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In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically
the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled
to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological
case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted
by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can
host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not
lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency
admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at
π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in
the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges
protected against disorder. Nontopological superconducting contacts can induce topological superconductivity
in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and
finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected
Andreev level crossing at π and zero energy.
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I. INTRODUCTION

A number of intriguing phenomena have been predicted
recently in which quantum wires made from materials with
strong spin-orbit interaction (SOI) are used as weak links
coupling two superconductors : spin-dependent supercurrents
[1–3], supercurrents through edge states when the wire is made
of a topological insulator [4–6], supercurrents at zero phase
difference (φ0 junctions) [7–12], and topologically protected
zero-energy states [6,13]. Different materials have been used
to experimentally explore some of these ideas: semiconduct-
ing nanowires (InAs or InSb) demonstrating φ0 junctions
[14] and probing Majorana physics [15–19], HgTe/HgCdTe
or InAs/GaSb quantum-well heterostructures [20,21], BiSe
flakes [22], and Bi nanowires [23,24], revealing ballistic
supercurrent through helical edge states. The aim of this paper
is to extract, from numerical simulations on two different types
of lattices, observable signatures of spin-orbit interactions
(SOI) which strongly modify the Andreev spectrum of these
Josephson junctions.

We consider both the effects of the intrinsic atomic spin-
orbit interactions that are specific to heavy atoms and are at
the origin of the emergence of the spin-Hall insulator state
for the hexagonal two-dimensional (2D) lattice [4,25], and the
Rashba [26] SOI at 2D interfaces of semiconductors where
inversion symmetry is broken.

By coupling the kinetic momentum to the electronic spin,
Rashba SOI are known to break the spin degeneracy of elec-
tronic states in a quantum dot in the absence of any magnetic
field. When the quantum wire is coupled to superconducting
reservoirs, proximity-induced superconductivity leads to the
formation of Andreev pairs which are the combination of
time-reversed electron and hole states. In the absence of a
phase difference between the superconducting (S) reservoirs,
time-reversal symmetry and Kramers degeneracy impose that
Andreev states built from time-reversed electron-hole states
are degenerate in the presence of SOI. This is, however,

no longer the case when the two superconducting reservoirs
impose a finite phase difference φ on the boundary conditions
of Andreev states. When this phase factor is different from
a multiple of π , Andreev wave functions acquire imaginary
components and Andreev levels lose their twofold degeneracy.
The phase-dependent Andreev levels are therefore split in the
presence of SOI. In Sec. II, we first discuss the conditions
to induce spin-split Andreev states in the absence of any
Zeeman field in a nontopological wire. This is illustrated by
numerical results obtained by diagonalizing the Bogoliubov–
de Gennes Hamiltonian of a quantum wire with a square lattice
and Rashba spin-orbit interaction between superconducting
electrodes. The effects of the geometry of the junction (length,
number of channels, disorder, position of Fermi energy) are
discussed. We then consider the Andreev spectrum of the
2D hexagonal lattice with next-nearest-neighbor spin-orbit
couplings (equivalent to the implementation of atomic spin-
orbit coupling at low energy) leading to a 2D topological
insulator and a quantum spin-Hall state (Kane and Mele model
[4]). As expected, we confirm, for wide enough samples,
the presence of 1D ballistic Andreev edge states crossing
each other at zero energy and robust against disorder. This
zero-energy level crossing of Andreev levels is the signature
of the topological character of induced superconductivity in
this system. In Sec. III, we explore the consequences of
these SOI-modified Andreev spectra on the Josephson current.
For nontopological junctions, the Josephson current is only
quantitatively modified. It is decreased in the absence of
disorder, but is substantially increased in the diffusive regime.
On the other hand, the phase dependence of the Josephson
current is strongly modified by SOI in the case of the hexagonal
lattice in the topological quantum spin-Hall regime with the
emergence of a sharp discontinuity at π . This sawtooth shape
is characteristic of 1D ballistic transport. The resilience to
disorder and imperfect transmission at the NS interface of this
sharp current phase relation in the wire reveals the topological
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protection. In Sec. IV, we show how the main features of
the Andreev spectra discussed in Sec. II are best revealed
by the phase dependence of the high-frequency admittance
Y = iωχ . We focus on the contribution that is proportional
to the sum of i2

