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Near-field radiative heat transfer in graphene plasmonic nanodisk dimers
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Near-field thermal radiation mediated by surface plasmons in parallel graphene nanodisk dimers is studied
using a semianalytical model under the electrostatic approximation. The radiative heat transfer between two disks
as a function of the distance between them in coaxial and coplanar configurations is first considered. Three regimes
are identified and their extents determined using nondimensional analysis. When the edge-to-edge separation is
smaller than the disk diameter, near-field coupling and surface plasmon hybridization lead to an enhancement of
the radiative heat transfer by up to four orders of magnitude compared to the Planck blackbody limit. A mismatch
in the disk diameters affects the plasmonic mode hybridization and can either diminish or enhance the near-field
radiation. Destructive interference between eigenmodes that emerge when the relative orientation between disks
is varied can induce a twofold reduction in the radiative heat transfer. In all configurations, the radiative heat
transfer properties can be controlled by tuning the disk size/orientation, the substrate optical properties, and
graphene’s doping concentration and electron mobility.
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I. INTRODUCTION

Radiative heat transfer between two bodies separated by a
subwavelength gap is called near-field radiation. In this regime,
tunneling of evanescent electromagnetic waves leads to heat
transfer rates beyond the Planck blackbody limit [1]. The
enhancement can be several orders of magnitude in materials
that support surface electromagnetic modes, providing that
their activation energies are comparable to kBT , where kB is
the Boltzmann constant and T is temperature. Thus, polar
dielectrics such as SiO2 and SiC, which support surface
phonon-polaritons in the near-infrared part of the spectrum,
demonstrate near-field radiation enhancement at room tem-
perature [2,3]. The near-field thermal radiation response of
a bulk material can be modified when it is nanostructured
into subwavelength geometries [4–7]. This technique has
been explored in metamaterials for tunable near-field thermal
radiation enhancement [8–11] and in photon-based solid-state
thermal devices [12–15].

Graphene plasmonics has emerged as an alternative plat-
form for strong near-field radiation enhancement [16–19], with
potential application in heat flux splitting [13], thermal plas-
monic interconnects [20], and ultrafast radiative cooling [21].
The linear electronic dispersion of graphene leads to a high
electron mobility and allows for the induction of free carriers
by chemical doping or electrical gating [22]. The resulting
plasmons are long-propagating and strongly confined, with
tunable frequencies from the terahertz toward the midinfrared
part of the spectrum [23]. The near-field thermal radiation
properties of nanostructured graphene are largely unexplored.
Numerical simulations are computationally expensive [24],
and studies have been limited to theoretical approaches, such
as the point dipole approximation [13] and perturbation theory
[25], which are restricted to large separation gaps.

Herein, we study the near-field thermal radiation prop-
erties of surface plasmons in dimers built from parallel
graphene nanodisks. We use a semianalytical model under the
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electrostatic approximation, which is suitable when the disk
size is smaller than the wavelength of the electromagnetic
waves in the surrounding media [26–28]. Our model extends
the theory for a single disk developed by Fetter [29] to
include analytical expressions for the Coulombic disk-to-
disk interactions. Radiative heat transfer is modeled under a
fluctuating surface charge formalism that results in a compact
expression that uses the coupling matrices developed in the
electrostatic formulation. We are thus able to capture near-field
coupling at very small gaps with high accuracy. As the
electrostatic theory in based on analytical expressions, we
are able to obtain results two orders of magnitude faster
than numerical simulations based on the boundary element
method (BEM) [30]. Because our solution is based in the
hydrodynamic theory of two dimensional electron gas [29], the
formalism developed here can be extended to other graphene
nanostructures such as antidots systems [31], nanorings [32],
and nanoribbons [33].

The remainder of the paper is organized as follows.
The mathematical formulation is described in Sec. II. The
hybridization of surface plasmon modes on disk dimers in
coaxial and coplanar configurations is presented in Sec. III A.
Near-field radiative heat transfer in these two configurations
is then examined in Secs. III B and III C, and the effect of
mismatched diameters is considered in Sec. III D. In Sec. III E,
the effect of the orientation between the two disks is studied.
The results are summarized in Sec. IV.

