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Optical excitation of valley and spin currents of chiral edge states in graphene
with Rashba spin-orbital coupling
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Graphene on a substrate with a topological line defect possesses chiral edge states that exhibit linear dispersion
and have opposite Fermi velocities for two valleys. The chiral edge states are localized at the line defect. With
the presence of Rashba spin-orbital coupling, the dispersion of the chiral edge states splits into two. The optical
excitation is modeled by the generalized semiconductor Bloch equation based on tight-binding theory. Charge,
valley, and spin currents generated by normally incident plane waves through the photogalvanic effect as well
as those generated by oblique light through the surface-plasmon drag effect are studied. Conditions for optical
generation of purely localized valley or spin currents, which are solely originated from the chiral edge states, are
discussed.
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I. INTRODUCTION

Spintronics [1] has been studied for decades. In recent years,
it has been generalized to the pseudospin degrees of freedom
associated with degenerating minima of the electron energy
bands and is called valleytronics [2]. Optical generation of
spin and valley currents is essential for integration of spintronic
and valleytronic nanodevices for optical communication [3].
Graphene has small intrinsic spin-orbital coupling and long
spin-diffusion length, and therefore is a promising material for
spintronic nanosystems [4–6]. In addition, the band structure of
graphene has two separating inequivalent valleys at the Fermi
level, which is suitable for valleytronic physics [7,8]. Recent
researches have been devoted to explore optical excitation
of spin [9–12] and valley [13,14] currents in graphene and
graphenelike materials. The edge states of graphene support
localized spin and charge currents that would lead to novel
spintronic and valleytronic devices. The domain wall in gapped
graphene supports localized edge states [15], the band structure
of which exhibits chirality [16]. This paper theoretically
explores the optical excitation of the chiral edge states of
graphene [16–20] on a conformal substrate, and the generation
of the localized spin and valley currents.

The A sublattice and the B sublattice of graphene on
the hexagonal boron-nitride (h-BN) or SiO2 substrate have
different potentials. A band gap is thereby induced and
excitations are described by the massive Dirac fermion [21,22].
A topological line defect of the substrate, as shown in Fig. 1(a),
separates the ribbon of graphene into two regions with opposite
local potentials for the A and B lattice sites. Thus, the mass
of the Dirac fermion changes sign as it crosses the defect line.
For each region, the sign of the mass has no effect on the band
structure and wave functions. However, at the interface of two
regions where the mass term flips sign, chiral edge states with
linear dispersion near to the Fermi level can be formed [16,18].
The slopes of the dispersion at K and K ′ valleys are opposite
to each other. Chiral edge states are found to be robust even in
case of a nonperfect line defect.
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This paper investigates the band structure and wave func-
tions of the chiral edge states in the presence of Rashba
spin-orbital coupling (SOC) [23–25]. The optical excited
population distribution at the chiral edge bands and the bulk
bands leads to charge current and spin current at each valley.
Since chiral edge states are localized near to the interface,
they carry localized charge and spin currents. We calculate the
charge, valley, and spin currents generated by normal incident
plane waves with linear and circular polarization, as well as
those generated by the evanescent wave of the surface plasmon
(SP) excited by oblique incident light [26].

The paper is organized as follows. Section II describes the
physical system that supports chiral edge states and enables
optical excitation. The chiral edge states are calculated in two
ways: with the continuous Dirac fermion model as well as
with the discrete tight-binding model. Section III is devoted to
optically induced charge, valley, and spin currents at variant
parameters. Two systems that would support the desired optical
generation of localized valley and spin currents are discussed.
The conclusion is given in the last section.

II. SYSTEM AND MODEL

A. Description of the system

The basic structure to sustain optical generation of lined
localized spin current and valley current consists of a nanorib-
bon of graphene on top of the h-BN substrate, as shown in
Fig. 1(a). Graphene is on the x-y plane, with a zigzag edge
parallel to the y direction. A topological line defect along the
y axis separates the substrate into two regions. In one region,
boron atoms (nitride atoms) locate at the A (B) sites of the
hexagonal lattice, and vice versa in the other region. Because
h-BN is a wide-band-gap semiconductor, the optical effect
at low frequency is negligible. The h-BN substrate induces
a sublattice dependent potential which breaks the symmetry
between the A sublattice and B sublattice of graphene, and
thereby opens band gaps in two Dirac cones and generates the
mass of the Dirac fermion. Although the band structures of
the massive Dirac fermion in two regions are the same, the
interface between them supports chiral edge states, which are
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FIG. 1. (a) Top view of the graphene nanoribbon on the h-BN
substrate. The lattice sites on top of the boron and nitride atom are
represented by the blue (dark) and red (gray) circles, respectively. The
dashed line indicates the location of the topological line defect along
the zigzag edge. The rectangle is the supercell for the tight-binding
calculation. (b) Side view of the system sustaining the photogalvanic
effect. (c) Side view of the system sustaining the surface-plasmon
drag effect.

localized near to the interface [16]. A vertical static electric
field along the z direction induces Rashba SOC in the graphene,

which splits the band of the chiral edge states, as shown in the
later part of this paper.