n , the square of the single-level currents, in an
energy window whose width is determined by temperature.
This quantity is very sensitive to level anticrossings (i2

n = 0)
or crossings (i2

n stays finite) in the Andreev spectrum. A very
small Zeeman field breaks level degeneracy at 0 and π , yielding
discontinuities in these single-level currents and consequently
sharp dips in the dissipative response χ ′′.

The topological case is characterized by protected level
crossings at zero energy and can be clearly identified in
experiments measuring this dissipative response at very low
temperature. χ ′′ is expected to exhibit a sharp peak at π , which
increases at low temperature. This peak does not exist in the
nontopological case, where instead dissipation is exponentially
damped at low temperature and goes to zero at π . This result
demonstrates the power of high-frequency experiments to
probe the protection from disorder of Andreev edge states
in a topological insulator.

II. ANDREEV SPECTRUM WITH SPIN-ORBIT
INTERACTION

A. Square lattice with Rashba spin-orbit interaction

We first consider the case of a wire described by a
tight-binding model on a 2D square lattice. We implement
the Bogoliubov–de Gennes Hamiltonian described by the four
blocks matrix,

H =
(

H − EF �

�† EF − H ∗

)
. (1)

The BCS matrix � couples electron and hole states of
opposite spin, exclusively in the S part, and imposes the phase
difference φ between the two superconducting reservoirs,

� = �is,i ′s ′ = exp(iφ/2)

(
0 −1
1 0

)
. (2)

H and −H ∗ are N × N matrices that describe, respectively,
the electron- and holelike spin-dependent wave functions of
the hybrid NS wire with Rashba spin-orbit interaction [26],

H =
∑
s,s ′

N∑
i=1

εi(|i,s〉〈i,s| + |i,s ′〉〈i,s ′|)

+
∑
i �=j

tij |i,s〉〈j,s| + iλij ( �ez × �uij )�σ |i,s〉〈j,s ′| + c.c.

(3)

The vector �uij connects the nearest-neighbor sites i and j ,
�ez is the unitary vector perpendicular to the plane of the
sample, and �σ is the vector of Pauli matrices σx,y,z. The
wire has N = NN + NS = Nx × Ny sites on a square lattice
of period a, with a normal part of NN = NN

x × Ny sites in
contact on both sides with superconducting regions of length
NS

x /2, (NS = NS
x × Ny sites). The on-site random energies

εi of zero average and variance W 2
d describe the disorder in

the wire. The hopping and spin-dependent coupling matrix
elements tij = t and λij = λ are restricted to the nearest

neighbors. We have included the possibility to model imperfect
transmission at the NS interface by taking reduced couplings
tNS
ij < t along the NS interfaces. We have chosen the amplitude

of the superconducting gap � = t/4 and the number of
superconducting sites larger than 30, such that the S coherence
length ξs = 2ta/� � NS

x in order to avoid any reduction of
the superconducting correlations in the S region [27] (inverse
proximity effect). We have checked that increasing the number
of S sites does not change the spectrum of Andreev states
below the superconducting gap. The number of transverse
channels and the amplitude of the disorder correspond to the
diffusive regime where the length L = NN

x a of the normal
region is greater than the elastic mean free path le and shorter
than the localization length Nyle. The length le is related to
the amplitude of disorder by le 	 15a(t/Wd )2 in 2D [28].
In the following, we will mostly focus on the long-junction
limit where L 
 ξs . The amplitude of Rashba spin-orbit
interactions is chosen to be larger than the superconducting
gap and of the order of the Fermi energy. What we have
in mind is typically surface states of bismuth where both
Fermi and Rashba band splitting energies are of the order
of 0.1 eV [29]. Beside Rashba spin-orbit interactions, intrinsic
spin-orbit interactions are very strong in Bi. Depending on
their orientation, some surfaces of Bi can also be topological
and lead to quantum spin-Hall edge states [25]. This will be
discussed in the next section.

