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Plasmon excitations in free-standing graphene and graphene/hexagonal boron nitride (hBN) heterostructure are
studied using linear-response time-dependent density functional theory within the random phase approximation.
Within a single theoretical framework, we examine both the plasmon dispersion behavior and lifetime (linewidth)
of Dirac and π plasmons on an equal footing. Particular attention is paid to the influence of the hBN substrate
and the anisotropic effect. Furthermore, a model-based analysis indicates that the correct dispersion behavior
of π plasmons should be ωπ (q) =

√
E2

g + βq for small q’s, where Eg is the band gap at the M point in the
Brillouin zone, and β is a fitting parameter. This model is radically different from previous proposals, but in good
agreement with our calculated results from first principles.
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I. INTRODUCTION

In recent years the plasmon excitations in graphene and
graphene-related materials have attracted considerable atten-
tion both theoretically [1–7] and experimentally [8–16], due to
their importance for basic physics and technological applica-
tions. Derived from the unique electronic band structure, the
plasmon excitation spectra of graphene span a wide energy
range, falling into three distinct regimes. At low energies
(0–2 eV) and under finite electron doping, graphene can
sustain the so-called Dirac plasmons, originating from the
intraband transitions of Dirac fermions in the vicinity of K

points of the Brillouin zone (BZ) [3,4]. At higher energies
(4–15 eV), there exist intrinsic π plasmons, arising from the
collective excitations of electrons from π to π∗ bands [17]. The
π plasmons are very dispersive, starting at ∼4 eV for small
momentum transfer q’s up to ∼8 eV for large q’s. At even
higher energies, σ bands start to contribute, and the mixture of
the π → π∗ and σ transitions leads to yet another set of distinct
plasmon peaks, usually denoted as π + σ plasmons. The
resulting rich plasmon physics in graphene renders the system
distinct from normal metals, conventional two-dimensional
electron gas, and doped semiconductors.

The low-energy Dirac plasmon excitations are only present
under finite electron or hole dopings [3,4], which can be readily
achieved by chemical means or by electric gating. This type of
plasmon attracts enormous interest for potential technological
applications due to the possibility of achieving both strong
field localization and low energy loss simultaneously [5,18].
Furthermore, this type of plasmon is highly flexible in the
sense that its frequency can be tuned from terahertz to middle
infrared by varying the doping level, and can be “engineered”
by encapsulating graphene in between other two-dimensional
(2D) layered materials [15]. Because of this unique property,
graphene has been considered as a promising material for fabri-
cating nanoplasmonic devices. A review on the recent progress
and future perspective of this field can be found in Ref. [18].
The π and π + σ plasmons at higher energies are also of
significant scientific interest and have been under intensive
theoretical [1,6,9] and experimental [11,12] investigations. It

should be noted that these latter types of plasmons are also
present in the parent material of graphene—graphite. However,
it turned out that the dispersion behavior of π plasmons in
graphene is very different from their counterparts in graphite,
especially for small q’s. Consequently, the interest here is often
on the dispersion behavior of the plasmon peaks [9,11,16] as a
function of the momentum transfer q, as well as the influence
of the substrates [6] and/or the interlayer interactions inside
graphene-based heterostructures or multilayer graphene [12].

Historically, researches on the above-mentioned different
plasmon types have been largely conducted within different
communities. Theoretically, the studies of Dirac plasmons
have been predominantly based on the linear band model
(also known as the “Dirac-cone approximation”) [3–5], which
is valid only in the vicinity of the K points in the BZ.
Nevertheless, recent ab initio studies on Dirac plasmons
based on time-dependent density-functional theory (TDDFT)
revealed an appreciable nonisotropic effect (the variation of
the plasmon dispersions along different directions in the
Brillouin zone) [19,20] and the existence of an acoustic
Dirac plasmon mode in graphene [20]. Physics of this type
cannot be captured by the linear band model. The studies of
π plasmons, on the other hand, have been mainly carried out
with ab initio TDDFT within the random-phase approximation
(RPA) [6,9,16], except for some earlier ones based on the
tight-binding model, which involves only π bands [1,2].
Compared to the other two types of plasmons, π + σ plasmons
have received less attention, and the study of these excitations
would require including high-lying energy bands. Hence,
for π + σ plasmons, the ab initio approach would be more
appropriate. All together, it appears that TDDFT-RPA can
offer a unified description of all types of plasmon excitations
in graphene and graphene-related materials in a fully ab initio
manner, thus eliminating possible ambiguities arising from the
choice of model parameters and/or approximations that might
miss important physical effects.

Despite the intensive studies of the plasmon excitations in
graphene, some issues remain unclear and await further inves-
tigations. For instance, the dispersion behavior of π plasmons
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has long been thought to be linear [6,9,11,13], but this view was
challenged by Liou et al. [16] recently. These authors claimed
that π plasmons follow a

√
q behavior for small q’s, similar to

the Dirac plasmons. Furthermore, it is worthwhile to mention
here that even the existence of π and π + σ plasmons has been
questioned by Nelson et al. in Ref. [21], where these authors
claimed that π and π + σ peaks are not collective plasmon
excitations, but rather single-particle interband transitions.
However, this viewpoint was essentially refuted by Nazarov
[22], by means of studying an appropriately defined quasi-2D
(Q2D) macroscopic dielectric function of graphene, obtained
by the TDDFT-RPA approach.

In this work, we present a comprehensive study of Dirac and
π plasmon excitations in graphene and graphene/monolayer
hexagonal boron nitride (hBN) heterostructure using ab initio
TDDFT-RPA approach. We examine both the dispersion
behavior (plasmon peak positions) and the linewidth (plasmon
lifetimes) as a function of the momentum transfer q. Our
ab initio calculations are further complemented by model anal-
ysis, which allows us to gain new insight into the dispersion
behavior of π plasmons. Our study corroborates the conclusion
of Nazarov [22] on the existence of π and π + σ plasmons.
For the lifetimes, ab initio results from TDDFT-RPA have not
been reported in the literature. In this connection, we note
that only the Landau damping channel is adequately treated
within the standard RPA. Effects from impurities, disorders,
and electron-phonon couplings are usually accounted for via
the framework of RPA combined with the number conserving
relaxation time (RT) approximation[5,23]. In this approach,
the relaxation time due to the scattering from impurities or
phonons is estimated empirically and put into the RPA-RT
framework by hand. It appears that a full ab initio treatment of
the plasmon lifetime problem taking into all important physical
channels is still not practical. In this work, our ab initio lifetime
calculations are restricted to the level of electron-electron
scattering within RPA. A full account of other contributions
from first principles will be pursued in future work.