For a practical design of an optical device, the graphene-
on-h-BN layer is deposited on top of a dielectric substrate.
The vertical static electric field can be applied by adding a
gate voltage to a transparent electrode on top of graphene with
the dielectric substrate earthed. Figure 1(b) shows the system
for optical generation of currents by the photogalvanic effect,
where the normally incident optical light excites the chiral
edge states as well as bulk states. Figure 1(c) shows the system
for optical generation of currents by the surface-plasmon drag
effect. The obliquely incident optical field in the dielectric
grading excites SPs in the plasmonic layer, and the evanescent
waves of the SPs excite the Dirac fermions in graphene with
large momentum transfer.

The quantum states in graphene near to the Fermi level can
be described either by the continuous Dirac equation or more
precisely by the discrete tight-binding model. The solution to
the Dirac equation can provide more transparent insight into
the physical property of the chiral edge states. Meanwhile, the
discrete model provides a more precise numerical solution. We
first solve the Dirac equation to find the solution of the chiral
edge states with Rashba SOC, and then solve the same problem
with the discrete tight-binding model. The band structure
and the wave functions obtained from two methods will be
compared. In addition, the description of the interaction with
external optical field based on the discrete tight-binding model
is given.

B. Chiral edge states with Rashba SOC: Continuous model

In the continuous model, the Rashba SOC is given by
HR = h̄�Rẑ · (�σ × S), where �R is the Rashba SOC strength,
and �σ and S are the vectors of the Pauli matrices of pseudospin
and real spin, respectively [9,10]. The Rashba SOC strength
�R is proportional to the vertical static electric field [25],
and could be enhanced by varying types of metal-atom
absorption on graphene [27–29]. Throughout this paper, the
Rashba SOC strength takes the typical value h̄�R = 12 meV.
In the direct product space of the pseudospin and real
spin, [ψA↑,ψB↑,ψA↓,ψB↓]T , the matrix expression of the
Hamiltonian is given as

H =

⎡
⎢⎢⎢⎣

�(x) −ih̄vF (τ∂x − i∂y) 0 ih̄�R(−τ + 1)
−ih̄vF (τ∂x + i∂y) −�(x) ih̄�R(−τ − 1) 0

0 ih̄�R(τ + 1) �(x) −ih̄vF (τ∂x − i∂y)
ih̄�R(τ − 1) 0 −ih̄vF (τ∂x + i∂y) −�(x)

⎤
⎥⎥⎥⎦ (1)

where vF is the Fermi velocity of graphene, �(x) = �0x/|x| is the equivalent mass induced by the h-BN substrate,
and τ is equal to ±1 for K and K ′ valleys, respectively. The h-BN substrate induces a gap of 2�0 = 56 meV, which
has been confirmed by theoretical calculation [30] and experimental observation [22]. In the homogeneous regions on
the left (x < 0) and on the right (x > 0), the plane waves can be written as �(kx,ky) = [ψA↑,ψB↑,ψA↓,ψB↓]T ei(kxx+kyy).
Inserting this into the Dirac equation with Hamiltonian (1), the dispersion relation of the traveling plane waves
is

ε2
±(kx,ky) = �2

0 + (h̄�R)2

2
+ (h̄vF kx)2 + (h̄vF ky)2 ± h̄�R

2

√
(h̄�R)2 + (2h̄vF kx)2 + (2h̄vF ky)2 (2)
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where ± stand for two spin states from the SOC energy
splitting. With the presence of the line defect, the bulk states
consist of incident, transmission, and reflection traveling plane
waves of the Dirac fermion. The scattering of an incident
plane wave by the line defect along the y axis produces two
transmission and two reflection plane waves with the same
energy and the same ky , but different kx . As a result, the
quantum states of the two bands, ε+ and ε−, are mixed.
The scattering coefficients can be calculated by matching
the solutions at the interface. It is more convenient for the
investigation of the scattering process to write the dispersion
relation as

(h̄vF kx±)2 = ε2 − �2
0 ± h̄�R

√
ε2 − �2

0 − (h̄vF ky)2. (3)

Although this expression is implicit for the energy level, it is
explicit for the wave number kx and ky . Because the scattering
by the line defect preserves ε and ky , Eq. (3) directly gives the
two kx± corresponding to the two scattering plane waves.

The localized chiral edge states caused by the line defect
are traveling waves along the y axis and exponentially decay
in both positive and negative x directions. Making the replace-
ment kx± = iγ±, the basic solutions at x > 0 and x < 0 re-
gions become �(γ±,ky) = [ψA↑,ψB↑,ψA↓,ψB↓]T eikyye−γ±|x|.
The decay factor is obtained from Eq. (3) as

(h̄vF γ±)2 = −ε2 + �2
0 ± h̄�R

√
ε2 − �2

0 + (h̄vF ky)2. (4)

The wave function is physically valid when Re[γ±] > 0. When
ε2 < �2

0, γ± are complex and conjugate to each other. When
�2

0 < ε2 < ε2
−(0,ky), the two solutions of γ± are real with

different magnitudes. The wave function at the left (right) half
plane is the superposition of the two decaying basic solutions as
AL(R)�(γ+,ky) + BL(R)�(γ−,ky). Matching each component
of the wave functions of two regions at the interface (at x = 0)
leads to the equation for the eigenenergies:

4ε2γ+γ− − 4�0(γ+ + γ−)τkyε

+�2
0[(γ+ − γ−)2 + 4k2

y] = 0. (5)

This equation is only valid outside of the band edges of the
conduction and valence bands, ε2 < ε2

−(0,ky). When �R = 0,
the exact solution of Eq. (5) is ε = τky , which is twofold
degenerate for chiral edge states with spin up and spin down.
All spinor components of an edge state have an exponential
factor e−�0|x|/(h̄vF ). When �R is nonzero, Eq. (5) is not
quadratic and thus requires numerical calculation. The Rashba
SOC mixes the chiral edge states with spin up and spin down,
which splits the degenerated chiral bands into two splitting
chiral bands, as shown in Fig. 2(a). The upper chiral band
(indicated by the red circle line) asymptotically approaches
the valence-band edge at ky → −∞, and merges with the
conduction-band edge at certain energy level εc, as indicated
by the vertical downward arrow in the figure. This chiral band
does not exist at ε > εc. The lower chiral band has similar
properties as shown in the figure. The band structure of the
chiral edge states in the K ′ valley can be obtained by the
mirror reflection ky → −ky of that in the K valley.

The wave function of a typical chiral edge state, pointed out
by the horizontal arrow in Fig. 2(a), is plotted in Fig. 3(a). A
π/2 phase shift exists between the pseudospinor components
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FIG. 2. (a) Band structure of the chiral edge states in the K valley
(τ = 1), which is calculated by the Dirac fermion model. The red
(filled) and blue (empty) dots indicate the upper and lower branches
of the chiral edge states. The solid (dotted) lines are the band edge
of the first (second) conduction and valence bands, i.e., ε−(0,ky)
[ε+(0,ky)]. The dashed lines indicate the band gap of the bulk region.
(b) The expectation values of spin x of the corresponding chiral edge
states. The red (filled) and blue (empty) dots are calculated with
the continuous Dirac fermion model. The red (dash-dotted) and blue
(dashed) lines are calculated with the discrete tight-binding model.
(c) The band structure of the nanoribbon with the topological line
defect in the middle, which is calculated with the tight-binding theory.

of the A and B lattice sites, and a π phase shift exists between
real spin-up and spin-down components. The real spin-up
components have larger magnitudes than that of the real
spin-down components in the x > 0 region, and vice versa.
Although nonvisible in the figure, the wave functions of all
four components have periodic nodes, because γ± are conju-
gate to each other and the wave function AL(R)�(γ+,ky) +
BL(R)�(γ−,ky) contains a trigonometric function. Locations
of the nodes of the four spinor components are different. The
spatial distribution of the total density of probability |�|2 is
symmetric at x → −x and exponentially decays without any
node. The spatial distributions of expectations of the real spin
along three spatial directions are calculated and plotted in
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FIG. 3. The wave function and spin distribution of a specific
chiral edge state indicated by the horizontal arrow in Fig. 2(a).
(a) The wave function of each spinor component and the modulus
of the wave function. (b) The expectation value of spin x, y, and z vs
position x.

Fig. 3(b). The spin x has net magnitude, the spin y is zero
everywhere, and the spin z has opposite sign in the left and
right regions. The wave functions and spin distributions of the
chiral edge states with |ε| < �0 have the same properties. The
wave functions of other chiral edge states with |ε| > �0 also
have similar properties, except that the wave function of each
spinor component has at most one node, because both γ± are
real. The total spins x of all chiral edge states are calculated
and plotted in Fig. 2(b). The spin x components of the two
chiral bands have opposite signs.

C. Quantum states and optical excitation: Tight-binding model

In addition, to calculate with the continuous Dirac fermion
model, we also perform calculations in the framework of the
discrete tight-binding model. The unit cell of the tight-binding
model is indicated in Fig. 1(a) as a solid box. The unit cell
contains 4800 carbon atoms, having open boundary zigzag
edges on the left and right. The topological line defect in
the middle is 255.6 nm away from the edge. As a result, the
edge effect could be neglected. The tight-binding Hamiltonian
[24,25,31]

H = t
∑
〈i,j〉α

c+
iαcjα +

∑
iα

�(i)c+
iαciα

+ ih̄�R

3
√

3aC−C

∑
〈i,j〉,α,β

c+
iα[(S × dij ) · ẑ]αβcjβ (6)

where t = 2.8 eV is the hopping energy, aC−C is the bond
length between the two nearest-neighbor carbon atoms, i and

j are the indices of lattice sites, α and β take values of ±1
for spin up and spin down, c+

iα and ciα are the creation and
annihilation operators of the π electron with spin α and being
located at lattice site i, S is the vector of the Pauli matrix
for real spin, and dij is the vector from lattice i to j . The
first summation runs over the nearest-neighbor sites 〈i,j 〉 with
the same spin index α; the second summation runs over all
lattice sites and spin indices; and the third summation runs
over 〈i,j 〉 and the two spin indices, α and β. The periodical
boundary condition is applied along the y direction, with the
Bloch phase being Ky + ky and K ′