For a purely 1D wire along the x axis, the Rashba spin-
orbit coupling HR = λpxσy commutes with the 1D kinetic
momentum. The spin components of the eigenstates are
therefore polarized along the y axis. Their spatial components
are Bloch waves whose wave vector is shifted by ±kSO =
2meff λ/h̄2 depending on the spin direction. In a finite-width
wire, transverse channels corresponding to different ky are
coupled through the Rashba Hamiltonian HR⊥ = λpyσx . The
eigenstates whose energy is close to the crossing points
between these different channels display a spatially dependent
spin texture and acquire different velocities along the x axis, as
shown in [30,31] and Fig. 1. This distortion of the normal-state
spectrum by SOI strongly affects the Andreev spectra in the
long-junction limit.

In Fig. 1, we compare the Andreev spectra for a 1D wire
with Ny = 1 and Ny = 2 transverse sites. In the case Ny = 1
[Fig. 1 (left)], the Andreev spectrum remains spin degenerate
in the presence of spin-orbit interaction.

The situation is different for Ny � 2. The broken degener-
acy of Andreev states at phases between 0 and π , observed in
the Andreev spectrum of multichannel wires, results from the
combination of electron and hole wave functions originating
from different transverse channels coupled through Rashba
SOI. When the chemical potential sits close to the bottom
of the upper-energy spin-split subbands, as shown in [3,7] and
Fig. 1, the Andreev states split into two families, corresponding
to reversed spin states which have different velocities v+
and v− along the x axis. As shown in Fig. 1 (right), the
eigenenergies of these states cross at 0 and π , as expected
from time-reversal symmetry. In the long-junction limit, the
phase dependence of Andreev states is determined by the
Fermi velocity, and their spin degeneracy is therefore lifted
for phase values different from 0 and π by an energy δεS

of the order of h̄π (|v+| − |v−|)/L, which can reach 0.5 δε,
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FIG. 1. Lifting of spin degeneracy of phase-dependent Andreev
levels by SOI for ballistic wires (L � le) in the long-junction
limit. Upper panel: Schematic tight-binding band structure of a
two-channel ballistic wire in the presence of Rashba spin-orbit
interactions. The transverse Rashba coupling opens a gap at the
two band crossings leading to nonparabolic asymmetric dispersion
relations. This distortion is at the origin of different velocities v+

and v− when the Fermi energy lies just below this gap. Lower
panel, left: Ny = 1. Andreev spectrum is not modified by SOI.
Lower panel, right: Ny = 2. The Fermi energy is taken at 1/4
of the tight-binding lower 1D band (εF = −t/2 = −2�), which
corresponds to the bottom of the upper band. Note the breaking of
spin degeneracy. (Parameters are Nx = 50, λ = 3�. The number of
S sites are, respectively, NS = 100 × 1 and NS = 100 × 2).

where δε is the average level spacing. This mixing between
transverse channels in a quantum wire induced by SOI was
already discussed in a different context by Yokohama et al. in
short junctions [10] as the condition to observe an anomalous
Josephson current at φ = 0 in the presence of a Zeeman field
along the y axis (the so-called φ0 junction behavior predicted
by Buzdin and Reynoso [8,9] and only recently observed
[14,24]).

When increasing the number of channels and on-site
disorder Wd , one enters the diffusive regime. We still find
a sizable splitting of Andreev levels of the order of the level
spacing, with crossings at 0 and π at finite energy. Whereas in
the ballistic regime SOI tends to reduce the phase dependence
of the Andreev levels, we observe instead an increase of
this phase dependence in the diffusive regime with a more
pronounced harmonics content of the phase dependence of the
eigenenergies; see Fig. 2. This splitting of Andreev levels is
therefore a robust phenomenon in long SNS junctions with
SOI and shows that the supercurrent in long SNS junctions
is, in general, associated to a spin current of the order of
μB(|v+| − |v−|)/L.

