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Employing a Keldysh-Eilenberger technique, we theoretically study the generation of a spontaneous
supercurrent and the appearance of the ϕ0 phase shift parallel to uniformly in-plane magnetized superconducting
interfaces made of the surface states of a three-dimensional topological insulator. We consider two weakly
coupled uniformly magnetized superconducting surfaces where a macroscopic phase difference between the
s-wave superconductors can be controlled externally. We find that, depending on the magnetization strength and
orientation on each side, a spontaneous supercurrent due to the ϕ0 states flows parallel to the interface at the
nanojunction location. Our calculations demonstrate that nonsinusoidal phase relations of current components
with opposite directions result in maximal spontaneous supercurrent at phase differences close to π . We also
study the Andreev subgap channels at the interface and show that the spin-momentum locking phenomenon in
the surface states can be uncovered through density of states studies. We finally discuss realistic experimental
implications of our findings.
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I. INTRODUCTION

The topological insulator (TI) is a new state of matter
with revolutionary prospects in topological superconduct-
ing spintronics and topological quantum computation [1,2].
The topological insulators rely mainly on strong spin-orbit
couplings and possess conductive surfaces, while showing
insulating aspects in their bulk. Subsequently, TIs provide
unique realistic platforms to study robust quantum relativistic
phenomena such as spin-momentum locking and quantum spin
Hall effect [1,2].

The spin direction of a moving particle at the surface
of a three-dimensional (3D) TI in the presence of time-
reversal symmetry is rigidly locked to its momentum direction
[1,2]. Due to the spin-momentum locking phenomenon, the
induction of superconductivity and magnetism in the surface
of a TI is predicted to serve as an unprecedented condensed
matter platform that supports odd frequency, topological
superconductivity, and Majorana fermions [3–12]. In order
to fabricate superconducting and magnetic surface states, one
can proximitize the surface channels with a superconductor
and ferromagnet, respectively [14,15]. The proximity-induced
superconductivity and magnetism in the surface states are
externally controllable through manipulating their inductors.
It is worth mentioning that the spin-orbit coupling in the
presence of superconductivity and magnetism can result in
intriguing spin-dependent phenomena in various materials
even in systems with strong nonmagnetic scattering resources
[16–23].

In recent experiments on the quantum transport through
TI surface states reported by different groups, it has been
concluded that a proper theoretical framework, describing all
kinds of samples including disordered ones, is an approach
that accommodates the possibility of the presence of non-
magnetic scatterings [5,7,24,25]. To provide such a theoretical
framework, the quasiclassical approach in the equilibrium and
nonequilibrium states was generalized for 3D TI surface states
with different levels of the density of nonmagnetic impurities
in the presence of superconductivity and magnetism with
arbitrary magnetization patterns [26,27]. This approach was

employed to study TI-based diffusive Josephson configura-
tions involving chiral helical magnetizations and the Edelstine
phenomenon at the surface states. It was theoretically shown
that well-controlled 0-π supercurrent reversals, ϕ0 junctions,
and proximity-induced vortices [28] are accessible through
the spin-momentum locking phenomenon and magnetoelectric
effect [26,27]. Also, several works have demonstrated that
the spin-momentum locking phenomenon in the surface states
of 3D TI plays crucial roles independently of the amount of
nonmagnetic impurities present in these channels [29–33].

The spontaneous surface flow of currents can occur in the
context of 3He-A superfluid [3,34]. Also, the unconventional
superconductors in proper situations host surface states and
spontaneous currents parallel to interfaces [34–46]. This
phenomenon has theoretically been studied in several sys-
tems including Josephson junctions made of s-wave/d-wave
superconductors with different crystallographic orientations,
chiral superconductors, and ferromagnetic layers coupled to
the unconventional superconductors [47–51]. Nonetheless, the
experimental observation of spontaneous supercurrents at the
surfaces of chiral superconductors is still elusive partially due
to the Meissner effect and strong disorders that may exist at
the surfaces [42–45].

