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Anisotropic tunneling resistance in a phosphorene-based magnetic barrier
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We investigate the ballistic tunneling transport properties of a monolayer of black phosphorus under a magnetic
barrier. The conductance of the system depends strongly on the orientation of the magnetic barrier, which is
suppressed maximally when the magnetic barrier is oriented along the armchair direction. The mechanism relies
on the highly anisotropic energy dispersion of phosphorene and the magnetic-barrier-induced suppression of
available phase space for transmission. The magnetoresistance is enhanced by the reduction of the band gap
under the same effective mass components.
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I. INTRODUCTION

The successful fabrication of graphene monolayer [1] has
ignited a wave of research interest on two-dimensional (2D)
materials. These materials consist of a single layer of one
or several atoms and have various potential applications in
nanoelectronics and nanophotonics. Phosphorene, a single
layer of black phosphorus (BP), is a promising 2D material
with a finite bulk band gap [2–4]. A BP film can be viewed
as layers of phosphorus atoms stacked together by weak
van der Waals forces. As the thickness of the BP film
decreases from the bulk limit to a monolayer, the direct band
gap is increasing continuously from 0.33 to 1.5–2 eV. The
honeycomb network in phosphorene is strongly puckered due
to the sp3 hybridization. Accordingly, near the band edges
the effective mass along the armchair direction differs greatly
from that along the zigzag direction [5–8].

The presence of a considerable band gap and highly
anisotropic band dispersion renders phosphorene distinctive
from other 2D materials [9] such as monolayered graphene,
BN, transition-metal dichalcogenides, silicene, and ger-
manane. It has been reported experimentally that field-effect
transistors based on phosphorene can possess an on/off ratio
of 105 and a carrier mobility 103 cm2/V s at room temperature
[2,3]. The band gap of phosphorene and few-layer BP films can
be tuned drastically by electric fields [10–14] due to the adsorp-
tion of potassium atoms or the application of gate voltages. The
giant Stark effect can drive the material into a Dirac semimetal
[13] with a linear dispersion in the armchair direction but
quadratic dispersion in the zigzag direction. The unusual
band anisotropy has been confirmed from the optical and
transport measurements [2,15]. It has been utilized to design
unconventional thermoelectric devices [16] and anomalous
magneto-optical response [17]. For BP 2D electron systems
under a uniform magnetic field, integer quantum Hall effect has
been observed [18] and various magnetic quantization effects
have been studied [19–23]. For a phosphorene nanoring under
uniform magnetic fields, giant magnetoresistance (MR) has
been predicted as a result of destructive interference phase
caused by the Aharonov-Bohm effect [24]. The effect of
inhomogeneous magnetic fields on the transport properties
of phosphorene has not yet been explored so far.

In this work we investigate MR in a phosphorene-based
magnetic barrier structure. The required inhomogeneous

magnetic field has a finite spatial average. It can be gener-
ated by depositing ferromagnetic metals or superconducting
materials above the phosphorene layer, the same as in semicon-
ductor heterostructures [25–29]. This kind of magnetic barrier
has been proposed to confine Dirac-Weyl quasiparticles [30] in
graphene and to build a graphene-based valley filter [31]. For
conduction electrons in 2D and 3D semiconductor heterostruc-
tures [32–34], the tunneling transparency and transport effects
caused by such a magnetic barrier have been investigated in
detail. For the considered system, one effect of the magnetic
barrier is that the two isoenergy surfaces respectively in the
ingoing and outgoing regions have a relative shift in the
momentum space [30–34]. Due to the high anisotropy of
the isoenergy surface in phosphorene, the number of allowed
transmission channels depends strongly on the orientation of
the magnetic barrier, leading to an anisotropic MR.

II. MODEL AND FORMULA

The system under consideration is a phosphorene 2D
electron system in the (x,y) plane under the modulation of
a local perpendicular magnetic field B(r), as depicted in the
inset of Fig. 1(a). The x axis is along the armchair direction.
The magnetic field varies along the ξ direction and is uniform
along the perpendicular η direction, Bz(r) = Bz(ξ ). Here the
+ξ axis is the transport direction and has an orientation angle α

(0 � α � π/2 ) relative to the x axis. It should be emphasized
here that in our model the transport direction is always
perpendicular to the orientation of the magnetic barrier. The
Landau gauge is taken for the corresponding vector potential,
A(r) = Aη(ξ )eη with Aη(ξ ) = ∫ ξ

−∞ Bz(ξ )dξ and Aη(−∞) =
0. The momentum operators p̂x = −ih̄∂x and p̂y = −ih̄∂y are
linear combinations of p̂ξ = −ih̄∂ξ and p̂η = −ih̄∂η. One has
p̂x = p̂ξ cos α − p̂η sin α and p̂y = p̂η cos α + p̂ξ sin α.