FIG. 2. Effect of SOI on the Andreev spectrum of a diffusive
ribbon: λ = 3� (left), λ = 0 (right). Other parameters are NN

x =
50 × 20 normal sites with on-site disorder Wd/t = 1 corresponding
to L/le 	 2.5, � = t/4, NS = 30 × 20. Note the lifting of spin
degeneracy as well as the larger and sharper phase dependence of
Andreev levels in the presence of spin-orbit interactions.

B. Hexagonal lattice and quantum spin-Hall edge states

We now discuss the Andreev spectrum of graphenelike
ribbons with NN = Nx × Ny sites on an hexagonal lattice
oriented along the armchair direction, in contact with two
superconducting electrodes (NS = NS

x × Ny sites) on a square
lattice (inset of Fig. 3). Following the model of Kane and
Mele [4], the spin-orbit interaction is now implemented on the

FIG. 3. Topological Andreev spectrum of a ribbon built with a
hexagonal lattice with next-nearest-neighbor spin-orbit interactions.
The ribbon is connected to nontopological superconducting elec-
trodes with a square lattice. The Andreev spectrum is shown for
Nx = Ny = 20 with on-site disorder Wd = t , corresponding to the
diffusive regime in the absence of SOI. The amplitude of SOI is
equal to the superconducting gap. Fermi energy is chosen to be
εF = −0.33t and sits in the spin-orbit gap. The spectrum consists
of two chiral Andreev levels corresponding to the two edges of
the sample (short-junction limit). These states exhibit a linear phase
dependence and cross at zero energy at phase π in the limit of very
wide ribbons. Inset: exponential dependence of the residual gap at
φ = π as a function of the sample width W = Nya for two different
values of the superconducting gap � = 1 (circles) and � = 0.5
(diamonds).
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next-nearest neighbors according to

HSO =
∑

s,s ′=+,−

∑
i,j

+iλij σZ|i,s〉〈j,s ′| + c.c., (4)

with λij = −λji = λ couples next-nearest neighbors. At low
energy, this model is equivalent to the implementation of
an “intrinsic” spin-orbit interaction, which couples the real
spin to the pseudospin and is opposite in sign for the two
valleys of the Dirac spectrum. It leads to the opening of a
spin-orbit gap at the Dirac points of the two valleys, and
the formation of two counterpropagating, spin-polarized edge
states characteristic of a 2D topological insulator. This model
was initially proposed for graphene [4] whose intrinsic spin-
orbit interaction is in the μ eV range. It was, however, shown
that stronger spin-orbit interactions can be engineered by the
deposition of a graphene layer on a crystalline transition-metal
dichalcogenide (such as MoS2 or WS2) surface. The heavy
Mo or W atoms induce spin-orbit interactions in the few-meV
range in graphene [32]. The surface states on top of the (111)
face of bismuth, which has hexagonal symmetry, have also
been predicted to exhibit a 2D topological insulator state [25]
with edge states protected from disorder. Signatures of these
edge states were recently observed experimentally [24,33].
Moreover, very recently, bismuthene (a single layer of Bi with
a hexagonal lattice) has been synthesized [34]. The following
results obtained on the Andreev spectrum of a normal ribbon
described by the Kane-Mele model coupled to nontopological
superconducting reservoirs are relevant for all those systems.
We believe it is important to simulate the realistic experimental
situation where the ribbon made of a 2D topological insulator
is connected on both edges to nontopological superconducting
reservoirs, in contrast with the usual assumption [6] where the
S electrodes connect only one edge of the sample. When the
Fermi level lies in the spin-orbit gap, we find that the Andreev
spectrum is identical to the spectrum of a single-channel
ballistic wire with a pair of degenerate states crossing at zero
energy for φ = π . They correspond to the two helical edge
states on the two sides of the wire that are not connected to
superconducting electrodes (see Fig. 3).