In this paper, we make use of the Eilenberger equation
derived in Ref. [26] to analyze supercurrent flows at the
interfaces of uniformly magnetized superconducting surface
states of 3D TIs. We consider a 2D Josephson weak-link
configuration made of surface channels of a 3D TI with an
externally controllable superconducting phase difference ϕ

and uniform in-plane magnetizations in each segment depicted
in Fig. 1. Note that the superconductivity inductor electrodes
are spin-singlet superconductors. We show that when the
magnetization strength within the left and right sides of the
contact are unequal and perpendicular to the interface, a
spontaneous supercurrent flows along the junction interface,
where its direction and amplitude can be controlled through the
extrinsic ϕ applied perpendicular to the interface. Our results
demonstrate that the maximum value of the spontaneous
current can be achieved at phase differences close to ϕ = π .
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FIG. 1. Schematic of the TI-based Josephson weak-link junction
considered. The superconductivity and magnetism are induced in
the surface states of the 3D TI by virtue of the proximity effect.
The macroscopic phases of the left and right superconductors θl,r

can be controlled externally. The orientation of the uniform in-plane
magnetization induced in the surface states hl,r also can be calibrated
through an external magnetic field. The left and right segments are
separated by an insulator at x = 0, constituting an interface along the
y axis. We assume that a phase gradient is applied across the junction
normal to the interface and consider two trajectories in the xy plane,
parallel with the interface, marked by A and B arrows to analyze the
supercurrent flow parallel to the junction interface along the y axis.

We justify our findings by calculating the phase relation
of spontaneous supercurrent components along two opposite
trajectories parallel to the junction interface. The observation
of the predicted spontaneous supercurrent is direct evidence of
the rigid spin-momentum locking phenomenon in the surface
states [25–27,29–31]. Furthermore, we calculate the density
of states (DOS) at the interface and discuss how the strength
and direction of magnetizations can alter Andreev bound
states in such junctions that in turn reveal the role of strong
spin-momentum locking in the surface states of a 3D TI.

The paper is organized as follows. We first explain the setup
considered and derive proper Green’s function describing the
system in Sec. II. Next, using the Green’s function obtained,
we calculate the spontaneous supercurrent along the junction
interface of the Josephson weak-link configuration and discuss
the phase relation of its components. We also calculate the
DOS and the Andreev subgap states for various values of
ϕ and magnetization orientations. We support our numerical
findings by Riccati-parametrizing the Green’s function and
deriving analytical expressions for the Andreev bound states
in different situations. We finally give concluding remarks in
Sec. III.

II. METHOD AND RESULTS

In order to analyze the spontaneous supercurrent flow along
a uniformly in-plane magnetized interface made of surface
channels of a 3D TI, we consider a Josephson weak-link
shown in Fig. 1. The superconductivity and magnetism are
both extrinsically induced in the surface states through s-wave
spin-singlet superconductors and ferromagnetic thin films,

respectively, and therefore can be calibrated externally. The
Cooper pair wave function � inside the ferromagnetic layer
decays and oscillates as a function of location, i.e., � ∝
� exp(−z/ξf ) cos(z/ξf ), in which � is the superconducting
order parameter inside the bulk superconductor and ξf is
a characteristic length given by ξf = √

D/h in a diffusive
ferromagnet with the diffusive constant D and exchange field
h [15]. Thus, the thickness of the ferromagnetic layers should
be properly chosen so that the superconductivity survives at
the surface states. The orientation of magnetization induced
in the surface channels hl,r can be rotated by applying
an external magnetic field [52]. To fabricate the double
ferromagnetic setup depicted in Fig. 1, one can use different
magnetic elements or compounds that respond differently to an
externally applied magnetic field. For example, Py is a weak
ferromagnet while LCMO is strong. When subjected to an
external magnetic field, the magnetization of LCMO rotates
reluctantly compared to Py [52] so this constitutes favorably
misaligned magnetizations. The superconducting phase dif-
ference ϕ = θr − θl can be controlled by passing a tuneable
supercurrent through the top superconducting electrodes (θl,r

are macroscopic phases of left and right superconductors). The
two segments of the weak-link are separated by an insulator
barrier along the y axis and the junction resides at x = 0.