y + ky for the eigenstates in

K and K ′ valleys, respectively, where Ky = 2π/(3
√

3aC−C)
and K ′

y = −2π/(3
√

3aC−C), and ky ∈ [−0.2,0.2]nm−1. The
numerical diagonalization of Hamiltonian Eq. (6) gives the
band structure of the nanoribbon, including the chiral bands,
edge bands, and bulk bands, which is plotted in Fig. 2(c). Only
the band structure near to the K valley is shown. Because the
zigzag edge line defect does not induce intervalley scattering,
the band structure near to the K ′ valley is related to that
near to the K valley by the mirror reflection ky → −ky . The
chiral bands are the same as that from the continuous Dirac
equation as shown in Fig. 2(a). The bulk bands, including
the conduction and valence bands, are above and below the
band edges as, respectively, shown with solid and dotted
lines in Fig. 2(a). The tight-binding wave functions of the
chiral edge states decay exponentially with the distance away
from the line defect. On the other hand, the bulk states in
the conduction and valence bands are traveling waves with
transmission and reflection at the defect line. The upper (lower)
branch of the chiral band goes into the conduction (valence)
band at the point indicated by the upward (downward) arrow
in Fig. 2(c). Within the bulk band, the chiral edge states are
mixed with the bulk states and the wave functions have features
of both exponentially decaying function and traveling wave.
The energy levels of these quantum states are above (below)
the conduction-band (valence-band) edge, and thus cannot
be calculated by solving Eq. (5). There are additional edge
states at the open boundary zigzag edge with energy level �0.
Because the spatial overlap between the open boundary edge
states and the chiral edge states is small, we neglect the edge
states of the open boundaries in the calculation of the optical
excitation. The expectation values of total spin x of the chiral
bands are calculated by the tight-binding model as well, which
are plotted in Fig. 2(b) and are the same as the results given
by the continuous Dirac fermion model.

Interaction of the quantum states with external optical field
is described by the tight-binding model with an interaction
Hamiltonian. The optical field at the graphene plane can be
expressed as E(r,t) = E0e

iq·r−iωt + c.c., with E0 being the
amplitude of the electric field, q being the wave vector of the
optical field in the graphene plane, and ω being the frequency
of the incident field. The interaction Hamiltonian between the
quantum states and the electric field is given by [26]

HI =
∑
〈i,j〉α

Mij c
+
iαcjα (7)

where Mij = mC−Ch̄e0

2m0ω
d̂ij · E[(ri + rj )/2,t], e0 is the charge

of an electron, m0 is the mass of an electron, d̂ij is the
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unit vector along dij , and mC−C = ∫
drφ∗(r + aC−Cx̂)x̂

· ∇φ(r) ≈ 3 nm−1 is the matrix element of the momentum
operator with φ(r) being the wave function of the π electron
[32–34]. The matrix form of the interaction Hamiltonian is
calculated, under the basis of the noninteracting tight-binding
eigenstates of the Hamiltonian Eq. (6). Thus, the matrix
elements of HI are given as HI,kyn,k′

yn
′ = 〈kyn|HI |k′

yn
′〉, with

|kyn〉 being the eigenstates of the Hamiltonian Eq. (6). Since
the eigenstates of Eq. (6) do not conserve kx and σz, the
eigenstates with the same quantum number ky are subscribed
by a numerical index n. The optical field contains oscillation
terms with positive and negative frequency, therefore the
interaction Hamiltonian can be written as

HI =
∑
κ=±1

Hκ
I e−iκωt . (8)

Because the system preserves the lattice translational symme-
try along the y direction, and the positive (negative) frequency
oscillation term of the optical field includes the spatial phase
factor eiqyy(e−iqyy), the matrix elements of the interaction
Hamiltonian 〈kyn|Hκ

I |k′
yn

′〉 ∝ δ(−ky + k′
y + κqy).

In the remaining part of the paper, the numerical calcu-
lations of the optical excitations of the chiral edge states as
well as the bulk states in the conduction and valence bands are
based on the discrete tight-binding model.

III. OPTICAL GENERATION OF SPIN
AND VALLEY CURRENTS

Applying the Heisenberg equation of motion and
relaxation-time approximation that describe the scattering of
excited quantum states, we obtain the generalized semicon-
ductor Bloch equations [26,32]

ih̄∂tρkyn,k′
yn

′ (t) = [ρ(t),H ]kyn,k′
yn

′ − �kyn,k′
yn

′

× [
ρkyn,k′

yn
′(t) − ρ

(0)
kyn,k′

yn
′
]