In the presence of only intrinsic SOI and if the transmission
along the SN interface is uniform, the two edge states are
degenerate. As expected, this spectrum, shown in Fig. 3, is
insensitive to disorder or reduced transmission at the NS
interface, in contrast with the Andreev spectrum in the absence
of intrinsic SOI. It does not depend on the transverse number of
sites when the sample is much wider than the superconducting
coherence length. The observed residual avoided crossing is
due to the small coupling between the two edge states due
to the finite width of the sample. In the range of parameters
we considered where λ 
 �, this coupling is mostly due to
superconducting correlations. We indeed find that this residual
gap at π, δ(π ) decreases exponentially with the distance
between the edges (i.e., the width of the sample), with a
characteristic length given by the superconducting coherence
length ξS 	 10a for � = 1 and ξS 	 15a for � = 0.5. This
exponential decay of δ(π ) with the width of the sample is a
signature of the topological character of the Andreev spectrum
and has to be contrasted with the 1/W dependence specific
of nontopological spectra for systems in the diffusive regime

FIG. 4. Effect of S contact asymmetry on the topological Andreev
spectrum. Bottom panel: Andreev level spectrum of a hexagonal
lattice ribbon in the quantum spin-Hall phase with asymmetrical
contacts on the edges, showing two distinct sets of Andreev
levels corresponding to the two edges. Top panel: Expanded view
of the spectrum close to zero energy showing unavoided level
crossings between levels of opposite spin and avoided crossings
between levels of the same spin corresponding to opposite edges.
Parameters are Nx = 10,Ny = 60,Wd = t/2 = 2�, λ = 2�, εF =
−λ/2, t

up

SN = 1, t lw
SN = 0.1.

(such as in Fig. 2). We have also investigated the situation
where the transmission at the NS interface is different on the
two edges of the ribbon. This is done by imposing t

up

SN = 1
at both NS interfaces along the upper half of the wire and
t lwSN < 1 along the lower half. This asymmetry of the two edges
gives rise to a lifting of the degeneracy between the Andreev
levels. One clearly observes in Fig. 4 two distinct sets of
spin-split Andreev levels corresponding to the two different
edges. Both sets of Andreev levels exhibit a quasilinear
phase dependence with crossings at zero and π characteristic
of ballistic systems in good contact with superconducting
electrodes. The spectrum corresponding to the well-coupled
edge (in black) is identical to the spectrum shown in Fig. 3
with symmetrical contacts. In contrast, the set of Andreev
levels associated to the weakly coupled edge (in blue) exhibits
a smaller phase dependence corresponding to a ballistic SNS
junction with an enhanced effective length of the order of
L + W/2. This is because the wave function of this Andreev
state along the bottom edge acquires a component along the
bottom part of the NS interfaces with small values of tSN .
We also note the presence of small avoided crossings between
states originating from different edges but with the same spin
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orientation. In contrast, states of opposite spins give rise, as
expected, to unavoided crossings.

III. JOSEPHSON CURRENT AND CURRENT
PHASE RELATION

At zero temperature, the Josephson current IJ (φ) =
(2π/φ0)∂EJ /∂φ is the derivative of the Josephson energy EJ ,
which is the sum of the phase-dependent energy levels below
the Fermi energy. In the following, we compare the effect of
SOI on the current phase relation IJ (φ) for nontopological
Josephson junctions (square lattice with Rashba SOI) and
topological ones (hexagonal lattice with intrinsic SOI).

A. Nontopological Josephson junctions with Rashba
spin-orbit interaction

We first discuss the nontopological case corresponding to
the square lattice with Rashba SOI whose Andreev spectrum
is shown in Figs. 1 and 2. We have seen in the previous section
that spin-orbit interaction strongly modifies the spectrum
by lifting the spin degeneracy, leading to level crossings at
phases multiple of π . This results in even phase-dependent
contributions to the single-level currents, which are nonzero at
0 and π and opposite from one another for reversed spin states;
see Fig. 5. The phase dependence of the total Josephson current
is, however, not affected due to the compensation between
these opposite current contributions of adjacent levels. This
compensation does not occur for the spin current of the order
of μB(|v+| − |v−|)/L, which is, however, difficult to detect
experimentally.