To study the supercurrent flow in the weak-link Josephson
structure, we follow Ref. [26], where the Usadel [53] and
Eilenberger [54] techniques were generalized for the surface
channels of a 3D TI in the presence of superconductivity and
magnetism with different amounts of nonmagnetic impurities.
Without losing the generality of our main conclusions, we
utilize the Eilenberger equation [26] throughout the paper:

α

2
{η̂,∇ǧ}=

[
ǧ,ωnτ̂

z+ih(r) · σ̂ τ̂ z+iμη̂ · nF + i�̌(r)+〈ǧ〉
τ

]
,

ǧ(ωn,r) =
(

g(ωn,r) f (ωn,r)
f̃ (ωn,r) g̃(ωn,r)

)
, (1)

where η̂ = (−σ̂ y,σ̂ x), τ̂± = τ̂ x ± iτ̂ y , �̌(r) =
σ̂ 0( − �(r)τ̂+ + �∗(r)τ̂−)/2, and r denotes the spatial
dependence of quantities. The total Green’s function ǧ

has four components f,g,f̃ ,g̃ that determine the physical
properties of a system. Here α represents the strength of
the Rashba spin-orbit coupling available at the surface
channels, h is the exchange field induced in the surface states,
nF = pF /|pF | is a unit vector in the direction of momentum
pF at the Fermi level, ωn = (2n + 1)πT is the Matsubara
frequency, T is the temperature, and n ∈ Z. The vector σ̂

is composed of Pauli matrices and used for the spin space
while τ̂ denotes the particle-hole space. The parameter τ

describes the mean-free-path time of moving quasiparticles
in the presence of nonmagnetic impurities. Note that in the
ballistic regime 1/τ → 0 and to simplify our calculations we
neglect the term 〈g〉/τ without losing the generality of our
main conclusions. The Eilenberger equation (1) should be
supplemented by a normalization condition, i.e., ǧǧ = 1, to
provide correct solutions.

To appropriately describe the physics of the interface,
we consider Ansatz of type ai

r + bi
re

−kr r , x > 0 and ai
l +

bi
l e

+kl r , x < 0 to the solutions of the Green’s function com-
ponents (i = 1–4 represents a specific component) on the
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right and left sides of the weak-link, respectively [55–58].
We match the solutions at x = 0 where the two segments
are weakly connected, derive analytically the corresponding
Green’s function, and eventually extract results by numerically
integrating over the Matsubara frequency. To obtain ai

l,r

and bi
l,r coefficients, we substitute the introduced Ansatz

into the Eilenberger equation (1), make use of the nor-
malization condition ǧǧ = 1, and assume that the solu-
tions far enough away from the interface reduce to bulk
solutions. Following this approach, we find suitable solu-
tions to the components of the Green’s function (x > 0):

gr (ωn) = iωn + hr√
(iωn + hr )2 − �2

r

+ bre
−kr r , (2a)

fr (ωn) = �r√
(iωn + hr )2 − �2

r

+ 2br�re
−kr r

2(iωn + hr ) − iαrkr

,

(2b)

f̃r (ωn) = −�∗
r√

(iωn + hr )2 − �2
r

− 2br�
∗
r e

−kr r

2(iωn + hr ) + iαrkr

,

(2c)

g̃r (ωn) = −iωn − hr√
(iωn + hr )2 − �2

r

− bre
−kr r , (2d)

in which wave vector kr = 2α−1
r

√−(iωn + hr )2 + �2
r . To find

solutions in the left segment x < 0, it suffices we follow the
same procedure with replacing k → −k and indices r → l.
A generic solution at the interface can be given by invoking
indices l,r for the Green’s function and parameters involved
on the left and right sides of the junction shown in Fig. 1.

By matching the Green’s function of the left and right
segments of the weak-link at the junction location x = 0, the
Green’s function of the interface ǧ can be expressed by the
following g and f components:

g(ωn) = αrkr�l�re
iθr iωn(iωn + hl)[αlkl − 2i(iωn + hl)] + αlkl�r�le

iθl iωn(iωn + hr )[2(iωn + hr ) − iαrkr ]

2�l�r (iωn + hl)(iωn + hr ){�leiθl [2(iωn + hr ) − iαrkr ] − �reiθr [2(iωn + hl) + iαlkl]} , (3a)

f (ωn) = −ωn�r�le
i(θr+θl ){αrkr (iωn + hl)�l + αlkl(iωn + hr )�r}

�l�r (iωn + hl)(iωn + hr ){�reiθr [+iαlkl + 2(iωn + hl)] − �leiθl [−iαrkr + 2(iωn + hr )]} , (3b)

�l,r =
√

�2
l,r + ω2

n, kl,r = 2

αl,r

√
�2

l,r − (iωn + hl,r )2.