Although not directly relevant to the present work, we
would like to mention that Bethe-Salpeter equation [24,25]
has been employed to study the optical properties of graphene
[26,27], whereby a strong excitonic effect was found. The
existence of excitons with sizable binding energy was later
confirmed by experiment [28]. To describe the excitonic effect,
it is essential to include the electron-hole interactions in
the theoretical treatment, as is done in the above-mentioned
BSE. In this work, we are concentrating on collective
excitations, whereby the effect of the long-range part of
Coulomb interactions dominates, whereas the many-body
(dynamical) exchange-correlation effect beyond RPA plays
only a secondary role [29]. Past experience showed that the
ab initio TDDFT-RPA can describe plasmon excitations in
graphene rather well. Effects beyond RPA are also being
checked at the model level, especially in the context of
lifetimes of Dirac plasmons [30]. Furthermore, the influence
of plasmons on the quasiparticle spectral function has been
studied using both model and ab inito approaches [31,32].

The rest of the paper is organized as follows. In Sec. II
the basic equations of the TDDFT-RPA approach behind
our implementation are presented. This is followed by a
description of the implementation details and computational

setups in Sec. III. The calculated results for graphene and
graphene/hBN are then presented in Sec. IV, complemented
by an in-depth model analysis and discussions. Finally we
summarize our work in Sec. V.

II. METHODS

The plasmon excitations can be measured experimen-
tally by the momentum-resolved electron energy loss spec-
troscopy (EELS) technique. Theoretically and computa-
tionally, TDDFT-RPA represents a powerful ab initio ap-
proach to describe EELS, as thoroughly discussed in
Refs. [24,29,33–35]. A most recent analysis of the role of
theoretical dielectric function models in describing EELS can
be found in Ref. [36]. Here we present the key equations of
the formalism as a basis for discussing technical details behind
our implementations. In brief, EELS can be obtained from the
inverse of the dielectric function ε, or equivalently the linear
charge density response function χ ,

−Im{ε−1(q,ω)} = −4π

q2
Im{χG=0,G′=0(q,ω)}, (1)

where G and G′ are the three-dimensional (3D) reciprocal
lattice vectors, q is a wave vector within the first BZ (1BZ), and
ω is the frequency. Here only the “head” term (G = G′ = 0)
of ε−1 is of our concern, which corresponds to the response
function of the system at the macroscopic scale. Within
TDDFT, the system’s interacting response function χ is linked
to its noninteracting counterpart χ0 via the Dyson equation:

χG,G′(q,ω) = χ0
G,G′(q,ω) +

∑
G1,G2

χ0
G,G1

(q,ω)

×KG1,G2 (q,ω)χG2,G′ (q,ω), (2)

where the noninteracting response function χ0 is given
explicitly by the well-known Adler-Wiser formula [37,38]

χ0
G,G′(q,ω) = 1

�

1BZ∑
k

∑
n,n′

fn,k − fn′,k+q

ω + εn,k − εn′,k+q + iη

×〈n,k|e−i(q+G)r|n′,k + q〉
× 〈n′,k + q|ei(q+G′)r′ |n,k〉. (3)

In Eq. (3), � stands for the volume of the Born–von-Karmen
supercell, fn,k, εn,k, |n,k〉 are the Fermi occupation numbers,
Kohn-Sham (KS) [39] eigenvalues, and KS eigenvectors,
respectively. The computation of χ0

G,G′(q,ω) will be discussed
in the next section. Within RPA, the full kernel KG1,G2 (q,ω)
in Eq (2) is reduced to the static Coulomb kernel,

KC
G1,G2

(q) = 4π

|q + G1|2 δG1,G2 . (4)

The above formalism [Eqs. (2)-(4)] is perfectly suitable for
3D periodic bulk materials, but needs modifications for two-
dimensional (2D) materials as explained below. In the 2D case,
the system is infinite and periodic only in the basal (x-y) plane,
but confined in the third (z) direction. A so-called supercell
approach is commonly used to treat 2D systems, in which
the system is modeled by repeated 2D slabs, separated by a
large vacuum region in the z direction. The advantage of the
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supercell approach is that the 3D formalism presented above
can still be used, but care must be taken to remove spurious
interactions between the periodic replicas. The issue is already
well-known in semilocal DFT calculations for polar surfaces.
The situation is more severe in the present case, because of the
explicit presence of long-range Coulomb interaction in Eq. (2).

In the literature, two schemes have been employed to
deal with the above-mentioned problem. The first scheme,
introduced by Rozzi et al. [40], sticks to the reciprocal-
space formalism, but employs the Fourier transform of a
truncated Coulomb potential, instead of the bare one [Eq. (4)].
Specifically, by restricting the Coulomb interaction within a
window [−R,R] in the z direction, the Coulomb kernel in
Eq. (4) becomes

K̃C
G1,G2

(q) = 4πδG1,G2

|q + G1|2
[

1 + e−|q+Ḡ1|R

×
(

G1,z

|q + Ḡ1|
sin(G1,zR) − cos(G1,zR)

)]
, (5)

where G1 = (Ḡ1,G1,z) and q = (q̄,0), with Ḡ1 and q̄ being
respectively the two-dimensional reciprocal lattice vector and
Bloch wave vector in the basal plane. It has been suggested
in Ref. [40] to choose R = Lz/2 where Lz is the length of
the lattice vector in the z direction, and hence Gz = 2πnz/Lz

with nz being an integer number. With this choice, the truncated
Coulomb kernel simplifies to

K̃C
G1,G2

(q̄) = 4πδG1,G2

|q̄ + G1|2 [1 − (−1)nze−|q̄+Ḡ1| Lz
2 ]. (6)

Now, by replacing the full Coulomb kernel by the truncated
one K̃C

G1,G2
(q̄) in Eqs. (1), one obtains the modified 3D

interacting response function χ̃ . Finally the loss function of a
genuine 2D material is computed as

−Im
{
ε−1

2D (q̄,ω)
} = −4π (1 − e−q̄Lz/2)

q̄2
Im{χ̃G=0,G′=0(q̄,ω)},

(7)

where q̄ = |q̄| = |q|. It is easy to see that the Fourier
transform of the truncated Coulomb interaction approaches
its 2D form 2π/q̄ for q̄ 	 1/Lz. For plasmon excitations
in graphene, it was shown recently by Mowbray [35] that
the artificial interactions between periodic replicas can affect
the plasmon peak positions and intensities quite significantly.
Such effects can be efficiently removed by employing the
truncated Coulomb kernel (6). Please note that, for consistency,
in Eq. (7) we also used the truncated Coulomb interaction
form 4π (1 − e−q̄Lz/2)/q̄2 for the prefactor. Different from our
choice, however, in literature the full Coulomb potential 4π

q̄2

is often used for the prefactor in Eq. (7). Our numerical tests
show that using the truncated Coulomb potential here instead
of the full one for the prefactor will not produce noticeable
difference in the loss spectrum except for extremely small q̄’s.
Even in the small q̄ regime, only the intensity of the plasmon
peaks is slightly affected, but not the peak positions.