The motion of an electron in the system can be described
by a two-band effective-mass model [6]

Ĥ =
⎛
⎝ �̂2

x

2mxc
+ �̂2

y

2myc
γ �̂x/h̄

γ �̂x/h̄ −Eg − �̂2
x

2mxv
− �̂2

y

2myv

⎞
⎠, (1)

where the bottom of the conduction band is set as the energy
zero, �̂x,y = p̂x,y + eAx,y , and Eg is the band gap. Without
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FIG. 1. Transmission as a function of the transverse wave vector
q for electrons traversing the magnetic barrier with height B =
0,1,2,3,4 T. The transport is along the y (zigzag) direction in (a) and
the x (armchair) direction in (b). The incident angle θ is plotted in (c)
as a function of q for the armchair (solid line) and zigzag (dotted line)
transport direction. Other parameters are Eg = 1.52 eV, E = 0.1 eV,
and L = 200 nm. The inset of (a) depicts the considered phosphorene
electron system under a rectangular magnetic barrier (the shadowed
region). The profile of the local magnetic field Bz and its vector
potential component Aη are shown in the inset of (b).

specification, Eg is taken as [6] 1.52 eV (the measured optical
gap [3] is 1.45 eV). The parameters in the Hamiltonian
are [6,19] the interband coupling γ = −0.523 05 eV nm
and the effective mass (mxc,mxv,myc,myv) = (0.793,0.848,

1.363,1.142)m0, where m0 is the mass of a free electron in
vacuum. Under the periodic boundary condition along the Oη

axis, the transverse momentum p̂η is conserved and takes the
values h̄q with q = 2πn/W (n ∈ Z), where W is the size of
the sample along the η direction. The velocity operator along

the ξ and η directions, v̂ξ = ∂Ĥ
∂p̂ξ

and v̂η = ∂Ĥ
∂p̂η

, read

v̂ξ =
⎛
⎝ �̂x cos α
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+ �̂y sin α

myc

γ

h̄
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γ

h̄
cos α − �̂x cos α

mxv
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myv

⎞
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v̂η =
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myc
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− γ
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sin α �̂x sin α

mxv
− �̂y cos α

myv

⎞
⎠. (2)

For the electron with a given incident energy E and
transverse wave vector q, the eigenwave function of Eq. (1)
admits the form 
(r) = exp(iqη)ψ(ξ ). The longitudinal wave
function ψ(ξ ) satisfies a one-dimensional Schrödinger equa-
tion Ĥqψ(ξ ) = Eψ(ξ ), where Ĥq is obtained from Eq. (1) with
the replacement p̂η → h̄q. In the ingoing/outgoing region the
vector potential is constant and the dispersion relation of the
electron is determined from(

E − �2
x

2mxc

− �2
y

2myc

)(
E′ + �2

x

2mxv

+ �2
y

2myv

)
=

(
γ�x

h̄

)2

,

(3)

where �x = p±∞ cos α − [q + eAη(±∞)] sin α, �y = p±∞
sin α + [q + eAη(±∞)] cos α, and E′ = E + Eg . In the case
that Eq. (3) has a real solution p±∞ in both the ingoing and
outgoing regions, the electron has a finite probability T (E,q)
to transport through the magnetic barrier. In this situation there
exists only one incident mode 
in(r) = exp(iqη + ip−∞ξ )�,
where � is position independent; p−∞ is chosen to satisfy that

in has a positive group velocity along the transport direction,
i.e., vξ = 
+

inv̂ξ
in > 0. The incident angle θ relative to
the transport direction is defined as θ = arctan vη/vξ with
vη = 
+

inv̂η
in. The transmission probability T (E,q) can be
calculated numerically from Ĥqψ(ξ ) = Eψ(ξ ) by means of
the scattering matrix method [35,36], where the continuity of
the wave function ψ and v̂ξψ is used.

