combined
with a twofold degeneracy due to TRS [59]. This second
degeneracy can be lifted by local TRS-breaking perturbations
such as a magnetic field. In that case, only the topological
part of the ground-state degeneracy survives, and one recovers
the 47 periodicity of the Josephson effect seen for Majorana
bound states [10].

The Shapiro step measurement suggested in the previous
section will demonstrate the existence of a spin-umklapp
generated gap even in disordered nanowires which may have
weak TRS breaking. However, the level of disorder in current
state-of-the-art nanowires and nanowire junctions is so low
as to demonstrate ballistic electron transport [43,60,61]. In
such clean wires, and without explicit TRS breaking, it may
even be possible to see the existence of degenerate, localized
zero-energy bound states. To investigate the form of these
bound states, we use the unfolding transformation described

"We note that a similar behavior can be observed in our current-
biased system, where small values of R, which indicate strong
coupling to the continuum of above-gap states mean that it becomes
difficult to tune @ to small enough values to see the missing steps.

in Refs. [23,50]. This transformation can be used to map our
system with length L and open boundary conditions to a system
of length 2L and periodic boundary conditions. Explicitly, we
construct the unfolded chiral fields

. [ers® for0 < % < L,

Er(¥) = {(pL(ZL _ % forL<g<2L, @V
e ® for0< % <L

@) = {(pR_(ZL —5 forL<i<2L, @D

where ¢y, = a¢, — 6, witha = R,L and v = +. In order that
the fermionic fields obey the vanishing boundary conditions
atx = 0 and L, we find that the bosonic fields must obey

014 (0) = pr_(0), @4 (L) = pr_(L),
0r—(0) = or1(0), @r_(L) = @p4(L).

Note that in this transformation, the degrees of freedom
(¢+,0+) are mapped on the range X% € [0,L], whereas
the (¢_,0_) fields are mapped on the range ¥ € [L,2L].
Since the original chiral fields satisfy [@g,(X),@qn (x)] =
ITA8yqdyrsgn(x — x’), we find that the unfolded fields obey
the correct chiral commutation relations

[60(),60(X)] = imadeesgn(® — &), (23)

on the whole interval X,%" € [0,2L]. In terms of these unfolded
fields, our Hamiltonian for the relevant perturbations arising
from umklapp scattering and superconductivity reads as

(22)

2L
w+m;A d¥[gu(E) cos(2[r() — £ (D)])

+ gsc(¥) cos[Er(X) + EL(X)]],

where the position-dependent couplings guy(X) and gsc(X)
have support on ¥ € [0,L] and ¥ € [L,2L], respectively. The

(24)
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FIG. 6. A plot of the current-voltage relationship for the system driven with a small amplitude ac current with a large dc offset (with
corresponding magnitudes g = 1.08 4 67 and o; = 0.01). The excess current §1 over the critical value at zero drive is plotted on the vertical
axis. The Josephson junction has a dominant 27 -periodic component, and subleading 4 - and 87 -periodic components (&, = % anda, = ﬁ).
(a) At the fastest drive frequency (comparable to that of the 2 -periodic component of the Josephson current) shown in the top curve, we
find all integer Shapiro steps. As we drive at a slower frequency (middle curve), the first Shapiro step shrinks, and then disappears, leaving
only Shapiro steps which are multiples of 2. (b) Driving at smaller frequencies, we find a double-step structure (top curve), but the size of the
intermediate steps shrink as we reduce @ (middle curve). Eventually, at the lowest frequencies, we see a 4nw step structure. Note that the extra
steps at V & 2w/3 in the top two lines in (a) result from the fact that we are driving nonadiabatically, but are not relevant to experimental
measurements as they do not occur at integer multiples of the driving frequency. Note that the I-V curves have been offset in the y-direction to

make the step structure easily visible.

unfolded system consists of two adjacent regions. Between
¥ =0 and L, we have a region of superconductor where
the field 6(%¥) = —(&g + &£.)/2 is pinned by the term cos[26]
to the value 6* = (n + 1/2)r for integer n. From ¥ = L
to 2L, there is a region of “Mott insulator” where the
field ¢ = (§r — &1)/2 is pinned by the term cos[4¢] to the
value ¢* = 1/2(m + 1/2)r for integer m. The spectrum is
completely gapped, except possibly at the boundaries between
the two regions ¥ = 0 and L, where the parafermion states
we describe emerge. The unfolded system is identical to the
topological insulator edge state system studied in Ref. [34],
which tells us that our original system contains Z4 parafermion
state at its ends.