II. METHODS

Graphene’s plasmonic properties are directly related to its
optical conductivity, which in the local limit (i.e., negligible
spatial dispersion) reduces to [34]

σ (ω) = 2e2kBT

πh̄2

i

ω + iτ−1
ln[2 cosh(Ef /2kBT )]

+ e2

4h̄

[
H (ω/2) + 4iω

π

∫ ∞

0

H (x) − H (ω/2)

ω2 − 4x2
dx

]
,

(1)
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FIG. 1. (a) Real part of the normalized electric-field intensity in the direction perpendicular to the plane of the disk, Ez/|Ez|max, showing
the surface charge distribution of the localized surface plasmon modes (k,l) = (0,±1), (0,±2), (1,±1), and (1,±2) in an isolated graphene
disk (D = 100 nm, Ef = 0.6 eV). Hybrid surface plasmon resonant frequencies of two graphene nanodisks in (b) coaxial and (c) coplanar
configurations as a function of the gap between them (D = 100 nm, Ef = 0.6 eV). A schematic diagram of the charge distribution of the
lowest dipole mode, (k,l) = (0,±1), is drawn for each case, showing the form of the hybridized plasmon modes. Higher modes adopt similar
hybridization behavior.

where

H (x) = sinh(h̄x/kBT )

cosh(Ef /kBT ) + cosh(h̄x/kBT )
.

Here, e is the elementary charge, h̄ is the reduced Planck
constant, Ef is the Fermi level of electrons above the Dirac
point, ω is the angular frequency, and τ is the impurity-limited
lifetime. Electrical gating can produce a Fermi level up to 1 eV
[24]. The first term on the right-hand side corresponds to the
contribution from intraband transitions, and the second term
corresponds to the contribution from interband transitions.
Interband transitions play a role for photon energies h̄ω >

2Ef . The impurity-limited lifetime can be estimated as τ =
μEf /ev2

f , where μ is the electron mobility and vf = 106 m/s
is the Fermi velocity [24]. Unless stated otherwise, we consider
a mobility of 10 000 cm2/V s, which is a conservative value
compared with the largest mobilities measured for high-quality
suspended graphene (μ > 15 000 cm2/V s) [35].

The near-field interaction between two graphene disks is
calculated under the electrostatic approximation [36]. The
solution is obtained by expanding the surface charge using an
orthogonal basis and then considering the boundary conditions
at the surface of each disk [see Sec. S1 of the supplemental
material (SM) [37]]. Using the fluctuation-dissipation theorem
[38], we express the radiative thermal conductance between
two objects 1 and 2 in terms of the surface charge expansion
elements as

GNF =
∫ ∞

0
�12(ω)h̄ω

dfBE

dT
dω. (2)

Here, fBE is the Bose-Einstein distribution and �12(ω) is the
ensemble-averaged flux spectrum (Sec. S2), which is given by

�12(ω) = 1

2π
Tr

[
G1

AHW∗G2
AHW

]
. (3)

Here, Tr[·] is the trace of the matrix, W = 2[G1 + G2 + G0]
−1

is the electrostatic polarization matrix, Gν and G0 are interac-
tion matrices in the disk ν (ν = 1,2) and in the surrounding
media [Eqs. (S7) and (S8)], and GAH = 1

2 (G − G∗) is the anti-
Hermitian part of G. As shown in Appendix, our theory and
numerical simulations using the BEM show good agreement
for frequencies below 80 THz.

III. RESULTS AND DISCUSSION

A. Plasmonic hybridization in graphene disk dimers

Localized surface plasmons in an isolated graphene disk
can be classified by radial (k = 0,1, . . . ) and angular (l =
0,±1,±2, . . . ) indices [29]. In Fig. 1(a), the normalized
electric field in the direction perpendicular to the plane of a
disk, Ez/|Ez|max, for the (k,l) = (0,±1), (0,±2), (1,±1), and
(1,±2) modes is shown for a disk diameter, D, of 100 nm and
a Fermi level of 0.6 eV. The surface charge for modes with
k = 0 is mostly distributed along the edge of the disk, while
for k = 1 (and higher, not shown) the charge is distributed
across the surface.

When two disks are separated by a small gap, the overall
electromagnetic response differs from the response of an
isolated disk. This phenomenon is known as surface plasmon
hybridization and is a consequence of the near-field interaction
between nanostructures [39,40]. In the case of two coaxial
graphene disks separated by a distance �z, each fundamental
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mode hybridizes into a higher-frequency mode and a lower-
frequency mode, as shown in Fig. 1(b) for (k,l) = (0,±1) and
(0,±2). The high- and low-frequency modes are characterized
by the charges on each disk oscillating in-phase and out-of-
phase [28,39]. In the limit of �z/D � 1, the frequencies of
the hybridized modes saturate. The highest-frequency mode
reaches

√
2ω0, where ω0 is the resonant frequency of the

nonhybridized mode [39]. The value of �z/D where the hy-
bridization begins and the size of the frequency shifts in the
limit of small separation are different for each fundamental
mode.