An alternative approach to deal with the artificial interaction
issue, as employed by Silkin and coauthors [33,41] and also
by Yuan and Gao [19,34], is a mixed representation of the
TDDFT-RPA equations. In this approach, a reciprocal-space

representation for the in-plane (x-y) dimensions and a real-
space representation for the out-of-plane (z) dimension are
employed. In such a mixed representation, the Dyson equation
for the response function [Eq. (2)] becomes

χḠ,Ḡ′(z,z′,q̄,ω)

= χ0
Ḡ,Ḡ′ (z,z

′,q̄,ω) +
∑

Ḡ1,Ḡ2

∫∫
dz1dz2χ

0
Ḡ,Ḡ1

(z,z1,q̄,ω)

×KḠ1,Ḡ2
(z1,z2,q̄)χḠ2,Ḡ′ (z2,z

′,q̄,ω), (8)

where the Coulomb kernel is given by

KC
Ḡ1,Ḡ2

(z1,z2,q̄) = 2πδḠ1,Ḡ2

|q̄ + Ḡ1|
e−|q̄+Ḡ1||z1−z2|. (9)

In this way, one is essentially dealing with an isolated
2D system, and the nonphysical interactions between periodic
images in the 3D reciprocal space formalism are naturally
absent. In practice, however, the mixed representation of the
noninteracting response function is often obtained from its 3D
reciprocal-space form,

χ0
Ḡ,Ḡ′(z,z

′,q̄,ω) =
∑

Gz,G′
z

e−iGzzχ0
G,G′(q̄)eiG′

zz
′
. (10)

Consequently, χ0 becomes de facto periodic in the z direction
of periodicity length Lz. Because of this feature, the inte-
gration over z and z′ in Eq. (8) has to be restricted within
(−Lz/2,Lz/2). The obtained χḠ,Ḡ′(z,z′) can then be Fourier
transformed to its 3D reciprocal-space form χG,G′ , and the
loss spectrum is again computed using Eq. (7). As such, the
above two schemes to remove artificial interactions between
periodic images become essentially equivalent [42]. In the
present work, we directly follow the first scheme [Eqs. (2),
(3), (6), and (7)] in our implementation.

III. IMPLEMENTATION DETAILS

One efficient way to compute χ0 is to first calculate its
imaginary part χS

G,G′(q,ω),

χS
G,G′(q,ω) = 1

�

1BZ∑
k

∑
n,n′

(fn,k − fn′,k+q)δ(ω + εn,k − εn′,k+q)

×〈n,k|e−i(q+G)r|n′,k + q〉
× 〈n′,k + q|ei(q+G′)r′ |n,k〉, (11)

and then obtain the full χ0 via the Hilbert transform,

χ0
G,G′(q,ω) =

∫ ∞

0
dω′

[
1

ω − ω′ + iη
− 1

ω + ω′ + iη

]

×χS
G,G′ (q,ω′). (12)

Following Ref. [43], the δ-function in Eq. (11) is approximated
by a triangular function,

δ(ωi − �) ≈
{ �−ωi−1

ωi−ωi−1
for ωi−1 < � < ωi,

ωi+1−�

ωi+1−ωi
for ωi < � < ωi+1,

(13)

where � = εn′,k+q − εn,k, and ωi is the frequency grid point.
Furthermore, To obtain converged values for the peak positions
and width of the loss spectrum, technical parameters such as
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the k-point mesh, the frequency grid points, and the actual
values for the positive infinitesimal parameter η must be chosen
carefully.

The linear-response TDDFT-RPA equations presented
above have been implemented in a recently released first-
principles code package, Atomic-orbital Based Ab-initio Com-
putations at UStc (ABACUS) [44–46]. The Troullier-Martins
[47] norm-conserving pseudopotential in its fully separable
form [48] is used to describe the interactions between nuclear
ions and valence electrons. A “dual basis set” strategy is
adopted in ABACUS which allows one to use both plane waves
and numerical atomic orbitals (NAOs) as basis functions.
In this work, the plane-wave basis sets are employed to
expand the valence-electron wave functions in Eqs. (3) and
(11). The Perdew-Zunger local-density approximation (LDA)
[49] is used for the preceding Kohn-Sham (KS)-DFT [39]
calculations to obtain the KS orbitals and orbital energies.
Unless otherwise stated, the production calculations in this
work are conducted using the plane-wave basis with a cutoff
energy of 50 rydberg (Ry).

As mentioned in Sec. II, the supercell approach is used to
model the 2D systems. The separation [Lz in Eq. (5)] between
periodic layers (slabs) is chosen to be 20 Å. This choice,
together with the truncated Coulomb potential technique
discussed in Sec. II, ensures a clean removal of the artificial
interactions between periodic images in the z direction. In this
work, we study two types of systems: (a) a single freestanding
layer of graphene and hBN, and (b) a combined graphene/hBN
double-layer heterostructure in AA stacking. For the former,
20 bands (4 occupied plus 16 unoccupied) are included in
the calculations of χS in Eq. (11); for the latter, 30 bands
(8 occupied plus 22 unoccupied) are used. These choices
guarantees a convergence of the plasmon spectra up to 30 eV,
thus covering the entire energy range of π + σ plasmons.

In the plasmon dispersion calculations, the positive in-
finitesimal parameter η in Eq. (12) is set to be 0.01 Ry, and
the χ matrix is expanded in terms of 100 G vectors. The
Brillouin zone is sampled with a 192 × 192 × 1 Monkhorst-
Pack k-point grid. Furthermore, we use a uniform frequency
grid with energy spacing of 0.001 Ry up to 4 Ry, containing
4000 grid points. Extensive tests show that this combined
set of parameters is sufficient to obtain converged results
of the dispersion behavior of the plasmon excitations. For
lifetimes, highly accurate numbers can only be obtained by
extrapolating η → 0. Benchmark tests on the convergence
behavior of lifetime calculations will be shown in Appendix D.