The ballistic conductance at zero temperature is given by
the Landauer-Buttiker formula

G = 2e2

2πh̄

∑
q

T (E,q) = G0

∫ qmax

−qmax

dq T (E,q), (4)

where G0 = 2e2

2πh̄

W [nm]
2π

is taken as the unit of the conductance
when the wave vector q is in units of nm−1, and qmax =√

2 max(mcx,mcy)E/h̄ is an upper bound of q.

III. RESULTS AND DISCUSSIONS

We apply the theory formulated above to a square-well
magnetic barrier [30,31] with height B and length L, i.e.,
Bz(r) = B(ξ )(L − ξ ) in the ξOη coordinate system. Here
(x) is the Heaviside step function. The profile of the magnetic
barrier and its vector potential component Aη are shown
in the inset of Fig. 1(b). Note that the vector potential in
the outgoing region differs from that in the ingoing region.
This fact is required to demonstrate the operating principle
of the proposed device which actually does not rely on the
details of the barrier profile. For other shapes of the magnetic
barrier, the wave-vector-filtering effect may lead to additional
transmission features [29].
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FIG. 2. Contour of constant energy in the ingoing (left panels)
and outgoing (right panels) regions. In (a) and (b) the transport
is along the y (zigzag) direction, while in (c) and (d) it is
along the x (armchair) direction. The dot-dashed lines are for the
anisotropic Dirac semimetal (Eg = 0). The horizontal line represents
the conserved transverse momentum h̄q.

For a typical Fermi energy E = 0.1 eV and length L = 200
nm, the transmission is plotted in Fig. 1 as a function of
the transverse wave vector q for the considered system under
different barrier heights B = 0,1,2,3,4 T. A common feature
of all transmission curves is that the transmission is almost
perfect in an interval of the wave vector q and vanishes
outside that interval. As a result, the conductance in Eq. (4)
is nearly proportional to the size of this transmission window.
The transmission window of allowed transverse momentum
shrinks as the height of the magnetic barrier increases. The
shrinkage of the transmission window depends strongly on
the orientation of the magnetic barrier. As the barrier height
increases from 0 to 4 T, the size of the transmission window
decreases drastically when the transport is along the zigzag
direction [Fig. 1(a)]. It varies from 1.4 to 0.2 nm−1. In the case
that the transport is along the armchair direction [Fig. 1(b)],
the magnetic barrier leads only to a moderate shrinkage of
the transmission window. To compare with the transmission
spectrum in Ref. [30] for Dirac particles in graphene under
a rectangular magnetic barrier, in Appendix A we also plot
the transmission as a function of the incident angle θ . A
remarkable feature of the considered phosphorene system is
that for the zigzag transport direction two different transverse
wave vectors can correspond to the same incident angle, as
shown in Fig. 1(c).

The transmission contrast between the armchair and zigzag
transport directions can be understood from the relative
position of the isoenergy surface in the ingoing and outgoing
regions, which is shown in Fig. 2. The isoenergy surface is

determined from Eq. (3). In the ingoing region (with Aη ≡ 0),
it is an oval centered at the � point and has a highest point
and a lowest point with transverse momentum ±pL. From
Figs. 2(a) and 2(c), one can see that the value of pL depends
strongly on the transport direction due to the high anisotropy
of the band dispersion. In the outgoing region with a finite
Aη ≡ BL, the center of the isoenergy surface is shifted along
the pη axis with an amount eBL. The conservation of the
transverse momentum determines the sector of allowed wave
vector q for which propagating modes exist in both regions.
One thus can estimate the size of the transmission window
as max(0,2pL − eBL). The magnetic barrier can close the
transmission window more easily for a smaller pL, as shown
in Figs. 2(b) and 2(d).

It should be pointed out that for spinful electrons in cubic
semiconductors, the character of barrier tunneling depends
also on the barrier orientation [37–40]. In this case the
Dresselhaus spin-orbit interaction depends sensitively on
the crystallographic direction of the barrier. Accordingly, the
barrier transparency depends on the barrier orientation relative
to the crystallographic axes and the direction of the mean spin
of tunneling electrons. For semiconductor heterostructures
with double quantum wells separated by a tunneling barrier
[41,42], the effect of in-plane magnetic fields on the energy
spectrum and spin-related transport has also been widely
studied theoretically and experimentally.