In the case of two coplanar disks with center-to-center
disk distance �x, breaking the axial symmetry produces four
hybrid modes for each fundamental mode, as shown in Fig. 1(c)
for (k,l) = (0,±1) and (0,±2). The two central hybrid modes
have charges oscillating perpendicular to the �x axis, with
similar characteristics to those of the coaxial hybrid modes.
The other two modes have charges oscillating along the �x

axis. The resonant frequency is highest when the charges
oscillate out-of-phase and lowest when the charges oscillate
in-phase.

B. Near-field radiation in coaxial disk dimers

Surface plasmon hybridization plays a major role in near-
field radiative heat transfer between two graphene disks. We
evaluate the near-field radiative heat transfer enhancement as
GNF/GBB. GNF is the near-field radiative thermal conductance
obtained from Eq. (2), and GBB is the blackbody radiative
thermal conductance between one side of a graphene disk and
an infinite surface [41],

GBB = σSBT 3πD2, (4)

where σSB is the Stefan-Boltzmann constant. Here and in all
subsequent calculations, we consider a temperature of 300 K.
As a reference, GBB is 4.8 × 10−2 pW/K for a disk of 100 nm
diameter.

The near-field enhancement between two suspended
coaxial graphene disks of 100 nm diameter and a Fermi level
of 0.6 eV is plotted in Fig. 2 as a function of their separation.
Three regimes can be distinguished: (i) a weak-coupling
regime at large separations, where the response scales as
(�z)−6, similar to the interaction between two small dipoles
[4]; (ii) a strong-coupling limit at narrow gaps that scales as
(�z)−1; and (iii) a transition regime in between. The deviation
from the (�z)−6 scaling in the strong-coupling and transition
regimes is a result of the near-field interaction between
nanostructures [6,42] and is indicative of the presence of
surface plasmon hybridization. For �z/D < 3.7, near-field
radiative heat transfer exceeds the blackbody limit, reaching
values three orders of magnitude larger when �z/D = 0.01.

The role played by hybridization is different in the
strong-coupling and transition regimes. In the strong-coupling
regime, the shifts in the hybrid frequencies of each mode
have reached their limit, as mentioned in Sec. III A. In this
regime, the near-field thermal conductance scales as (�z)−1,
which is the same trend as for near-field radiation between
two infinite parallel plates [43]. This result indicates that
surface mode coupling is dominant. Near-field enhancement
in the transition regime, on the other hand, is dominated by the
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FIG. 2. Near-field enhancement, GNF/GBB, of two coaxial
graphene disks as a function of their separation (D = 100 nm,
Ef = 0.6 eV). Inset: spectral radiative thermal conductance, GNF(ν),
showing the hybridization of the fundamental dipole mode (k,l) =
(0,±1) at �z/D = 0.4, 0.6, and 1.0.

shifting of the resonant frequencies, where interactions from
the disk edges play the major role [39]. This phenomenon is
observed in the spectral thermal conductance, GNF(ν), plotted
in the inset of Fig. 2 for �z/D = 0.4, 0.6, and 1.0 for the
lowest dipole mode, (k,l) = (0,±1). The peaks are the result of
resonances of the hybrid modes and separate as �z decreases.
Higher-order modes present a similar behavior. The shift of
the resonant frequencies creates competing effects between a
higher thermal activation of the redshifted hybrid modes and
a lower thermal activation of the blueshifted hybrid modes.

To investigate the effects of optical losses in near-field
radiation enhancement, we also considered a mobility of
1000 cm2/V s. The resulting GNF/GBB is plotted in Fig. 2.
When �z/D � 1, the near-field enhancement is lower than
the case with μ = 10 000 cm2/V s. In this regime, the dipole
approximation is valid [5,6] and the near-field thermal conduc-
tance between two nanostructures with electric polarizability
α and separated a distance d is [4]

GNF ∝
∫ ∞

0

[Im(α)]2

d6
h̄ω

dfBE

dT
dω.