In this work, we study the plasmon behavior of extrinsic
graphene systems with finite electron doping. To this end,
the Fermi level is shifted upwards by 0.05 Ry (0.68 eV)
above the Dirac point. This corresponds to a doping level
of 0.027 electrons per unit cell (or free charge carrier
concentration of 5.1 × 1013 cm−2) and the resultant Fermi

vector is kF = 0.127 Å
−1

as determined from the LDA band
structure. In doing so, the tiny effect of doping on the graphene
electronic structure is neglected. Such a procedure is also
followed by Pisarra et al. in Refs. [20,42]. Please note that
the Fermi velocity is slightly underestimated within LDA, and
correspondingly the the Fermi vector is slightly overestimated
at a given doping level. But this does not affect the discussions
in the present work.

FIG. 1. The loss spectra for graphene (a), hBN (b), and
graphene/hBN bilayer (c) systems for different momentum transfer q

along the -M direction. The Fermi level is shifted up by 0.05 Ry in
graphene and graphene/hBN calculations to mimic the effect of finite
dopings. The three different (Dirac, π , and π + σ ) plasmon modes
in graphene are labeled in panel (a).

IV. RESULTS

In this section, the computed results of the full plasmon
spectra of graphene and graphene/hBN will be presented. We
will discuss both the dispersion relations and lifetimes. The
influence of the hBN substrate on plasmons in graphene will
be also examined.

A. The plasmon dispersion behavior

1. Overall features

In Fig. 1 the loss spectra computed using the linear-response
TDDFT-RPA approach are presented both for free-standing
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graphene [upper panel, Fig. 1(a)] and the mixed graphene/hBN
bilayer (in AA stacking) system [lower panel, Fig. 1(c)]. The
result for a free-standing hBN layer is also shown [middle
panel, Fig. 1(b)] for comparison. The different spectral lines
aligned vertically correspond to different momentum transfer
q along the -M direction in the 1BZ. For calculations
of graphene and graphene/hBN, the Fermi level is shifted
upwards by 0.05 Ry above the Dirac point to mimic the effect of
finite electron doping. The results for graphene/hBN presented
in this section are for AA stacking. However, as shown in
Appendix A, other types of stacking yield essentially the same
results.

The obtained loss functions of doped graphene and
graphene/hBN clearly show three distinct plasmon modes,
corresponding respectively to the Dirac plasmons, π plasmons,
and π + σ plasmons from low to high excitation energies. The
Dirac plasmon peaks are very sharp and pronounced, while
π plasmon peaks are much broader and carry more spectral
weights. The peaks of π + σ plasmons are even broader,
and multiple subpeak structures within this regime are clearly
visible. As mentioned in the Introduction, the low-energy Dirac
plasmon excitations are only present for extrinsic graphene
with finite doping, but the π and π + σ are intrinsic and can
be activated at both finite and zero dopings.

In this context, we should mention that the true nature
of the π and π + σ peaks has been questioned recently
by Nelson et al. [21], who insisted that these peaks are
actually single-particle interband transitions, instead of col-
lective excitations. Nazarov [22], by computing and analyzing
the Q2D dielectric function of graphene, essentially refuted
the claims in Ref. [21], concluding that the π peaks and
the major π + σ peaks (above 14 eV) are plasmons. In
Appendix B, we present a similar analysis of the Q2D dielectric
functions for both graphene and hBN, and additionally the
pole structure of both χ0,0(q,ω) and χ0

0,0(q,ω). We show that,
besides the zeros of the real part of the dielectric function,
comparing the dispersion behaviors of the peaks in Im[χ ]
or Im[χ0] (or equivalently the poles of χ and χ0) is also
very useful in unravelling the nature of the EELS peaks. Our
analysis corroborates the conclusion of Nazarov [22], with
the general understanding that individual interband transitions
coexist with π and π + σ plasmons, forming a broad (often
unfeatured) background for the latter. The coexistence of
individual transitions and plasmons in the same energy range
inevitably leads to a coupling of the two types of excitations,
and hence finite plasmon lifetimes.

Coming to the graphene/hBN heterostructure, the com-
parison between Figs. 1(a) and 1(c) clearly revealed the
major effect of a single-layer hBN substrate on the plasmon
dispersion behavior of graphene. While the Dirac plasmons
are not much affected, π plasmons are significantly changed.
An overall binodal peak structure, with peaks running parallel
to each other as a function of q, can be recognized. Comparing
the graphene/hBN spectra [Fig. 1(c)] to those of individual
graphene [Fig. 1(a)] and hBN [Fig. 1(b)] further suggests
that the low-energy peaks stem from graphene, though sub-
stantially suppressed, while the high-energy peaks originate
from hBN, staying essentially the same as their counterparts
in the isolated hBN layer. In this context, we note that hBN, a
wide-gap insulator, sustains plasmon excitations which behave

FIG. 2. Electronic band structure of graphene/hBN in AA stack-
ing, computed with DFT-LDA. Bands in back stem from graphene,
while those in red stem from hBN. Inset: a zoom-in of the loss spectra

of graphene/hBN at a very small momentum transfer q = 0.015 Å
−1

.
The four plasmon subpeaks can be clearly associated with the
interband transitions around the M point involving energy bands
close to the Fermi level, as labeled in the figure.

similarly to the π plasmons in graphene, though blue-shifted to
higher energies, as can be seen from Fig. 1(b). We emphasize
that the classification of π excitations in hBN as plasmons
has been evidenced by analyzing the Q2D dielectric function
as well as pole structures of χ and χ0 for hBN, as detailed
in Appendix B. The suppression of π plasmons of graphene
upon including a substrate was also observed in graphene/SiC,
as reported in Ref. [6].