(9)

where ρ
(0)
kyn,k′

yn
′ is the equilibrium Fermi-Dirac distribution,

and �kyn,k′
yn

′ is the relaxation rate for each matrix element
of the density matrix. The equilibrium Fermi-Dirac distri-
bution is a function of the temperature being assumed to
be T = 300 K in our calculation, and of the Fermi level
EF of graphene. The relaxation rates have been theoretically
calculated [32] and experimentally measured [35,36]. In this
paper, the relaxation rates are constant parameters that are
extracted from the references. For diagonal matrix elements,
the relaxation rates are all assumed to be � = 1/80 fs−1,
which is originated from the electron-electron scattering.
Because the bandwidth of the system is smaller than the
energy level of the optical phonon, 0.2 eV, the relaxation
originated from the electron-phonon scattering is neglected.
For nondiagonal matrix elements, the relaxation rates are the
summation of the diagonal relaxation rate with the off-diagonal
dephasing rate that is assumed to be 1/500 fs−1. For the
investigation of the second-order nonlinear optical effects, the
perturbation solution of the generalized semiconductor Bloch
equations up to second order is needed. The density matrix
ρ = ρ(0) + ρ(1) + ρ(2). The first-order perturbation solution is

given as

ρ
(1)
kyn,k′

yn
′ = (

ρ
(0)
kyn,kyn

− ρ
(0)
k′
yn

′,k′
yn

′
)

×
∑
κ=±1

Hκ
I,kyn,k′

yn
′e−iκωt

εkyn − εk′
yn

′ − κh̄ω − i�kyn,k′
yn

′
(10)

where εkyn is the eigenenergy of the corresponding quan-

tum state |kyn〉. We denote the solution as ρ
(1)
kyn,k′

yn
′ =

ρ
(1),κ=1
kyn,k′

yn
′e−iωt + ρ

(1),κ=−1
kyn,k′

yn
′ eiωt for convenience. The second-

order perturbation solution contains zero harmonic and
second-harmonic oscillation terms. The optical generation of
the direct current is originated from the zero harmonic solution,
which is given as

ρ
(2)
kyn,k′

yn
′ =

∑
k′′
y n′′

∑
κ=±1

⎡
⎣ H−κ

I,kyn,k′′
y n′′ρ

(1),κ
k′′
y n′′,k′

yn
′

εkyn − εk′
yn

′ − i�kyn,k′
yn

′

−
ρ

(1),κ
kyn,k′′

y n′′H
−κ
I,k′′

y n′′,k′
yn

′

εkyn − εk′
yn

′ − i�kyn,k′
yn

′

⎤
⎦. (11)

According to the property of the interaction Hamiltonian,
the first- and second-order density matrices satisfy ρ

(1),κ
kyn,k′

yn
′ ∝

δ(−ky + k′
y + κqy) and ρ

(2)
kyn,k′

yn
′ ∝ δ(−ky + k′

y). Because the
intervalley scattering is neglected, the density matrix is
reduced to the direct sum of matrices of K and K ′ valley,
ρ = ρK

⊕
ρK ′

.
Since the chiral edge states only carry current along the line

defect direction, or ŷ, we limit our calculation of the current
along the y direction. The current of the K (K ′) valley can be
calculated by taking the expectation value of the momentum
operator, tr(ρĵy), that is,

JK(K ′)
y = e0

Lym0

∑
kyn,k′

yn
′
〈kyn|p̂y − e0Ay |k′

yn
′〉ρK(K ′)

k′
yn

′,kyn
(12)

where p̂y = −ih̄∂y is the y component of the momentum
operator, Ay = − ∫

Eydt is the vector potential of the optical
field, and Ly is the normalization length in the y direction. The
matrix elements of p̂y − e0Ay under the atomic orbital basis
are first calculated, and then are transferred into the matrix
elements under the basis of the noninteracting tight-binding
eigenstates [32–34]. The current consists of the canonical
current and the gauge current. The canonical current is given by
the part of the summation related to p̂y , and the gauge current is
given by the part of the summation related to −e0Ay . Because
the system preserves the lattice translational symmetry along
the y direction, the quantum states are the eigenstates of
p̂y , i.e., |kyn〉 ∝ eikyy . As a result, we have 〈kyn|p̂y |k′

yn
′〉 ∝

δ(−ky + k′
y). Thus, the canonical current is proportional to

the summation
∑

ky ,n,n′ 〈kyn|p̂y |kyn
′〉ρK(K ′)

kyn′,kyn
. The canonical

current consists of the intraband (interband) current given by
the part of the summation with n = n′ (n �= n′). The direct
current from the photogalvanic effect and plasmon drag effect
is given by the second-order density matrix, so only ρ(2) is
involved. For the photogalvanic effect with normally incident
optical field, Ay is a spatial constant that can be extracted out
of the matrix element. Thus, the gauge current is proportional

165424-5



MA LUO AND ZHIBING LI PHYSICAL REVIEW B 96, 165424 (2017)

to Ay , and thus is a linear response to Ay . For the plasmon
drag effect, the evanescent field includes a spatial phase factor,
i.e., Ay ∝ eκiqyy . Therefore, the matrix elements 〈kyn|Ay |k′

yn
′〉

are proportional to δ(−ky + k′
y + κqy). As a result, only the

first-order density matrix contributes to the gauge current.
Because both Ay and ρ(1) are proportional to the strength of the
optical electric field |E0|, the gauge current is proportional to
|E0|2. Thus, the gauge current contributes to the second-order
response, which is the plasmon drag direct current.