When optical losses increase, the peak in Im(α) decays,
reducing the near-field enhancement. For �z/D < 1, the
near-field enhancement is larger compared to the results for
a mobility of 10 000 cm2/V s, indicating that near-field
radiation is dominated by optical losses. In the strong-coupling
regime (�z/D � 1), near-field enhancement remains larger
compared to the result for the larger mobility, and the ratio
between the two curves is constant. At �z/D = 0.01, the
near-field thermal conductance exceeds the blackbody limit
by four orders of magnitude. The behavior in this regime
is consistent with the theory of near-field radiation between
two semi-infinite surfaces, where higher optical losses favor
near-field enhancement [44].
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FIG. 3. (a) Near-field radiation enhancement between two coaxial graphene disks (Ef = 0.6 eV) as a function of the distance �z for disk
diameters ranging from 50 to 500 nm. The blue line represents the near-field enhancement between two graphene sheets [17] with Ef = 0.6 eV.
(b) Near-field radiation enhancement between two coaxial graphene disks (D = 100 nm) as a function of the distance �z for Fermi levels
ranging from 0.1 to 1.0 eV.

The near-field enhancement between two coaxial graphene
disks as a function of �z for disk diameters ranging from 50 to
500 nm is plotted in Fig. 3(a). The top line represents the near-
field enhancement of two suspended infinite parallel graphene
sheets, obtained from the model of Ref. [17]. The near-field
enhancement increases monotonically with increasing disk
diameter in the weak-coupling regime. In the strong-coupling
regime, the near-field enhancement approaches the limit given
by the parallel graphene sheets. As the disk diameter increases,
the transition points between the three regimes are shifted
to larger values of �z, in agreement with other studies of
near-field radiation between nanoparticles [6,42].

In Fig. 3(b), the near-field enhancement between two coax-
ial graphene disks as a function of �z/D is plotted for a Fermi
level ranging from 0.1 to 1.0 eV. All the curves show a similar
trend in the weak-coupling regime, followed by an increased
near-field enhancement in the strong-coupling regime as the
Fermi level decreases. Lowering the Fermi level has two
effects: (i) optical losses are increased due to higher rates of
intraband and interband transitions, and (ii) the resonant fre-
quencies are redshifted [45], which increases the contribution
from fBE. In the strong-coupling regime, the two effects both
lead to larger near-field enhancement as Ef is reduced. In the
weak-coupling regime, where optical losses are unfavorable
for near-field enhancement, the two effects compete and the
curves overlap for different values of Ef . Due to the different
role played by optical losses in the strong- and weak-coupling
regimes, the curves cross in the transition regime.

As can be seen in Figs. 2, 3(a), and 3(b), the length scales
that determine the limits of the strong-coupling, transition,
and weak-coupling regimes depend on D, Ef , and μ. As
shown in Sec. S3 of the SM, for h̄ω/Ef < 1, low temper-
atures (kBT/Ef � 1), and low optical losses (ω−1

R τ−1 � 1,
valid when μ = 10 000 cm2/V s), a nondimensional thermal
conductance for a general case of two parallel disks can be

written in terms of three nondimensional parameters as

GNF

kBωR

= f

(
�z

D
,
�x

D
,
kBT

h̄ωR

)
, (5)

where kBT/h̄ωR is the nondimensional temperature and

ωR =
√

2Ef e2

h̄2ε0εhD
(6)

is the characteristic plasmon frequency. Here ε0 is the vacuum
permittivity and εh = (ε1 + ε2)/2, where ε1 and ε2 are the
dielectric constants of the media that bound the graphene disks.

For the case of coaxial disks (i.e., �x/D = 0), GNF/kBωR

is plotted as a function of �z/D in Fig. 4 for h̄ωR/kBT = 5,
9, and 15. These h̄ωR/kBT values were chosen in accordance
with the range of disk diameters (50–500 nm) and the
temperature (300 K) considered in this work. The red dash-
dotted lines mark the limits between the strong-coupling
and transition regimes, (�z/D)s-t , and between the transition
and weak-coupling regimes, (�z/D)t-w. These two limits
correspond to where the curves deviate by more than 0.2%
from (�z)−1 or (�z)−6 scalings. The three curves deviate
from the dipole-dipole scaling of the weak-coupling regime
at approximately the same point, (�z/D)t-w ≈ 3.2. This point
corresponds to where the hybridization of the fundamental
dipole mode [(k,l) = (0,±1)] begins.