This is shown in Fig. 6 both for ballistic and diffusive wires
in the long-junction limit whose Andreev spectra are shown
in Figs. 2 and 3. One can see that the effect of spin-orbit
interactions is opposite: the ballistic current is decreased
whereas an increase of the amplitude of the Josephson current
by a factor of two and a richer harmonics content are observed
for the diffusive wire. The amplitude of the Josephson current
with disorder is shown in the bottom panel of Fig. 6. In the
ballistic regime corresponding to L smaller than the mean
free path, the amplitude of the Josephson current is nearly
independent of disorder and its phase dependence displays a
strong anharmonicity. On the other hand, it decreases with
disorder with a weaker harmonic content in the diffusive
regime. A much weaker disorder dependence is observed in
the presence of SO interactions. The crossover between the
disorder-independent and disorder-dependent regimes takes
place at larger values of disorder, which explains the larger
amplitude and harmonics content of the current phase relation
observed in the top panel of Fig. 6 with SO interactions.
This enhanced resilience of Josephson current with disorder
in the presence of SOI can be related to the phenomenon of
antilocalization in quantum transport in the presence of spin-
orbit interactions, inducing destructive interferences along
time-reversed trajectories and leading to an increase of the
conductance at low temperature [35]. This phenomenon has
been shown to lead to a metal-insulator transition at 2D for a
critical value of disorder with a metallic phase at low disorder
that only exists if SOIs are present [36].
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FIG. 5. From Andreev spectrum to Josephson current. Top panel:
Phase dependence of the first two levels in the Andreev excitation
spectrum of a square-lattice tight-binding wire, with Rashba SOI. Pa-
rameters are Nx = 130, Ny = 4, Wd = 0.75t, λ = 2� = t/2. These
two levels correspond to opposite spin states and cross each other at 0
and π . Middle panel: Currents carried by these levels; one can clearly
identify, for these two single-level currents, a contribution which
is an even function of phase, of opposite sign for the two levels.
Bottom panel: Same quantity in the presence of a small Zeeman field
perpendicular to the wire EZ = 0.02 (in � units). Avoided crossings
at 0 and π lead to discontinuities in the single-level currents, which
become odd functions of phase.

Moreover, as expected and previously shown in other works
[8–10], the combination of SOI with an in-plane Zeeman field
BZ leads to a φ0 behavior.

B. Topological Josephson junctions

More spectacular behaviors are found when the normal part
of the junction is built from the Kane and Mele topological
insulator discussed in Sec. II B (hexagonal lattice with next-
nearest-neighbor SOI) whose Andreev spectrum is shown
in Fig. 3. As a result of the formation of topological edge
states, the Josephson current is strongly modified by spin-orbit
interactions and acquires a sawtooth shape with sharp discon-
tinuities at odd multiples of π , which is characteristic of the
Josephson current of a single-channel ballistic SNS junction.

165415-5



MURANI, CHEPELIANSKII, GUÉRON, AND BOUCHIAT PHYSICAL REVIEW B 96, 165415 (2017)

FIG. 6. Effect of spin-orbit interactions on the phase-dependent
Josephson current for the square lattice with nearest-neighbor Rashba
SOI interactions. Upper panel, left: Ballistic wire with Ny = 2
(same parameters as Fig. 1). Upper panel, right: Diffusive wire in
the long-junction limit with the same parameters as Fig. 2. The
amplitude and skewness of the phase-dependent Josephson current
are decreased in the presence of SOI for the ballistic wire, whereas
they are increased for the diffusive wire. Lower panel: Comparison
of the disorder dependence of the Josephson current amplitude with
and without Rashba spin-orbit interactions. One observes a weaker
disorder dependence in the presence of spin-orbit interactions. The
inset shows the increase of the Josephson current with λ up to
λ = 4 = t in the diffusive regime at Wd = 4.