The magnitudes of the canonical current and the gauge cur-
rent are estimated by neglecting the detail of the tight-binding
wave functions. The magnitudes of the matrix elements of
the interaction Hamiltonian are 〈HI 〉 ≈ mC−Ch̄e0|E|/(2m0ω).
The magnitudes of the matrix elements of p̂y and e0Ay are
〈p̂y〉 ≈ h̄mC−C and 〈e0Ay〉 ≈ e0|E|/ω, respectively. ρ(1) is
dominated by the summation terms with h̄ω being resonant
to the transition, so that ρ(1) ≈ 〈HI 〉/�. According to the
definition of the gauge current, its magnitude is given as
e0|E|〈HI 〉/(ω�). The summation for the intraband canonical
current includes the diagonal elements of ρ(2) with the
denominator being −i�, while the summation of the interband
canonical current includes the nondiagonal elements of ρ(2)

with a larger denominator. Thus, the canonical current mainly
consists of the intraband current, the magnitude of which is
h̄mC−C(〈HI 〉/�)2. The ratio between the canonical current
and gauge current is m2

C−Ch̄2/(2m0�) ≈ 41, so that the
magnitude of the canonical current is much larger than that
of the gauge current. The numerical result from calculating
Eq. (12) shares the same conclusion that the canonical current
is two orders of magnitude larger than the gauge current.
Hereafter only the canonical current will be discussed.

The canonical current consists of the localized chiral current
and bulk current. The localized chiral current of valley K (K ′)
is defined as

JK(K ′)
y,c = e0

Lym0

n,n′∈chiral∑
ky

〈kyn|p̂y |kyn
′〉ρ(2),K(K ′)

kyn′,kyn

+ e0

Lym0

n∈chiral∑
ky ,n′∈bulk

〈kyn|p̂y |kyn
′〉ρ(2),K(K ′)

kyn′,kyn

+ e0

Lym0

n∈bulk∑
ky ,n′∈chiral

〈kyn|p̂y |kyn
′〉ρ(2),K(K ′)

kyn′,kyn
, (13)

which consists of the intraband current of the chiral band and
the interband current due to transition between the chiral band
and other bands. The bulk current is defined as

J
K(K ′)
y,b = e0

Lym0

n,n′∈bulk∑
ky

〈kyn|p̂y |kyn
′〉ρ(2),K(K ′)

kyn′,kyn
, (14)

which consists of the intraband current of bulk bands and the
interband current due to transition between two bulk bands.
Assuming the bulk current has uniform distribution in the
x direction, the line current density is obtained as j

K(K ′)
y,b =

J
K(K ′)
y,b /Lx , with Lx being the width of the nanoribbon. The

wave function of a chiral edge state has an exponential decay
factor as shown in Fig. 3(a). Because the Rashba SOC is
weak, the exponential decay factor could be approximated

as e−�0|x|/(h̄vF ), which is the analytical solution without the
Rashba SOC. Thus, the spatial density of the localized chiral
current has a factor e−2�0|x|/(h̄vF ). Since the current is obtained
by integrating the current density, the current density at
the line defect is given as jK(K ′)

y,c = JK(K ′)
y,c �0/(h̄vF ). In the

discrete model for the numerical calculation, the width of
the nanoribbon is Lx = 511.2 nm. On the other hand, the
characteristic width of the spatial density of the chiral edge
states is h̄vF /�0 = 21.4 nm � Lx . Therefore, the magnitude
of the ratio between jK(K ′)

y,c and j
K(K ′)
y,b at the line defect is much

larger than that between JK(K ′)
y,c and J

K(K ′)
y,b . For valleytronic

and spintronic devices, extraction of current of the nanoribbon
is more feasible than extraction of current density, so that our
remaining calculations and discussions will be concentrated
on the currents defined in Eqs. (13) and (14).

The charge current from either chiral edge states or bulk
states is the summation of currents from two valleys, JC

y,c(b) =
JK

y,c(b) + JK ′
y,c(b). The valley current is the subtraction of the

currents from two valleys, JV
y,c(b) = JK

y,c(b) − JK ′
y,c(b). The spin

current, denoted as J S
y,c(b), can be obtained by calculating

the expectation value of the spin current operator h̄
4m0

[(p̂y −
e0Ay)S + S(p̂y − e0Ay)]. Replacing the current operator in
Eq. (12) by the spin current operator, we obtain the spin current
of each component of spin. Because the chiral edge states only
have a nonzero expectation value of the spin x component,
we will calculate the spin current of the spin x component
along the y direction, J

Sx

y,c(b). Similar analysis shows that the
gauge spin current is two orders of magnitude smaller than the
canonical spin current, so we will only calculate the canonical
spin current. For the present interest, only the localized valley
and spin currents originated from the chiral edge states are
desirable. The system with large magnitude of localized chiral
current and small magnitude of bulk current could be found
by tuning parameters including ω, q, and EF . The localization
factors for the valley current, |JV

y,c/J
V
y,b|, and the spin current,

|J Sx
y,c/J

Sx

y,b|, quantify the degree of localization of optical gen-
erated currents. In some specific parameters the bulk current is
zero, and thus one can obtain a purely localized chiral current,
as shown in the following numerical result. It is more interest-
ing to generate valley and spin currents while the charge cur-
rent JC

y = JK
y,c + JK ′

y,c + JK
y,b + JK ′

y,b is vanishing or negligible.