One may notice that, at small q’s, there are finer plasmon
peak structures within the π region of the graphene/hBN
heterostructure. To unravel the origin of these subpeaks, we
plot in Fig. 2 the band structure of graphene/hBN, obtained
with DFT-LDA. Also shown is the zoom-in of the plasmon

peaks at q = 0.015 Å
−1

within an energy window of 3 to
7 eV. It can be seen that the band structure of hBN is actually
very similar to graphene around the M point in BZ, with
the direct gap (at M) of hBN about 2 eV larger than that
of graphene. A close inspection of the two graphs further
reveals that each small individual peak can be associated with
an interband transition between the two occupied bands and
two unoccupied bands of the hybrid graphene/hBN system
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around the M point, as labeled in Fig. 2. For example, the
first peak (cf. the inset of Fig. 2) with an energy of 3.71 eV
corresponds well to the transition from the 8th to 9th band,
while the third peak of 5.50 eV corresponds to the 8 → 10
interband transition, and so on. It is a unique feature of 2D
materials that the plasmon excitation energies approaches to
the interband transition energies as q → 0, but they start to
deviate from each other following different dispersion relations
as q increases. This can be clearly seen from the pole structures
of χ (q,ω) and χ0(q,ω) as presented in Appendix B (cf. Fig. 9).

The similarity between the band structures of graphene
and hBN around the M point and the similarity of their
π plasmons are by no means a coincidence. Actually, similar
to what happens in graphite [17], the π plasmons stem from the
collective electronic interband excitations around the M point,
which is a saddle point in the BZ, and contributes most strongly
to the density of states (DOS). Furthermore, in contrast to
3D materials, the excitation energy approaches the value of the
single-particle energy gap as q → 0 for plasmon excitations in
2D materials originating from collective interband excitations
with a finite gap. This explains the blueshift of the π plasmons
in hBN compared to that in graphene. Below we will examine
separately the dispersion relations of Dirac plasmons and
π plasmons in more detail.

2. Dirac plasmons

In Fig. 3(a), the spectra of Dirac plasmons along the -K di-
rection in doped graphene (upper panel) and graphene/hBN
(lower panel) are presented. Compared to the spectra along the
-M direction, there is a shoulder peak along -K , appearing
at even lower energies, in addition to the “conventional”
2D Dirac plasmons. This additional peak structure has been
interpreted by Pisarra et al. [20] as an acoustic plasmon
mode. Specifically, plasmon excitations along -K arise
from oscillations of charge carriers with two different Fermi
velocities. These two types of charge carrier oscillations can
interact with each other, resulting in an acoustic mode and
an optical mode [50], with the latter being the conventional
Dirac plasmons. Such an effect is not present for plasmons
along the -M direction. Comparing the spectra of graphene
and graphene/hBN, we see that little has changed for both
acoustic and conventional Dirac plasmons, upon including the
hBN substrate.

The plasmon peak positions as a function of the momentum
transfer q (the dispersion relation) are plotted in Fig. 3(b)
for Dirac plasmons along both the -M and -K directions.
For the acoustic plasmon mode along the -K direction, the
spectral weight gets vanishingly small as q → 0, making a
precise determination of peak positions difficult. Hence the
dispersion relation of the acoustic plasmons was not shown for
very small q’s in Fig. 3(b). For “conventional” Dirac plasmons

with q < kF (∼0.12 Å
−1

), the dispersion roughly follows a√
q behavior, in agreement with what was originally found in

model studies [4]. For large q’s, where the Landau damping
comes into play, the conventional Dirac plasmons actually
display a quasilinear dispersion behavior, as can be seen from
Fig. 3(b). Furthermore, both the anisotropic and substrate
effects can be seen in Fig 3(b). Namely, for large q’s, the

FIG. 3. (a) The loss spectra corresponding to Dirac plasmons
along the -K direction in the BZ for doped graphene (upper panel)
and graphene/hBN (lower panel). (b) The dispersion curves of the
Dirac plasmons of along both -K and -M directions. Results for
the acoustic mode along the -K direction are also shown.

plasmon energies are larger along the -K direction compared
to the -M direction for the same q; i.e., the -M dispersion
curve is below that of -K . Also, a slight redshift can be
observed for large q’s, when the hBN substrate is included.

3. π plasmons

Next we examine the dispersion behavior of the π plas-
mons. In Fig 4, dispersion relations of π plasmons in graphene
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FIG. 4. The dispersion curves of the π plasmons of graphene
(squares) and graphene/BN (circles) as a function of q along both
the -M (solid symbols) and -K (open symbols) directions. For
graphene/BN, the dispersion of the majority peak (cf. Fig. 1) is
plotted.

and graphene/hBN are presented, along both -K and -M di-
rections. For graphene/hBN, as discussed above, the plasmons
in the π region are split into several subpeaks, and here only the
majority subpeak, arising primarily from hBN, is plotted. The
dispersion behavior of graphene/hBN π plasmons gets a bit

complex for momentum transfer q � 0.55 Å
−1

, where kinks
can be seen in the dispersion curve. This is due to the fact that
the hybridization effect gets strong for large q’s, associated
with substantial spectral weight transfer among the subpeaks.
Consequently, it is no longer possible to identity the original

dominating (hBN-originated) peak. Also, for q > 0.5 Å
−1

, the
dispersions along -K and -M start to deviate from each
other, and an anisotropy effect becomes visible.

In this connection, we would like to stress that the dispersion
relation of π plasmons in graphene is still a debated issue.
Except perhaps for one work1, most earlier theoretical and
experimental studies [6,9,11,13] reported a quasilinear disper-
sion behavior for π plasmons. This generally accepted view
was recently challenged by Liou et al. [16], who proposed a

√
q

dispersion relation based on their high-momentum-resolution
EELS experiment. From Fig. 4, however, one can see that our
first-principles TDDFT-RPA result can be fitted neither to a
simple linear model nor to a

√
q model. This inconsistency

motivated us to analyze this issue more deeply in terms of a
tight-binding model, including only the π and π∗ bands of
graphene. Our model analysis suggest that the theoretically
more appropriate dispersion behavior of π plasmons for small
q’s should be

√
E2

g,M + βq, where Eg,M is the energy gap of
graphene at the M point. Further details of this derivation are

1The dispersion behavior of π plasmons for small q’s was not
explicitly discussed in Ref. [1], but the plot in Fig. 4 of this paper
suggests a parabolic behavior, as judged by eyes.

FIG. 5. The model dispersion curve of π plasmons ωπ (q) =√
E2

g,M + βq with Eg,M = 4 eV and β = 90 eV2Å, in comparison
with the dispersion curves obtained from TDDFT-RPA calculations
in this work, and the experimental results of Liou et al. [16] and
Lu et al. [11].

given in Appendix C. The essence behind our derivation is
to recognize that the π plasmons in graphene stem from the
collective excitations from the π to π∗ band around the M

point. The M point in the BZ represents a saddle point of the
π and π∗ bands, yielding a van Hove singularity in the DOS
at energy E = Eg,M . Thus the collective interband transition
in the vicinity of the M point dominates the contributions
to π plasmons at small q’s. For a 2D system like graphene,
the plasmon excitation energy of this type approaches the
single-particle energy gap at the M point as q goes to 0.