The transmission features demonstrated above can be
reflected directly from the measurable conductance spectrum,
which is shown in Fig. 3. It is evident that the onset of the
conductance as a function of the Fermi energy depends on both
the height and the orientation of the magnetic barrier. One can
estimate the transition energy as follows. For a large band gap
Eg = 1.52 eV, the interband coupling in Eq. (1) can be treated
perturbatively and a decoupled Hamiltonian is obtained [19]:

Ĥ ≈
⎛
⎝ �̂2

x

2m′
xc

+ �̂2
y

2myc
0

0 −Eg − �̂2
x

2m′
xv

− �̂2
y

2myv

⎞
⎠, (5)

where m′
xc = 0.167m0 and m′

xv = 0.184m0 are calculated
from 1/m′

xc/v = 1/mxc/v + 2(γ /h̄)2/Eg . From the decoupled

Hamiltonian, one finds that pL = √
2mycE = √

1.696m0E

for the transport x (armchair) direction and pL = √
2m′

xcE =√
0.334m0E for the transport y (zigzag) direction. The

transition energy E0 satisfies pL(E0) = eBL/2. Under
the same barrier height B, the zero conductance region
in the conductance spectrum for the zigzag transport
direction is much broader than that for the armchair transport
direction. Although the numerical results are presented only
for the Fermi energy near the conduction band (E > 0),
similar analysis can be made for the Fermi energy near the
valence band (E < −Eg). For E < −Eg there exists a more
remarkable contrast between the conductance for the armchair
transport direction and that for the zigzag transport direction.

For other orientation angles of the transport direction,
the transition energy E0 in the conductance spectrum is in
between the value for the armchair direction and the value
for the zigzag direction. In Fig. 4, the conductance is plotted
as a function of the orientation angle α under the Fermi
energy E = 0.1 eV and several barrier heights. It can be seen
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FIG. 3. Conductance as a function of the Fermi energy for the
phosphorene-based magnetic barrier under different barrier heights
B = 0,1,2,3,4 T. (a) The transport is along the zigzag direction.
(b) The transport is along the armchair direction. L = 200 nm.

that for all curves the conductance decreases monotonously
from the orientation angle α = 0 to α = 90◦. To examine
the conductance anisotropy, it is sufficient to calculate the
conductance under the orientation angles α = 0 and α = 90◦.

From the transmission features one can estimate the
conductance for E > E0 as

G ≈ G0(2pL − eBL). (6)
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FIG. 4. Conductance as a function of the orientation angle α of the
transport direction under different barrier heights B = 0,1,2,3,4 T.
The Fermi energy is fixed at E = 0.1 eV.
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1.2,1.52 eV. The transport is along the zigzag direction. The inset
shows the results for the transport along the armchair direction. The
Fermi energy is fixed at E = 0.1 eV.

The estimated conductance decreases linearly with the barrier
height B, which agrees well with the accurate calculations (not
shown here). The conductance is suppressed completely for
B > Bc ≈ 2pL/(eL). The critical magnetic field Bc � 4.5 T
is moderate for the transport along the zigzag direction and
Fermi energy E � 0.1 eV. A large barrier height B (>5 T)
is needed to pinch off the transport along the armchair
direction even for a small Fermi energy E = 0.05 eV. One can
reduce the critical magnetic field Bc by increasing the width L

of the magnetic barrier. For a Fermi energy E, the MR due to
the magnetic barrier with height B is defined as RM (E,B) =
[G(E,0) − G(E,B)]/G(E,0). For B higher than the critical
magnetic field Bc, the ballistic conductance G(E,B) can result
only from the edge channels. In a wide phosphorene sample,
the number of edge channels is a negligibly small part of the
whole transmission channels. In this case G(E,B) 
 G(E,0)
and a giant MR is expected.