A. Photogalvanic effect

For the system of Fig. 1(b) the normally incident plane
wave has electric field E(r,t) = E0êe−iωt + c.c., where E0 is
the amplitude of the electric field and ê is the polarization unit
vector in the x-y plane. The amplitude of the typical laser field,
E0 = 10−3 V/μm, is assumed. Because the system preserves
centrosymmetry, the total charge current is zero. However,
valley and spin currents are nonzero. The currents generated
by the incident field with linear polarization along the x axis,
i.e., ê = x̂, exhibit large localization factors. On the other hand,
linear polarization along the y axis and circular polarization
have small or moderate localization factors. Under the optical
excitation with ê = x̂, with EF being 0 and 28 meV, the valley
current and the spin current along the graphene nanoribbons
are plotted vs the incident field frequency in Fig. 4. The
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FIG. 4. The valley currents (a), (b) and spin currents (c), (d),
which are generated by the photogalvanic effect with the incident
field polarization being êx and the amplitude being E0 = 10−3 V/μm,
vs frequency of the incident field. (a), (c) Intrinsic graphene with
EF = 0. (b), (d) Graphene with EF = 28 meV. The legend in figure
(b) defines the corresponding line types for the localized chiral
currents Jy,c, bulk currents Jy,b, and total currents, which applies
to all four subfigures.

localized chiral current, bulk current, and total current are
plotted as black (solid), blue (dashed), and red (dotted) lines,
respectively. The numerical results exhibit a few properties of
the valley current and spin current.

(i) In the low-frequency range, h̄ω < �, the intraband
canonical current is dominating in the localized chiral current
and the bulk currents. The valley current and the spin current
are proportional to ω−2, which agree with the theoretical
estimation for the magnitude of the canonical current. Since
the bulk currents do not vanish, the localization factors remain
low.

(ii) The trend of the bulk currents is determined by multiple
physical processes, which become more complicated than the
bulk current of a homogeneous gapped graphene without the
line defect. With frequency being larger than the band gap
of bulk states, h̄ω > 2�0, the optical transitions between bulk
states of the valence band and the conduction band are allowed,
as shown in Fig. 5(a), that gives significant contribution to the
bulk currents. Because of the reflection and transmission of
the bulk states at the line defect, the wave functions in the
homogeneous regions far away from the line defect indicate
superposition of multiple Bloch states, which change the
strength and phase of the optical transition of each channel.
In addition, the optical transitions from the chiral bands to the
bulk bands partially determine the second-order density-matrix
elements of the bulk states, as shown in Eq. (11), which
indirectly influence the bulk currents. The combination of these
physical processes makes the trend of the bulk currents become
bumpy in this frequency range, as shown in all four panels of
Fig. 4. The bulk currents vanish in some cases, as shown in the
following properties.

(iii) In the frequency range of h̄ω > �, for the case of
intrinsic graphene with EF = 0, the localized valley current

−0.2 −0.1 0 0.1 0.2

−100

−50

0

50

100

k
y
(nm−1)

(a) photogalvanic effect

(m
eV

)

−0.2 −0.1 0 0.1 0.2

−100

−50

0

50

100

k
y
(nm−1)

(b) plasmon drag effect

(m
eV

)

FIG. 5. The interband optical transition channels among the bulks
bands as well as between the bulk bands and the chiral bands,
plotted as double arrows. The conduction- and valence-band edges
are denoted by the thick black lines, and the chiral bands are denoted
by the thin blue and red lines. The minimal frequency of the incident
field for transition between the conduction and valence bulk bands in
the photogalvanic effect (a) is the band gap of the bulk bands, 2�0;
that in the plasmon drag effect (b) is 69 meV > 2�0, because of the
momentum transfer from the SPs to the electrons.

is weakly excited, as shown in Fig. 4(a). When the Fermi
level is tuned to EF = 28 meV, the localized valley current
is significantly enhanced, but the bulk valley current is not
suppressed, so that the localization factor is still low, as shown
in Fig. 4(b). Tuning the Fermi level to a negative value does
not suppress the bulk valley current either.

(iv) In the frequency range of h̄ω > �, the localized
spin currents and bulk spin currents have the same order of
magnitude. With the frequencies of the incident field being 65
and 86 meV, the bulk spin currents equate to zero, so that the
optically generated spin current is purely localized, as shown
in Fig. 4(c). Tuning the Fermi level weakly affects the spin
current, as shown in Fig. 4(d).