In Fig. 5 we plotted the model dispersion curve of ωπ (q) =√
E2

g,M + βq with β = 90 eV2Å, and the first-principles
TDDFT-RPA dispersion curve along -M , which was already
presented in Fig. 4. The value of the β parameter was chosen to
fit the slope of the first-principles results in the small q’s region.
Also presented for comparison are the experimental data by
Liou et al. [16] and Lu et al. [11]. It can be seen that, with
one adjustable parameter, the model curve agrees very well

with the first-principles one for q < 0.3 Å
−1

, which is the
regime where the model is expected to be valid. The overall
agreement with the experimental data is satisfactory, though
some remaining discrepancy is noticeable. One may notice
that the experimental data from the two groups also show some

scattering, and especially the data for 0.01 < q < 0.1 Å
−1

are
missing, which are important for an unambiguous determina-
tion for the q → 0 behavior of the plasmon dispersion. We note
that the argument of Liou et al. [16] for the

√
q-dependence

behavior of π plasmons was based on a 2D free-electron gas
model for graphene. Such a model will certainly be valid for
describing the Dirac plasmons in doped graphene. However,
the π plasmons stem from the collective excitations from
the π band to the π∗ around the M point, which has an
energy gap of ∼4 eV. From this standpoint, we argue that
the dispersion behavior of π plasmons should follow that of
a 2D insulator, instead of a 2D metal. The 2D electron gas
model is inappropriate for describing π plasmons.
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B. Lifetimes

From the perspective of technological applications, the
lifetime of plasmons is an important quantity to care about.
Theoretically the lifetime of plasmon excitations is inversely
proportional to the width of the spectral peaks, and hence
the calculation of lifetime is equivalent to determining the
linewidth of the plasmon spectral peaks. Figure 1 clearly
shows that Dirac plasmons have very sharp peaks for small
q’s; these peaks however quickly broadens and diminishes as
q increases. This is consistent with the common understanding,
as gained from model studies [3,4], that Dirac plasmons
have infinite lifetimes within RPA for momentum transfers
below certain cutoff qc. [For the doping level considered in

this work (5.1 × 1013 cm−2), qc ∼ 0.8kF = 0.1 Å
−1

.] Above
qc, the Landau damping kicks in, due to the merging of
plasmon excitations and individual particle-hole excitations,
and consequently the Dirac plasmons start to gain a finite
lifetime.

However, an accurate determination of the lifetimes numer-
ically in an ab initio calculation is not entirely trivial. This is
because the actual width of the peaks depends on the choice
of the small positive parameter η in Eqs. (3) and (12). By
systematically reducing the value of η, one can in principle
get more and more accurate peak widths, but care must be
taken to use denser k and frequency grids to get smooth and
converged spectral peaks. In this work, we adopt the following
procedure to calculate the linewidth: first, the full widths at half
maximum (FWHM) of the plasmon peaks are determined for
several different η values ranging from 0.01 to 0.001 Ry, and
for each η the spectrum is converged with respect to the number
of k and frequency points. Second, the FWHM’s at finite η’s are
extrapolated to the limit of η = 0. We consider the extrapolated
FWHM as the final converged linewidth at the RPA level.
Further details about our FWHM determination procedure is
given in Appendix D. We successfully applied this procedure
to accurately determine the FWHM’s of Dirac and π plasmons
of graphene. However, we admit that this procedure does not go
without limitations. Especially, when there are several peaks
very close to each other, an unambiguous determination of
the width of each individual peak gets very difficult. This
is the case, e.g., for the π plasmons in graphene/hBN, and
π + σ plasmons.

In Fig. 6 the extrapolated FWHM values for both Dirac and
π plasmons are presented as a function of the momentum trans-
fer q. For Dirac plasmons [Fig 6(a)], the extrapolated FWHM
value is strictly zero for q < qc, indicating an infinite lifetime
in this regime. For q > qc, however, the FWHM of Dirac
plasmons increases quadratically as (q − qc)2. This behavior
for FWHM values of Dirac plasmons is in close agreement
with the results of Wunsch et al. [3], obtained from model
studies. Interestingly, in this case, the hBN substrate seems to
have the tendency of reducing the linewidth, i.e., increasing
the lifetimes of Dirac plasmons q > qc. However, the effect
here is purely electronic and different from the phonon and
impurity scattering effects as discussed in Ref. [15].

Distinct from Dirac plasmons, the π and π + σ plasmons
have finite lifetimes for all momenta q, because in these cases
the individual interband transitions and collective excitations
coexist, and the Landau damping mechanism is always active.

FIG. 6. The extrapolated (η → 0) FWHM of Dirac (a) and π (b)
plasmons along the -M direction. For Dirac plasmons, results are
shown for both freestanding graphene and graphene/hBN.

Here only the FWHM values for π plasmons in freestanding
graphene are presented, since the above described numerical
procedure for determining FWHM does not yield reliable
results for π plasmons in graphene/hBN and for π + σ

plasmons. From Fig. 6(b), one can see that the FWHM value of
π plasmons first steadily increase as a function of q, reaching

a maximum for q ∼ 0.12 Å
−1

, and then, surprisingly, the
linewidth starts to slowly decrease for even larger q’s. Such
a nonmonotonic behavior for π plasmon lifetimes in pure
graphene is not yet well understood.

Finally, we emphasize again that the lifetime studies
reported in this work is purely electronic at the RPA level,
and hence the conclusion might not be directly applicable
to realistic situations. Yet this study is meaningful from a
numerical point of view, since a reliable determination of
plasmons linewidths from first-principles calculations appears
to be a challenging task. Our procedure could provide
reference numbers for simple situations. Plasmon lifetime
studies incorporating effects from phonons, impurities, and
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disorders [5,30], as well as electronic effects beyond RPA, have
been reported in literature at the model level [51]. Including
these effects in a first-principles way is possible in principle,
but goes beyond the scope of the present work.