Finally, we discuss the effect of band gap on the MR.
A theoretical calculation indicates [10] that a perpendicular
electric field F can enlarge the band gap of phosphorene. The
effective mass components change slightly under F < 1 V/Å.
The tunability of band gap in few-layered BP films has
been demonstrated [11] where the conduction and valence
band almost unchange their structures. It is thus feasible to
keep other material parameters in Eq. (1) unchanged when
we examine the effect of band gap. Figure 5 shows the
conductance as a function of barrier height under several values
of band gap Eg . The Fermi energy is fixed at E = 0.1 eV
above the bottom of the conduction band. For small band gaps,
the conductance also varies linearly with the barrier height B

according to Eq. (6). However, for a small Eg the critical
magnetic field Bc cannot be calculated from the decoupled
Hamiltonian, Eq. (5). For the transport along the zigzag
direction, the critical magnetic field Bc decreases remarkably
with the decreasing of band gap. As the material is tuned
from a moderate-gap semiconductor (Eg = 1.52 eV) to a Dirac
semimetal (Eg = 0), Bc shifts from 4.5 to 1.3 T. This indicates
that under the same anisotropic effective-mass parameters and
the same magnetic barrier, the Dirac semimetal has a more

165416-4



ANISOTROPIC TUNNELING RESISTANCE IN A . . . PHYSICAL REVIEW B 96, 165416 (2017)

pronounced MR than a semiconductor. The reason can be also
found from the isoenergy surfaces for both materials shown in
Fig. 2. From the inset of Fig. 5, one can see that for the transport
along the armchair direction the MR has almost no dependence
on the band gap. The MR anisotropy is more remarkable for
the Dirac semimetal when the effective mass components are
unchanged. For few-layered BP film with Fermi energy in
between the bottoms of the first and the second conduction
subbands, a similar calculation shown in Appendix B results
in the same conclusion.

IV. CONCLUSIONS

In summary, we have investigated the ballistic transport
properties of a phosphorene two-dimensional electron gas
under a magnetic barrier. The average magnetic field of the
magnetic barrier is finite. Such a magnetic barrier causes a
relative shift in the momentum space between the isoenergy
surfaces in the ingoing and outgoing regions. This fact together
with the highly anisotropic energy dispersion of phosphorene
leads to transport-direction-dependent suppression of available
phase space for transmission. The conductance of the system
depends strongly on the orientation of the magnetic barrier,
which is suppressed maximally when the magnetic barrier is in
parallel with the armchair direction. Giant magnetoresistance
appears when all of bulk transmission channels are fully
blocked by the magnetic barrier. Under the same effective mass
components, the magnetoresistance anisotropy is enhanced by
the reduction of the band gap.
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APPENDIX A: INCIDENT-ANGLE DEPENDENCE
OF THE TRANSMISSION

In Fig. 6 we replot the transmission shown in Fig. 1
as a function of the incident angle θ . For the armchair
(zigzag) transport direction, the transmission decreases grad-
ually (abruptly) as the incident angle tends to −90◦, while
the transmission window of allowed incident angle shrinks
moderately (greatly) as the height of the magnetic barrier
increases from 0 to 4 T. For the zigzag transport direction,
an incident angle may correspond to two different transverse
wave vectors q1 and q2. However, the transmission under one
of q1 and q2 is forbidden and is not shown in Fig. 6(a).

APPENDIX B: FEW-LAYERED BLACK PHOSPHORUS
FILMS UNDER A MAGNETIC BARRIER

For few-layered BP films under a rectangular magnetic
barrier, we can calculate the transmission and conductance
by means of the same procedure. We take a hard wall
boundary condition in the normal direction (the z axis). The
Hamiltonian for the first subband of an N -layered BP film
[7,17] has the same form as Eq. (1), but with the parame-
ters (mxc,mxv,myc,myv) = (0.151,0.122,1.062,0.708)m0 and
γ = h̄vf with vf = 3.5 × 105 m/s. We consider the BP
film with N = 4, which has a zero-field band gap Eg =
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Fig. 1.
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0.73 + E∞
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0.3 eV. The band gap Eg can be reduced by a normally applied
electric field [11,14]. In Fig. 7, the conductance is plotted as a
function of barrier height under several values of band gap Eg .
The bottom of the lowest conduction subband is set as energy
zero. The Fermi energy is fixed at E = 0.1 eV, which is well
below the bottom of the second conduction subband (located at
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0.966 eV). In comparison with the results for the monolayered
phosphorene (Fig. 5), here the pinch-off magnetic field Bc for

the zigzag transport direction decreases more slowly with the
reduction of the band gap.
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