B. Plasmon drag effect

Now we turn to the system of Fig. 1(c) where the evanescent
field of the SP is induced by obliquely incident light with
the electric field E(r,t) = E0q̂eiq·r−iωt + c.c., where E0 is
the amplitude of the electric field and q̂ is the unit vector
along q. Note that the evanescent field of the SPs has
TM polarization only, so that the electric field has q̂ and
ẑ components. Because the π electrons are tightly bound along
the ẑ direction, the excitation by the ẑ component electric
field is neglected. The frequency ω and the wave number
|q| of the SPs in the plasmonic layer satisfy the dispersive
relation ω ∝ √

nSP|q| [37], with nSP being the surface charge
density of the plasmonic layer. For a given wave number |q|,
tuning nSP by gating or doping one obtains SPs of various
frequencies. We only consider the case that the SP propagates
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FIG. 6. The charge currents (a), (b), valley currents (c), (d), and
spin currents (e), (f), which are generated by the plasmon drag effect
with the incident field wave number being |q| = 0.085 nm−1 and the
amplitude being E0 = 10−3 V/μm, vs frequency of the incident field.
(a), (c), (e) Intrinsic graphene with EF = 0. (b), (d), (f) Graphene with
EF = 28 meV. The legend in figure (b) applies to all six subfigures.

along the line defect, i.e., q̂ = ŷ. Thus, the tunable parameters
of this optical excitation system are |q| and ω, as well as EF .
In our calculation, the plasmonic layer is a doped graphene
[38]. In this case, the minimal frequency of the SPs is h̄vF |q|,
because the SPs with frequency lower than this value are highly
lossy and not suitable as a light source for the plasmon drag
effect. The phase factor of the electromagnetic field breaks the
centrosymmetry of the system, so that the SP excitation could
induce charge current. As an example, the plasmon drag effect
with |q| = 0.085 nm−1 is plotted in Fig. 6, which presents
plasmon drag inducing charge current, valley current, and
spin current with the Fermi level being 0 and 28 meV in six
panels separately. The minimal frequency for the interband SP
transition between the valence and conduction bulk bands is
69 meV, as shown in Fig. 5(b), which is larger than the band
gap of the bulk states because of the momentum transfer from
the SPs to the electrons. Thus, in the frequency range ω >

69 meV, these transitions contribute to the bulk currents and
suppress the bulk currents to zero in some cases. The numerical
result gives a few remarkable sets of parameters as follows:

(i) When the graphene Fermi level is zero, the total
charge current maintains small magnitude or vanishes with

the incident field frequencies being 64 and 97 meV, as shown
in Fig. 6(a). With the Fermi level deviated from zero, the
magnitude of the total charge current increases, as shown in
Fig. 6(b).

(ii) For the case of intrinsic graphene, EF = 0, the localized
valley current is much smaller than the bulk valley current,
as shown in Fig. 6(c). When the Fermi level is tuned to
EF = 28 meV, the bulk valley current equates to zero with
the incident field frequencies being 62 meV, as shown in
Fig. 6(d). This gives an instance of purely localized valley
current.

(iii) For the case of intrinsic graphene, EF = 0, the bulk
spin current equates to zero with the incident field frequency
being 71 or 89 meV, as shown in Fig. 6(e). Tuning the Fermi
level to EF = 28 meV hardly changes the spin current, as
shown in Fig. 6(f). This is an instance of the purely localized
spin current.

Thus the plasmon drag effect can generate purely localized
valley or spin currents at certain sets of parameters. Because
the total charge current has small or vanishing magnitude in
graphene with zero Fermi level, the purely localized spin
current may be observed easily in intrinsic graphene. The
localized valley current exists in the system with a nonzero
graphene Fermi level, which is accompanied with large
magnitude of the total charge current. So this system is less
favorable for observation of the localized valley current.

With different values of |q|, the purely localized valley
current and spin current appear at different frequencies of
the incident field. When |q| is smaller than 0.053 nm−1, the
bulk valley current and bulk spin current remain finite for
all frequencies and Fermi levels, and therefore the purely
localized valley current and spin current are not available in
this case.

IV. CONCLUSION

In summary, we investigated the chiral edge states of
monolayer graphene on the h-BN substrate, which is localized
near to the topological line defect of the substrate (B-B or
N-N line) along the zigzag edge, with both the continuous
Dirac fermion model and discrete tight-binding model. In the
presence of the Rashba SOC, the linear dispersion of the chiral
edge states splits into two branches. The spin x components
of the chiral edge states of two branches have opposite
signs. Based on the discrete tight-binding model, generalized
semiconductor Bloch equations are developed to describe the
optical excitation of the chiral edge states as well as the bulk
states. The optical generation of charge, valley, and spin cur-
rents, including the localized chiral currents originated from
the chiral edge states and the bulk currents originated from the
bulk states, are calculated. With normally incident optical field,
the localized and bulk currents coexist in general. However, at
certain frequencies of the incident field, the bulk spin current
vanishes and the optically excited current is a purely localized
chiral current. With the evanescent field of the SP, the localized
and bulk currents also coexist in general. However, there are
also certain combinations of the incident field frequency and
wave number as well as the graphene Fermi level that lead to
vanishing bulk valley or spin current. As a result, the purely
localized valley or spin current is obtainable under certain
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conditions with either photogalvanic effect or plasmon drag
effect. Manipulation of the purely localized valley or spin
current could become feasible. Thus, our theoretical result may
lead to integrated optical spintronic and valleytronic devices.
The model can be improved by including time-dependent
optical excitation and detailed description of the scattering
processes.
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