On the other hand, (�z/D)s-t depends on h̄ωR/kBT . This
behavior can be understood by considering the origin of the
(�z)−1 scaling, which begins when all the thermally active
hybrid modes have reached their maximum frequency shift.
As mentioned in Sec. III A, this limit is different for each
fundamental mode. Thus, the value of (�z/D) for the maxi-
mum frequency shift depends on the hybrid mode populations,
which are determined by h̄ωR/kBT . As plotted in the inset to
Fig. 4, (�z/D)s-t ≈ 0.02 for 5 < h̄ωR/kBT < 7 and 11 <
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FIG. 4. Nondimensional thermal conductance GNF/kBωR as a
function of �z/D. The red dash-dotted lines mark the limits
between the strong-coupling and transition regimes, (�z/D)s-t , and
between transition and weak-coupling regimes, (�z/D)t-w . Here,
(�z/D)t-w ≈ 3.2. In the inset, (�z/D)s-t is plotted as a function
of h̄ωR/kBT , where the line serves as a guide to the eye.

h̄ωR/kBT < 15. For 7 < h̄ωR/kBT < 11, a sharp peak is
observed that reaches a maximum of 0.23 at h̄ωR/kBT = 9.2.

C. Near-field radiation in coplanar disk dimers

We now consider the near-field radiative heat transfer
enhancement GNF/GBB between two coplanar disks. To be
consistent with the analysis from Sec. III B, GBB is taken
to be the blackbody radiation thermal conductance between
the surface of one disk and an infinite surface [Eq. (4)]. The
blackbody radiation heat exchange between the disk’s edge
and an infinite surface is given by [41]

G
edge
BB = 8πσSBT 3Dt, (7)

where t is the thickness of a graphene layer, which we
take to be 0.5 nm based on previous studies on graphene
plasmonic nanostructures [45,46]. We note that studies of
thermal transport in graphene often use a thickness of 0.34 nm,
which is based on the layer separation in graphite [47,48]. For
a disk diameter of 100 nm, G

edge
BB = 1.9 × 10−6 pW/K, which

is 25 times smaller than GBB.
The near-field enhancement is also strong for two coplanar

disks, as plotted in Fig. 5, where the thermal conductance
exceeds the blackbody limit by a factor of 10 when the gap
is small. Lower-quality graphene (μ = 1000 cm2/V s) shows
a larger near-field enhancement only when �x/D < 2. The
near-field radiation follows three regimes, similar to the case of
two coaxial disks. Given the scaling of the plot, only the weak
and transition regimes can be distinguished. In the inset, the
spectral data for (k,l) = (0,±1) for �x/D = 1.1, 1.2, and 1.5
show that each fundamental localized surface plasmon mode
is hybridized into four modes due to the breaking of axial
symmetry, as explained by Fig. 1(c). At large separations, the
thermal conductance reaches the weak-coupling regime, where
it scales as (�x)−6. By applying the nondimensional analysis,
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FIG. 5. Near-field enhancement for two coplanar graphene disks
at different gaps (D = 100 nm, Ef = 0.6 eV). Inset: Spectral
radiative thermal conductance showing the hybridization of the lowest
dipole mode (k,l) = (0,±1) at �x/D = 1.1, 1.2, and 1.5.

the limit between the transition and weak-coupling regimes
occurs at �x/D ≈ 3.2 for μ = 10 000 cm2/V s (Fig. S4). This
value is the same as that found for the coaxial disks because
the disks are effectively point dipoles in the weak-coupling
regime.

D. Mismatched diameters

The effect of breaking the dimer symmetry is now in-
vestigated. Two coaxial disks with diameters D1 and D2

are considered by comparing the thermal conductance of
a heterodimer (D2/D1 	= 1) to a homodimer (D2/D1 =
1). The heterodimer/homodimer thermal conductance ratio,
GNF/G

D2/D1=1
NF , is plotted in Fig. 6(a) as a function of D2/D1

for �z/D1 = 0.1, 0.4, 0.6, 1.0, and 1.5; D1 = 100 nm; and
50 < D2 < 150 nm. The results are asymmetric with respect
to D2/D1 = 1. The thermal conductance for a diameter ratio
of D2/D1 = 1 + δ is always greater than that for the diameter
ratio of 1 − δ. In most cases, breaking the symmetry reduces
the thermal conductance compared to the homodimer. For a
given D2/D1, as �z/D1 decreases, GNF/G

D2/D1=1
NF increases.