Because of the charge conservation law, the Green’s function at
the interface, i.e., x = 0, is sufficient to study the supercurrent
and thus we restrict our attention to ǧ(x = 0). Note that the
spatial dependence of the total Green’s function is given by
Eqs. (2a)–(2d). The charge supercurrent is given through the
g component of the total Green’s function:

J e(r) = 2ieπT N (0)
∑
n∈Z

〈vF g(ωn,r)〉, (4)

where the average 〈. . .〉 is taken over the direction of
momentum, vF is the Fermi velocity, and N (0) the density
of states at the Fermi level.

To gain insight, let us first assume that hl,r = 0, θl = −ϕ/2,
θr = +ϕ/2, and �r 	= �l . In this case, we find the following
current phase relation to the supercurrent flowing in the x

direction:

J x
e = 2eπT N (0)

×
∑
n∈Z

�r�l sin ϕ

ω2
n +

√
(ω2

n + �2
r )(ω2

n + �2
l ) + �r�l cos ϕ

.

(5)

As seen, the supercurrent in the x direction is directly
proportional to the order parameter of the left and right
superconductors, i.e., �l and �r . Therefore, if one of the
gaps is directional dependent, for example in a dx2−y2 -wave
superconductor [i.e., �l (or �r ) = �0 cos 2(θ − χ ) where
vx = |vF | cos θ is the particle velocity in the x direction and
χ is the angle that the d-vector makes with respect to an axis
normal to the interface], we see that the supercurrent along
the A and B trajectories (shown in Fig. 1) can be unequal in

amplitude when ϕ 	= 0. This implies that a finite spontaneous
supercurrent can flow along the interface when a nonzero
superconducting phase difference is applied perpendicular to
the junction interface in the x direction, i.e., ϕ 	= 0 [47].

Let us return to the main structure we are interested in,
namely, a magnetized junction where superconductivity is
s-wave spin-singlet and not directional dependent. We first
consider a simple case where �r = �l = � and hl = 0.
Figure 2 exhibits the total spontaneous supercurrent J tot at
the junction x = 0 along the y axis parallel to the interface as
a function of the superconducting phase difference between
the left and right segments ϕ = θr − θl . In our calculations,
we have assumed that the phase difference is controllable
and uniform along the y axis, and neglected the influences
of boundaries along the y axis. The former assumption can be
understood by noting that the superconductivity is induced
in the surface states by an external electrode so that one
can control its macroscopic phase via the injection of a
supercurrent. The latter assumption is valid in a system where
the junction is wide enough compared to the superconducting
coherence length so that the boundaries in the y direction
are located in infinity [21,22,26–28,59]. As seen in Fig. 2,
J tot vanishes when the magnetization strength is zero hr = 0.
By increasing the magnetization strength, J tot is enhanced,
and eventually, further increase in hr suppresses J tot. The
amplitude of the spontaneous current reaches its maximum
for all values of hr in phase differences close to ϕ = π .
Also, the spontaneous current along the interface changes sign
before and after ϕ = π . To understand the behaviors of the
spontaneous supercurrent J tot parallel to the interface at x = 0,
we calculate the components of total current. To this end, the
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FIG. 2. Total supercurrent (spontaneous current) at the junction
location x = 0, displayed in Fig. 1, along the y axis as a function
of phase gradient perpendicular to the junction ϕ = θr − θl . The
magnetization in the left segment is assumed zero hl = 0 while the
magnetization in the right segment is directed along the x axis normal
to the interface and its strength varies from hr = 0 to 1.8�0.

current densities along opposite trajectories A and B parallel
to the interface, shown in Fig. 1, should be calculated so that
the total spontaneous current is given by J tot = JA − JB .
To simplify the current density phase relations and derive
an analytical expression, we set �l = �r = �, hl = 0, and
hr 	= 0 (however, in our numerical calculations, all quantities
are assumed nonzero that result in long expressions and
therefore we avoid presenting them). The supercurrent density
along the A trajectory is expressed by