V. SUMMARY

Plasmon excitations in graphene and graphene-related
materials have intriguing properties that hold great promises
for technological applications. In this work, we developed
a first-principles TDDFT-RPA module within the ABACUS

software package [46], which allows us to accurately simu-
late the plasmon excitations in graphene and graphene/hBN
heterostructure for a large energy window (from 0 to ∼30 eV).
Regarding the controversial nature of the dispersion behavior
of π plasmons, our first-principles results and model analysis
indicate that a theoretically more sound dispersion relation
should be ωπ (q) =

√
E2

g,M + βq at small q’s, in stark distinc-
tion from previous proposals. The essential physics behind
this is that the π plasmons in graphene arise from collective
interband excitations in a region of the BZ that has a finite
energy gap, and hence the asymptotic behavior at q → 0 is
qualitatively different from that of Dirac plasmons, which
stem from collective excitations in a BZ section that has no
gap. In other words, these two types of excitations are already
qualitatively different in the noninteracting density response
function, from which the interacting density response function,
whose isolated poles correspond to plasmon excitations, is
derived. This distinction has significant implications for the
plasmon dispersion behavior, and renders the 2D electron gas
model inappropriate for describing Dirac plasmons. Finally,
we demonstrated that, to extract accurate lifetime from the
computed spectra, care must be taken to extrapolate the results
to the limit of η → 0, where η is the technical broadening
parameter used in dynamical response function calculations.
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APPENDIX A: COMPARISON OF GRAPHENE/hBN
HETEROSTRUCTURES WITH DIFFERENT STACKINGS

In the main text, for simplicity, we only presented the
computational results of the graphene/hBN heterostructure
with AA stacking. For completeness, here we also present in
Fig. 7 the results of dispersion relations and lifetimes (FWHM
values of the peaks) for the Dirac plasmons with other types
of stackings. Figure 7 shows that the different stackings have
little impact on both the dispersion and lifetime. We also did
a similar comparison study for π plasmons, and arrived at
essentially the same conclusion.

FIG. 7. (a) The dispersion relations of Dirac plasmons in
graphene/hBN systems with three different (AA, AB, BA) stackings.
(b) the corresponding FWHM values of Dirac plasmons with the three
different stackings. Results are obtained with η = 0.004 Ry (hence
the nonvanishing FWHM below qc).

APPENDIX B: QUASI-2D DIELECTRIC FUNCTION
OF GRAPHENE AND hBN

Following Ref. [22], we compute the inverse macroscopic
dielectric function as follows:

ε−1
Q2D(q̄,ω) = 2π

q̄

∫ ∞

−∞
χḠ=0,Ḡ′=0′ (q̄,ω,z,z′)dz dz′

= 2πLz

q̄
χG=0,G′=0′ (q̄,ω), (B1)

where the same notational convention has been adopted as in
Sec. II, i.e., q̄,Ḡ denote the in-plane wave vector and reciprocal
lattice vectors, and Lz is the length of the supercell along the
z direction. Comparing to Eq. (7), one can seen that Eq. (B1)
can be obtained as the Lzq̄ 	 1 limit of Eq. (7). It is argued in
Ref. [22] that the Q2D dielectric function as computed from
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FIG. 8. Real part (a) and imaginary part (b) of the macroscopic 2D dielectric function εQ2D(q̄,ω) [as defined in Eq. (B1)], as well as the
negative imaginary part of the inverse dielectric function ε−1

Q2D(q̄,ω) of graphene (left panels) and hBN (right panels) as a function of ω for
different momentum transfer q̄ along the -M direction. Graphene is doped (by shifting εF upwards to 0.05 Ry), while hBN is not.

Eq. (B1) is the appropriate quantity to discern the nature of the
excitation peaks measured by EELS.

In Fig. 8 the real and imaginary parts of the Q2D dielectric
function εQ2D(q̄,ω), as well as the imaginary part of ε−1

Q2D(q̄,ω),
are presented for both graphene and hBN. Our calculated
results are very similar to those by Nazarov (Fig. 2 in Ref. [22])
except for very low energies where Dirac plasmon peaks are
present in our case, since doped graphene is used in the present
calculations. Similar to Ref. [22], the Re[εQ2D(q̄,ω)] crosses

zero for q = q̄ > 0.092 Å
−1

in the π regime, and π peaks in

Im[ε−1
Q2D(q̄,ω)] for q > 0.092 Å

−1
should be unambiguously

be identified as plasmons. Should the peaks for q < 0.092 Å
−1

be classified as individual transitions although they keep full
similarity to the peaks at larger q’s? In Ref. [22], Nazarov
argued that these peaks should also be considered as plasmons
since they originate from Re[εQ2D] approaching zero, and not

due to the peaks in Im[εQ2D]. We agree with the analysis
and conclusion in Ref. [22], and provide further evidence
by examining the pole structures of χ and χ0. In Fig. 9,
we compare the dispersion relations of the peaks in both
Im[χG=0,G′=0] and Im[χ0

G=0,G′=0]. Peak positions in Im[χ0],
derived directly from the band structure, reflects single-particle
interband transitions, whereas those in Im[χ ], affected by the
long-range Coulomb interactions between different particle-
hole pairs, could reflect the collective behavior, if isolated
poles exist. From Fig. 9, one can clearly see that, on the
one hand, the collective excitation energy approaches the
single-particle transition energy as q → 0; on the other hand,
as q increase, the dispersion relations of collective excitation
and individual transition energies are radically different. While
peak energies in Im χ0 show a very slow increase as q increases
(almost dispersionless for small q’s), those in Im χ display a√

E2
g + βq behavior, as discovered in this work. This behavior
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FIG. 9. Dispersion behavior of the peak positions as a function
of q̄, extracted from π peaks in Im[χ0,0(q̄,ω)] and Im[χ 0

0,0(q̄,ω)], for
both graphene (upper panel) and hBN (lower panel).

is a direct consequence of the long-range Coulomb interaction
in 2D: the 2π/q behavior in the reciprocal space.

Establishing that the most pronounced π peaks and π + σ

peaks represent plasmon excitations, we would also like
to point out that individual transitions do exist in these
energy ranges, forming a broad background for the plasmon
peaks. For example, the plateau from 1 to 4 eV below the
π plasmons, and the shoulder peaks from 11 to 14 eV
below the π + σ plasmons, should be considered as individual
interband transitions. The individual transitions are coupled to
the plasmon excitations, yielding a finite lifetime for the latter.
From Figs. 8 and 9, one can see that the behavior π peaks in
hBN shows a lot of similarity to graphene. The above analysis
of graphene can also carry over to hBN and graphene/hBN
(results not shown). We predict that π plasmons also exist in
hBN, albeit at higher energies.