At �z/D = 0.4 (0.1), the curves show an enhancement of
thermal conductance of up to 4% (15%) in the domain 1.0 <

D2/D1 � 1.2 (1.0 < D2/D1 � 1.6). This enhancement is the
result of a relaxation in the selection rules for hybridization,
which increases the coupling between all modes [49]. The
increased coupling adds additional channels for near-field
thermal radiation. In the strong-coupling regime (not shown),
the near-field thermal conductance is not affected by a diameter
mismatch, and GNF/G

D2/D1=1
NF = 1 for all values of D2/D1.

The spectral thermal conductances of heterodimers with
D2/D1 = 0.8, 1.0, and 1.2, and �z/D = 1.5, 0.6, and 0.1,
are plotted in Fig. 6(b). �z/D = 1.5 is close to the weak-
coupling regime, and only a few modes participate in the
coupling. Thus, a small mismatch in the disk diameters
reduces the mode coupling and strongly suppresses the thermal
conductance. �z/D = 0.6 lies in the transition regime. Here,
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FIG. 6. Effect of breaking symmetry in the disk diameters on the thermal conductance of the coaxial configuration. (a) Relative thermal
conductance of a heterodimer with respect to that of a homodimer for D1 = 100, 50 < D2 < 150 nm. (b) Spectral thermal conductance of the
heterodimer for selected cases.

the near-field coupling is stronger, allowing more modes to
interact. As a consequence, for D2/D1 < 1 some peaks are
blueshifted, and for D2/D1 > 1 some peaks are redshifted.
�z/D = 0.1 is close to the strong-coupling regime. In this
case, for D2/D1 > 1, the majority of the peaks are redshifted,
increasing the population with respect to the case D2/D1 = 1.
This increase in population explains the thermal conductance
enhancement over the homodimer case, as seen in Fig. 6(a).
A similar behavior is observed for coaxial disk heterodimers
(Sec. S4).

E. Parallel disk dimers at different positioning angles

As seen in Figs. 2 and 5, near-field interactions are condi-
tioned by the distance between the two disks and their relative
positions. To explore the transition between the coplanar and
coaxial configurations, in Fig. 7(a) we plot the near-field
enhancement between two parallel disks as a function of
the positioning angle between centers, θ , for center-to-center
separations, �r , of 105, 120, and 150 nm. As in Figs. 2 and 5,
D = 100 nm and Ef = 0.6 eV. By changing the angle between
the two disks, a minimum is observed at θ ≈ 48◦ as they

0 30 60 90

5

10

15

20

FIG. 7. Near-field enhancement, GNF/GBB, between two parallel graphene disks as a function of the positioning angle between centers
θ , for center-to-center separations, �r , of 105, 120, and 150 nm (D = 100 nm, Ef = 0.6 eV). (b) Spectral radiative thermal conductance at
�r = 120 nm showing the hybridization of the fundamental dipole mode, (k,l) = (0,±1), as a function of the angle.
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transition between the coplanar and coaxial orientations. The
spectral thermal conductance at a separation of 120 nm is
plotted in Fig. 7(b) for the lowest dipole mode (k,l) = (0,±1)
for 0◦ � θ � 90◦, revealing the role played by surface plasmon
hybridization. The hybridized resonant frequencies transition
from four modes at θ = 0◦ to two twofold-degenerate modes
at θ = 90◦. At θ = 48◦, two of the hybrid modes have the
same resonant frequency, producing destructive interference
and reducing the thermal conductance. This angle corre-
sponds to the minimum in the near-field enhancement in
Fig. 7(a).

IV. CONCLUSIONS

We developed an electrostatic semianalytical approach that
is a powerful tool for fast modeling of near-field radiation
in graphene nanostructures. Its application to two coaxial
graphene disks demonstrates that near-field coupling can lead
to up to four orders of magnitude enhancement of radiative
heat transfer beyond the blackbody limit, as shown in Fig. 2.
Three regimes were observed: a strong-coupling regime and a
transition regime for small separations, which are dominated
by surface plasmon hybridization, and a weak-coupling
regime for larger separations that is dominated by dipole
interactions. In the strong-coupling regime, the near-field
enhancement follows the trend of two infinite graphene
sheets. Larger optical losses increase near-field thermal
conductance in the transition and strong-coupling regimes,
while they are detrimental in the weak-coupling regime. The
near-field enhancement depends strongly on the disk diameter
[Fig. 3(a)] and the Fermi level [Fig. 3(b)].