J = J0

∑
n∈Z

2Z{S1 sin(ϕr
0 + ϕ) − ωn sin ϕ + hr cos ϕ}

D , (6)

D = −2
{
hr

(
Z sin ϕ − S1 sin ϕr

0

) + S1ωn cos ϕr
0

}
+ 2S2Z cos

(
ϕr

0 + ϕ
) − 2ωnZ cos ϕ

+ 2ωn

√
�2 + ω2

n + �2 + h2
r

+
√(

�2 + ω2
n

)2 + h4
r + 2h2

r

(
ω2

n − �2
) + 3ω2

n, (7a)

wS1 = [
2ω2

n

(
�2 + h2

r

) + (
h2

r − �2
)2 + ω4

n

] 1
4 , (7b)

S2 = [(
�2 + ω2

n

)2 + h4
r + 2h2

r

(
ω2

n − �2
)] 1

4 , (7c)

ϕr
0 = 1

2
arg[�2 − (hr + iωn)2], (7d)

Z =
√

�2 + ω2
n + ωn. (7e)

A phase relation similar to Eq. (6) can be obtained for the
current density along the B trajectory by properly accounting
for the magnetization direction. Figure 3(a) illustrates the
spontaneous current densities along trajectories A and B as a
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FIG. 3. Supercurrent densities along A and B trajectories parallel
to the interface shown in Fig. 1 as a function of phase difference
perpendicular to the junction interface ϕ. In panel (a) we set hl = 0
and vary hr while in panel (b) we consider situations where hr = ±hl .

function of ϕ for three different values of hr = 0,0.8�0,1.6�0,
and hl = 0. Here we have defined J0 = 2eπT N (0). Note that
the magnetization is oriented along the x axis perpendicular to
the junction interface. As seen, the current densities along the
A and B trajectories are identical when hr = 0. This is starkly
oppose to the cases where hr 	= 0. We see that the current
densities along the A and B trajectories are dissimilar and
therefore cause a finite spontaneous current along the interface
J tot = JA − JB 	= 0. From Fig. 3(a) it is clear that J tot is at a
maximum at phases close to ϕ = π due to the nonsinusoidal
behavior of the current density phase relations. The current
densities are nonzero at zero phase difference when hr 	= 0;
namely the current density experiences a ϕ0 phase shift in
the presence of magnetization. From Eq. (6) it is apparent
that the current density is nonzero at zero phase difference
ϕ = 0 when hr 	= 0. It is worth mentioning that the appearance
of a ϕ0 phase shift in the supercurrent has theoretically
been discussed in various situations [13,16,26,27,60–70] and
observed in experiments [71,72]. In structures where the
spin-orbit meditated coupling is available, its interplay with a
properly oriented Zeeman(-like) field results in a supercurrent
flow perpendicular to the junction interfaces at zero phase
difference [13,16,26,27,69,70]. Figure 3(b) illustrates the
current densities along the A and B trajectories where the
magnetizations in both sides of the weak-link are nonzero.
We see that when hr = −hl , i.e., the magnetizations are
equal in strength and oppositely oriented perpendicular to the
interface, the current densities along the A and B trajectories
are identical and hence the total spontaneous current along the
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FIG. 4. The density of states DOS(ε) as a function of the quasiparticles energy ε at the interface of weak-link x = 0. (a) We set hr = hl = 0
and vary the phase difference ϕ = 0,0.3π,0.6π,0.8π,π . In panel (b), we examine the effect of magnetization direction on the Andreev subgap
states by setting hl = 0, ϕ = π/2, and hr = 0, ± 0.5�0. (c) We consider opposite magnetization directions with identical intensities on the left
and right sides of the weak-link hl = hr = 0.5�0 and vary the phase difference similarly to panel (a).

interface in the y direction vanishes similarly to the nonmag-
netized case hr = hl = 0. The spontaneous current however
reappears when hr = hl , namely, when the magnetizations of
both sides are oriented in the same direction and perpendicular
to the interface. From Fig. 3(b) it is clear that the current
densities as a function of ϕ along the A and B trajectories are
different if hr 	= 0, and therefore it causes a finite spontaneous
current parallel to the interface. Comparing Figs. 3(a) and
3(b), we conclude that a finite J tot is also feasible even in a
case where hr and hl have opposite orientations. The finite
J tot in this case is accessible when the magnetizations have
different strengths, i.e., |hr | 	= |hl|. Our numerical calculations
(not shown) also confirm this fact.