The Josephson current is independent of the number of trans-
verse channels and disorder. The sawtooth shape also resists
to low-transmission NS interfaces with T = (tSN/t)2 � 1,
in contrast with nontopological junctions as shown in Fig. 7.
The amplitude of the sawtooth period which is proportional
to the Thouless energy period is decreased for imperfect
transmission at the NS interface, but the discontinuity at π

is robust. Measuring this sawtooth current phase relation in
disordered systems can therefore be considered as a signature
of topological edge states protected against disorder. This was
done recently in Bi nanowires [24]. Furthermore, topological
crossings between Andreev states of opposite spin are expected
to give rise to a 4π periodicity in the limit of decoupled edge
states (W 
 ξ ), which reflects the parity conservation within
Andreev states [37]. This effect is, however, very difficult
to detect experimentally because of unavoidable quasiparticle
poisoning, leading to the conversion of an electron or hole spin-
polarized state in the Andreev spectrum into a quasiparticle
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FIG. 7. Phase-dependent Josephson current for a topological
junction compared to a nontopological one: hexagonal lattice with
SOI λ = 2� and without SOI for different transmissions (uniform
along the NS interface). Other parameters are Nx = 10 and Ny = 60.
Upper panel: In the presence of SOI, the Josephson current exhibits a
sawtooth shape with sharp discontinuities at odd multiples of π , which
is characteristic of a 1D ballistic SNS junction. The amplitude of the
sawtooth is decreased for imperfect transmission at the NS interface
but the discontinuity at π is robust. The curves with diamond points
correspond to a small disorder Wd/t = 0.25, whereas green solid
lines correspond to larger values and a perfect transmission at the
S/N interfaces, Wd/t = 2 and Wd/t = 3. Middle panel: The current
phase relation (CPR) without SOI, for Wd/t = 0.25 for different NS
interface transmissions T between 0.1 and 1. The CPR turns harmonic
as τ decreases. Lower panel: Contrast of the disorder dependence of
the amplitude of the Josephson current for different transmission
coefficients for topological and nontopological junctions.
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FIG. 8. φ0 junction behavior in a topological wire with out-of-
plane Zeeman field. The phase-dependent Josephson current in the
Kane-Mele model with asymmetric NS coupling between the two
edges is shown for different values of BZ , going from 0 to 0.3 from
top to bottom (in � units). Fermi energy is taken at −t/4 in the spin-
orbit gap. Other parameters are similar to those in Fig. 4, Nx = 20,
Ny = 60, λ = 2�, εF = −λ/2, t

up

SN = 1, t lw
SN = 0.1.

above the superconducting gap [37,38]. We will discuss in
the next section how high-frequency experiments instead can
reveal this topological crossing at π .

When the transmissions of the contacts are different on
the two edges, we find (see Fig. 8) that a Zeeman field gives
rise to a φ0 junction behavior. One observes a continuous
phase shift of the Josephson relations together with abrupt
discontinuities for certain values of BZ . This behavior is related
to the existence of spin-split phase-dependent states because
of the asymmetry between the two edges, as seen in Fig. 4.
It was also previously pointed out by Dolcini et al. [39] who
also considered asymmetric edge states, considering different
lengths for the two edges.

IV. NONADIABATIC FINITE-FREQUENCY RESPONSE

In this section, we show that the finite-frequency cur-
rent susceptibility, which is the nonadiabatic linear current
response to an ac phase bias, can be more sensitive to
spin-orbit interactions than the dc Josephson current discussed
above. As previously shown [40,41], this susceptibility can be
investigated experimentally in an rf superconducting quantum
interference device (SQUID) geometry where a hybrid NS
ring is inductively coupled to a microwave cavity, generating
a small ac flux superimposed on a dc Aharonov-Bohm flux.
The induced shifts of the resonance frequency and quality
factor yield, respectively, the nondissipative and dissipative
components of this susceptibility χ (ω). It is related to the
admittance by χ (ω) = iωY (ω) and can be computed from the
eigenstates of the ring using a Kubo formalism [42],

χ (ω) = ∂IJ

∂φ
−

∑
n

i2
n

∂fn

∂εn

iω

γD − iω

−
∑

n,m�=n

|Jnm|2 fn − fm

εn − εm

ih̄ω

i(εn − εm) − ih̄ω + h̄γND

.