Using nondimensional analysis, we derived a universal
function for the near-field thermal conductance. For the
coaxial disk configuration, the nondimensional model was
used to identify where the thermal conductance deviates
from the weak-coupling and strong-coupling regimes (Fig. 4).
These results indicate when the electrostatic model can be
replaced by less complex approximate models (i.e., the dipole-
dipole approximation in the weak-coupling regime and the
infinite graphene sheet approximation in the strong-coupling
regime).

The coupling between two coaxial disks is also strong, as
shown in Fig. 5, with two orders of magnitude enhancement
of radiative heat transfer beyond the blackbody limit. The
result for coplanar disks is particularly interesting, as classical
theories for far-field radiation predict negligible heat transfer
rates due to the small view factor. Varying the relative
position between the disks while keeping them parallel can
induce destructive interference between hybrid modes, which
dramatically reduces the radiative heat transfer rate (Fig. 7).

A future experimental validation of the results presented
here would need to consider scenarios in which (i) the sym-
metry of the two disks cannot be maintained due to mismatch
in the diameters, Fermi levels, or optical losses induced by
defects; and (ii) the coupling of surface plasmons with optical
phonons in the substrate(s). In most of the cases we considered,
near-field radiation between disks with mismatched diameters

showed a reduction of the near-field thermal conductance
from that of the symmetrical disk dimer (Figs. 6 and S5).
We observed some cases, however, in which the near-field
thermal conductance of the heterodimer exceeds that of the
homodimer due to the relaxation in the selection rules for
plasmon hybridization. Thus, the net effect of the mismatch
between disks must be evaluated for individual cases.

Yan et al. experimentally observed that the presence of
optical phonons can induce higher losses of surface plasmons
in nanostructured graphene as well as additional peaks due
to hybridization [50]. Both of these elements can increase
the near-field enhancement, as theoretically demonstrated in
extended graphene sheets on a SiO2 substrate [19]. Thus,
under certain conditions, the presence of optical phonons
can lead to an enhancement of near-field radiation. The
electrostatic approximation cannot be applied when surface
plasmons interact with substrate optical phonons. In this case,
computational electrodynamics tools are required.

Our findings demonstrate the potential of graphene nanos-
tructures for tunable near-field radiation enhancement, paving
the way for the development of graphene metamaterials and
photon-based thermal solid-state devices. Coplanar nanodisk
waveguides in particular have the potential for tunable plas-
monic heat transport. This concept is explored in the following
paper [51].
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APPENDIX: VALIDATION OF ELECTROSTATIC MODEL
FOR NEAR-FIELD RADIATION

The flux spectrum between two coaxial disks (�z = 50 nm)
and two coplanar disks (�x = 110 nm) obtained using
our electrostatic semianalytical model and from numerical
simulations using the BEM-based software package SCUFF-EM

[30] is plotted in Figs. 8(a) and 8(b). The black line connecting
the green circles serves as a guide to the eye. For the BEM
simulations, we considered disks with a small thickness,
t = 1 nm, and an effective dielectric constant for graphene,
εg = 1 − σ (ω)

iωε0t
[34], where ε0 is the permittivity of free space.

Because of the finite thickness, the BEM predictions are
redshifted by 13% from the curves obtained by the electrostatic
model. These shifts are corrected in Figs. 8(a) and 8(b) in order
to compare the two methods.

Good agreement is observed in both geometries for frequen-
cies bellow 80 THz. At higher frequencies, the contribution
of �(ω) to the overall radiative thermal conductance is less
than 4% due to the form of the Bose-Einstein distribution. The
results from our theory were obtained two orders of magnitude
faster than those from the BEM simulations (10 800 s
computation time for the BEM simulation versus 31 s for the
semianalytical model using one six-core Intel Xeon X5690
processor at 3.47 GHz).
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FIG. 8. Comparison of our electrostatic semianalytical model and BEM simulations for the flux spectrum of two graphene disks (D =
100 nm, Ef = 0.6 eV) in (a) a coaxial configuration with �z = 50 nm, and (b) a coplanar configuration with �x = 110 nm. The black line
connecting the green circles serves as a guide to the eye.
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