One of the measurable physical quantities in the laboratory
is the density of states. The DOS can be detected by STM ex-
periments or through I -V characteristic curves in a tunneling
spectroscopy experiment where dI/dV is proportional to the
DOS. The DOS in the quasiclassical approach is accessible
through the normal component of the total Green’s function,
i.e., Eq. (3a):

DOS(ε,r) = N (0) Re
δ→0

{g(iωn → ε + iδ,r)}, (8)

in which we have introduced an infinitesimal imaginary num-
ber iδ and, for convenience in our subsequent analyses, turn to
the energy representation by substituting iωn → ε + iδ. The
imaginary part iδ helps to account properly for the Green’s
function poles. In Fig. 4 we plot the DOS as a function of
normalized quasiparticle energy ε/�0 at the interface x = 0.
Figure 4(a) illustrates the DOS where the phase difference
ϕ between the two segments of the Josephson weak-link (see
Fig. 1) is 0,0.3π,0.6π,0.8π,π . We also set hl = hr = 0 which
is equivalent to a normal Josephson contact. At ϕ = 0, the
DOS shows the usual BCS gap structure with a singularity at
ε = �0. When we set ϕ 	= 0 a singularity appears at energies
below the superconducting gap ε < �0. This singular point
corresponds to an Andreev bound state due to the resonance
of particle-hole conversions at the interfaces of left and right
superconductors. The bound state moves to ε = 0 when the
phase difference is maximum ϕ = π . In Fig. 4(b), we set
hl = 0, ϕ = π/2 and plot DOS for hr = 0, ± 0.5�0. As seen,
the nonzero magnetization in the right segment of weak-link
shifts the Andreev subgap state to smaller or larger energies,
depending on the magnetization direction. If we set opposite

magnetization directions with identical strengths on opposite
sides of the weak-link segments, i.e., hl = −hr , the shift
in the Andreev bound states induced by the direction of
magnetization disappears and the Andreev subgap state at
ϕ = π reoccurs at ε = 0.

To gain better insights, in what follows, we parametrize
the Green’s function and derive an analytical expression for
the Andreev bound states. To this end, we make use of a
so-called Riccati parametrization scheme [73] and define two
propagators γ and γ̃ so that the Green’s function is rewritten
as follows:

ǧ = 1

1 − γ γ̃

(
1 + γ γ̃ +2γ

−2γ̃ −1 − γ̃ γ

)
. (9)

Substituting the parametrized Green’s function into the Eilen-
berger equation, Eq. (1), two decoupled first-order differential
equations for γ and γ̃ appear. After some calculations, we find
the following solutions to γ and γ̃ at the interface from the
right side of the weak-link x → 0+:

γr = (ε + hr ) − sgn(ε + hr )
√

(ε + hr )2 − �2
r

�re−iθr
, (10a)

γ̃r = (ε + hr ) − sgn(ε + hr )
√

(ε + hr )2 − �2
r

�re+iθr
. (10b)

Similar solutions are derived to γ and γ̃ at the interface from
x → 0−. The Andreev bound states can be determined through
the singularities in the normal component of the Green’s
function as discussed earlier [see Eq. (8) and its associated
results presented in Fig. 4]. Therefore, the singularities are
solutions of 1 − γ γ̃ = 0 that result in

cos ϕ − (hl + ε)(hr + ε)

�l�r

+
[{

1 −
(

hl + ε

�l

)2}

×
{

1 −
(

hr + ε

�r

)2}]− 1
2

= 0, (11)

where we invoked the left and right indices l,r for the
quantities of the left and right segments of the weak-link. By
carrying out some calculations, we find the following relation

165422-5



MOHAMMAD ALIDOUST AND HOSSEIN HAMZEHPOUR PHYSICAL REVIEW B 96, 165422 (2017)

to the Andreev bound states:

εA =
hr�

2
l + hl�

2
r − H+�l�r cos ϕ ± �l�r sin ϕ

√
�2

l + �2
r − 2�l�r cos ϕ − H2−

�2
l + �2

r − 2�l�r cos ϕ
, (12)

in which we have defined H± = hl ± hr and εA determines
the energy of the Andreev bound states. The supercurrent
flow passes through these subgap bound states. Hence, the
associated supercurrent phase relationship is proportional to
the derivative of the bound state energies with respect to
the phase difference, namely, J ∝ ∑