Let us reproduce the essential parts of the derivation here.
We define the total charge and total spin operators for the
system, according to

7S =6Q2L) — 6(0), (25)

1Q = ¢(2L) — ¢(0). (26)

Despite the fact that the fermionic fields must be continuous,
the bosonic fields ¢ and & may jump by integer multiples of 27,
sothat S and Q can be nonzero in spite of the periodic boundary
conditions. The spin § of the system takes integer values, and
is conserved mod(4) so s = {0,1,2,3} (measured in units of
hi/2), whereas the charge Q takes half-integer values and is
conserved mod(2) so g = {0, % 1, %} (measured in units of e).
Since we may only add integer amounts of electronic charge
to our junction, we must restrict our value of the charge to be
q € {0,1}. Note that in a system where there are several junc-

tions between superconducting and Mott insulating regions, it
is perfectly acceptable to have states with half-integer charge,
as long as the total charge of the complete system is restricted
again to g € {0,1}. The state of our system is then defined by
|s,q). Since every physical electron carries one unit of spin,
this means that for the charge state ¢ = 0, only the two total
spin states s € {0,2} are permissible. Similarly, ¢ = 1 requires
s € {1,3}. Hence, we have a total fourfold degeneracy of the
ground state.

To see explicitly the parafermionic statistics of the bound
states at x = 0 and L, we write the pinned values of the fields
in terms of integer-spectrum operators m,n,n, as

8 1 +7{
=—|\mm+ =),
) 2

T
1o =mnio+ 3 27

These operators then have commutation relations

[m,n,] = 0. (28)

i
[manl] = -
T

Bound-state operators obeying parafermionic exchange
statistics

Ty (29)

can be obtained by the definitions

X1X2=e€

X1 = TQeiﬂm/Z,
X2 = eiﬂ/4TQeinm/2ei7r(n2—n1)/2’ (30)

where T} is the raising operator for charge Tp|s,q) =|s,g+1).
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VI. DISCUSSION

The opening of the spin-umklapp gap is rather generic.
In a wire with RSOC and electron-electron interactions this
gap will lead to a reduction of the normal-state conductance
of from 22/ h to €%/ h as the chemical potential approaches
the Dirac point, which may already have been seen in InAs
nanowires [43]. We would like to point out that the required
strong interactions have already been seen in these wires
[44]. Umklapp scattering has also recently been invoked to
explain the reduction in conductance observed in InAs/GaSb
topological insulator edge states [62]. Introducing a weak
superconducting proximity effect in either these wires or
edge states will then lead to the creation of bound states and
allow the observation of the 8sm-periodic Josephson current
component.

Our system is susceptible to bulk disorder. First, disorder
causes one-particle backscattering which corresponds to an-
other cosine term in the bosonized Hamiltonian. For umklapp
scattering to win out, we require that the amplitude of the
umklapp term is larger than the disorder potential at the
end of the RG flow. Moreover, disorder can cause local
deviations of the chemical potential away from p = 0. If
these fluctuations are small compared to the umklapp gap,
the bound states will persist. Recent measurements on InAs
wires [43] and InSb wires and arrays [60,61] show ballistic
transport which is indicative of very low levels of bulk disorder.

PHYSICAL REVIEW B 96, 165429 (2017)

Weak magnetic disorder will result in explicit breaking of
time-reversal symmetry, and so the localized Z4 parafermionic
bound states associated to the charge-e/2 quasiparticles will
cease to exist, but the subleading 87 -periodic term will still be
visible in Shapiro step experiments.

To summarize, we propose an experimental scheme allow-
ing us to observe an 8w -periodic Josephson current occurring
via the tunneling of fractional e /2 charges through the junction.
The associated Shapiro step structure in which only the 4n
steps survive (where n € Z) would be a definitive signature of
fourfold-degenerate bound states, associated to an umklapp
gap generated by two-particle backscattering in strongly
interacting Rashba wires or edge states of two-dimensional
topological insulators. In the absence of TRS-breaking per-
turbations, the bound-state degeneracy is protected by a
combination of time-reversal symmetry and fermion parity
symmetry. The operators describing these bound states in the
ground-state manifold satisfy a Z, parafermionic algebra.
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