APPENDIX C: THE DISPERSION OF THE π PLASMONS
IN GRAPHENE

We start with a tight-binding model description of graphene,

H = t
∑
〈i,j〉

ĉ∗
i ĉj , (C1)

where t is the hopping integral between neighboring sites on a
honeycomb lattice. The resultant dispersion of the π (valence)
and π∗ (conduction) bands reads

εc,v(kx,ky) = ±t

[
1 + 4cos

(
3aky

2

)
cos

(√
3akx

2

)

+ 4cos2

(√
3akx

2

)]1/2

, (C2)

with a being the distance between neighboring C atoms,
and k = (kx,ky) are the two-dimensional wave vectors in
the BZ. The real part of the dielectric function of graphene
given by such a tight-binding model, within the random-phase
approximation, can be obtained as

Re{ε(q,ω)} = 1 − 2π

q

∑
k

|〈v,k|e−iq·r|c,k + q〉|22(εc,k+q − εv,k)

ω2 − (εc,k+q − εv,k)2
, (C3)

where εv,k and εc,k are the valence and conduction band energies as given by Eq. (C2), and |v,k〉 and |c,k〉 are the corresponding
eigenvectors. We note that that (kx = 0,ky = 2π/3a) corresponds to one M point in the BZ. The excitation energy gap in the
vicinity of this M point can be obtained by a Taylor expansion,

Eg(k′,q) ≈ t
[
1 + 9

2a2(k′
y + qy)2 − 3

2a2(k′
x + qx)2]1/2 + t

[
1 + 9

2a2k′
y

2 − 3
2a2k′

x

2]1/2

≈ Eg,M + 9
4 ta2

(
2k′

y

2 + 2k′
yqy + q2

y

) − 3
4 ta2

(
2k′

x

2 + 2k′
xqx + q2

x

)
= Eg,M + �Eg(k′,q), (C4)

where k′ = (k′
x,k

′
y) = (kx,ky − 2π/3a) is the coordinate of a k point with reference to the M point, and Eg,M is the direct band

gap at the M point. From Eq. (C4) one may realize that the M point is a saddle point in the band dispersion of graphene, and
Eg,M represents a van Hove singularity in the single-particle density of states (DOS) of graphene.

For q → 0, the oscillator strength in the numerator of Eq. (C3) becomes

limq→0〈v,k|e−iq·r|c,k + q〉 = −iq
h̄2

me

〈v,k|∇r|c,k〉
εc(k) − εv(k)

= −iq
h̄2

me

p(k)

εc(k) − εv(k)
. (C5)

where p(k) = 〈v,k|∇r|c,k〉, and me is the mass of the electron. Furthermore, we are interested in the π plasmons which originate
from the collective π → π∗ interband excitations around the M point. Therefore the k integration in Eq. (C3) can be restricted
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to the vicinity of M (i.e., by setting |k′| � kcut), and consequently the dielectric function at q → 0 is simplified to

Re{ε(q,ω)} = 1 − 2π

q
q2 h̄4

m2
e

∑
|k′|�kcut

p2(k′)2Eg(k′,q)

[ω2 − [Eg,M + �Eg(k′,q)]2][εc(k′) − εv(k′)]2

≈ 1 − q

ω2 − E2
g,M

2πh̄4

m2
e

∑
|k′|�kcut

p2(k′)2Eg(k′,q)[
1 − 2Eg,M�Eg(k′,q)

ω2−E2
g,M

]
E2

g(k′,0)

= 1 − qβ(q,ω)

ω2 − E2
g,M

. (C6)

The precise form of the parameter β introduced in Eq. (C6) in
principle depends on q and ω, but the dependence is of higher
order. To the zeroth-order approximation, β can be taken to be
a constant, which is valid for small q’s. Also, since a proper
value for the cutting wave vector kcut is not known a priori,
we cannot determine β reliably within this model. Therefore,
in this work β is treated as a fitting parameter.

The plasmon dispersion relation can be determined
by searching for the zeros of the dielectric function
Re{ε(q,ω)} = 0. Hence we end up with

1 − βq

ω2 − E2
g,M

= 0 (C7)

or

ω(q) =
√

E2
g,M + βq. (C8)

APPENDIX D: PROCEDURE TO DETERMINE FWHM

In this section, we describe in further details how the
plasmons lifetimes (or more precisely the FWHM vlaues)
are determined in our work. First, the loss spectra were
calculated for several different η parameters. For a given η,
the loss spectra calculations are converged with other technical
parameters such as the number of k-point samplings in BZ,
and the number of frequency grid points. The position and
height (h) of the spectral peak center are then determined,

FIG. 10. The FWHM values of the conventional Dirac plasmon
peaks as a function of q along the -M direction for different η values
from 0.002 to 0.01 Ry.

together with the positions of half height (h/2) on the left-
and right-hand sides of the peak center, denoted as ωl and
ωr respectively. The FWHM for a given η and q is then
given by ωr − ωl . The final FWHM value is then obtained
by extrapolating the FWHM values for finite η’s to η = 0.

Figure 10 shows the FWHM values of the conventional
Dirac plasmon peaks in graphene for different η values. One
can clearly see that the FWHM value depends appreciably on
the parameter η. For η = 0.01 Ry, a typical default choice for
first-principle TDDFT-RPA calculations, the FWHM value is
overestimated by more than 0.25 eV for small q’s. As η is
reduced, the FWHM value decreases steadily to zero. From
Fig. 10 one can also see their is a critical momentum value qc,
below which the FWHM value approaches all the way to zero
as η goes to zero.

Figure 11 illustrates how the FWHM value is extrapolated

to η = 0 limit. Below the critical q value qc = 0.107 Å
−1

,
the actual FWHM value is linearly proportional to η (actually
roughly 2η). Thus the FWHM naturally goes to zero at the
η = 0 limit. For q > qc, the η dependence of FWHM follows
nicely a quadratic behavior, saturating at a finite value at η = 0.
The thus obtained η = 0 limits of FWHM for Dirac plasmons
were presented in Fig. 6. Also presented are the FWHM results
for π plasmons, obtained using a similar procedure. However,
for π plasmons the FWHM is finite for all q values.

FIG. 11. The extrapolation of the FWHM value of the Dirac

plasmons in graphene to the limit of η = 0. For q < qc0.107 Å
−1

(∼0.8 kF ), the FWHM is linearly proportional to η; for q > qc, the
FWHM goes to a finite value quadratically as η → 0.
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