A
dεA
dϕ

tanh βεA with β =
kBT . Nonetheless, we do not calculate the supercurrent by this
method and only focus our discussions on the analyses of the
Andreev bound states. To simplify the bound state expression
Eq. (12), we first set �l = �r = � and hr = hl = 0 and
consequently find

εA = � cos ϕ/2. (13)

This relation shows that the bound state at ϕ = 0 moves to the
edge of superconducting gap at εA = � and to zero energy
when ϕ = π in line with previous works on the conventional
Josephson short junctions [55–58]. These results are consistent
with our numerical calculations discussed in Fig. 4(a). We now
set hl,hr 	= 0 and find the following relation for the Andreev
bound states:

εA =
H+(1 − cos ϕ) ± sin ϕ

√
2�2(1 − cos ϕ) − H2−

2(1 − cos ϕ)
.

(14)

We see that the general aspects of the latter expression
are in full agreement with the numerical results presented
in Figs. 4(b) and 4(c). If we set ϕ = π , the bound state
occurs at εA = (hl + hr )/2. It is evident that if the magne-
tization directions in the left and right segments are oppose,
hl = −hr , the bound state takes place at ε = 0 which is
consistent with the DOS results presented in Fig. 4(c). The
difference between the TI junction and a conventional one
is the presence of strong spin-orbit coupling (or equivalently
the spin-momentum locking), and therefore, the directional
dependence discussed above is a direct consequence of the
spin-momentum locking phenomenon. It is worth noting that
not only can the DOS in an intrinsic spin-orbit coupled
magnetic superconducting hybrid be magnetization direction
dependent, but also the charge and spin supercurrents are found
to be sensitive to the direction of magnetization [19–22,74].
The DOS at maximum superconducting phase difference
ϕ = π in a diffusive Josephson junction peaks at zero energy
due to the appearance of superconducting triplet correlations
both in magnetic inhomogeneous [75] and spin-orbit coupled
systems [74].

The spontaneous supercurrent explored here can be ex-
perimentally measurable through multiterminal devices [76].

Two transverse electrodes should be attached to the lateral
edges of the two-dimensional topological insulator weak-link
at x = 0 and y = ±W/2 where W is the junction width
and we assumed W → ∞ in our calculations (see Fig. 1).
The transverse spontaneous current parallel to the junction
interface discussed above injects charge current into the lateral
leads and can induce a voltage drop between the lateral
leads that is detectable in experiment [76]. By applying a
voltage difference between these lateral electrodes, the DOS
and thus the subgap bound states can be revealed in an
I -V measurement. When these signatures are detected in an
experiment, a rotatable in-plane external magnetic field can
confirm our findings. Our predictions are valid regardless of
the density/strength of nonmagnetic impurity and scattering
resources present at the surface channels. Also, to rotate the
magnetization in the setup proposed, an in-plane external
magnetic field suffices. Therefore, the impurity and Meissner
obstacles pointed out in the introduction to experimentally
observe the spontaneous currents at the surfaces of chiral
superconductors are not relevant in the Josephson weak-link
considered in this paper.

III. CONCLUSIONS

In conclusion, utilizing a recently generalized quasiclassi-
cal approach to superconducting magnetized surface states
of a three-dimensional topological insulator (TI) [26], we
study supercurrent flows at the magnetic interface of a TI. We
consider a Josephson weak-link with two uniformly in-plane
magnetized segments, hl and hr , where the magnetizations
have nonzero components perpendicular to the interface. Our
results reveal that a spontaneous supercurrent flows parallel to
the interface at the junction location provided that |hl| 	= |hr |
and reaches its maximum when the phase difference ϕ between
the left and right segments is close to π . We also study
the Andreev bound states in such a weak-link through the
density of states both numerically and analytically. We Riccati-
parametrize the Green’s function involved in our calculations
and derive analytical expressions to the Andreev subgap states.
We discuss the influences of the magnetization directions in the
left and right sides of the Josephson weak-link on the Andreev
bound states.
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