(5)

Jnm is the matrix element of the current operator between the
Andreev eigenstates n and m of energies εn, and εm, fn is the
Fermi Dirac function. The first term is the zero-frequency
susceptibility of the ring, which is the flux derivative of
the Josephson current χ (0) = ∂IJ /∂φ. The second and third
terms, χD and χND , only exist at finite frequency and describe
the dynamic responses due, respectively, to the relaxation
of the populations and to the transitions between the levels
induced by microwave photon emission or absorption. The
quantities γD and γND are, respectively, the diagonal and
nondiagonal relaxation rates of the system determined by
its interaction with its thermodynamic environment. Both
χD and χND give rise to frequency-dependent dissipation
described by their imaginary components. χ ′′

ND corresponds
to microwave-induced resonant transitions in the Andreev
spectrum and yields the spectroscopy of Andreev levels. χ ′′

ND

has been explored experimentally by continuously sweeping
the frequency of a microwave field injected in parallel to the
field exiting the cavity at resonance (two-tone spectroscopy)
[43] or by coupling the NS ring to a broadband Josephson
spectrometer [44,45]. In the following, we focus on the
less investigated contribution χ ′′

D , which yields the largest
contribution at low frequency (compared to the induced gap).
We note that this contribution, proportional to the single-level
current squared, is specific to phase-dependent spectra (such
as in Aharonov-Bohm rings) [46] and is ignored in most
derivations of the Kubo formula,

χ ′′
D = − ωτin(

1 + ω2τ 2
in

) ∑
n

i2
n

∂fn

∂εn

(6)

(with τin = γ −1
D ). This quantity has a very peculiar phase

dependence: it displays a singularity at π in a diffusive wire
with a continuous Andreev spectrum, due to the closing of the
minigap. It was calculated by Lempitsky in 1983 [47–49], but
only directly measured recently by Dassonneville et al. [41].

A. High temperature: Revealing crossings in the finite-energy
Andreev spectrum

When the temperature is large compared to εn,
∂fn

∂εn
can

be approximated by 1/kBT in Eq. (6). As a result, when
T � �,χ ′′

D is proportional to S2 = 〈∑n i2
n〉 with the average

running over the whole spectrum [40,48]. In the presence of
SOI, the Andreev levels cross at 0 and π . As a result, the single-
level quantities in and i2

n are finite at 0 and π , as well as the
sum S2. The resulting phase dependence of χ ′′

D is very different
from its characteristic dependence without SOI, which is
zero at multiples of π (because of disorder-induced avoided
crossings between spin-degenerate Andreev levels). Moreover,
this phase dependence with SOI is extremely sensitive to a
Zeeman field perpendicular to the wires which couples levels
of opposite in-plane spins and opens small gaps at φ = nπ .
As shown in Fig. 5, Zeeman-induced avoided crossings give
rise to discontinuities in in(φ) and sharp peaks in i2

n and S2.
This leads to a phase dependence of χ ′′

D which exhibits sharp
singularities at 0 and π . This extreme sensitivity of χ ′′

D to a
small perpendicular Zeeman field carries the signature of the
spin-orbit spin splitting of Andreev levels, as shown in Fig. 9,
comparing the phase dependence of χ ′′

D with and without SOI.
This behavior is expected to be observed in any Andreev level
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FIG. 9. Phase dependence of χ ′′
D for the square lattice (nontopo-

logical regime) at a temperature equal to the superconducting gap. As
explained in the text, this quantity is close to the squared single-level
current, averaged over the whole spectrum. It is nearly π periodic in
the absence of spin-orbit interactions (lower panel) and insensitive to
a small Zeeman field (blue curve BZ = 0, red curve BZ = 0.02). The
same quantities are shown in the presence of spin-orbit interactions
λ = 2� in the upper panel. Spin splitting and crossings of the energy
levels at φ = 0 and π give rise to a very different behavior with broad
maxima at 0 and π reflecting levels crossings, and sharp dips in a
Zeeman field. Numerical simulations correspond to Nx = 100 and
Ny = 4 with a square lattice. The amplitude of disorder is Wd = 3�,
yielding L/le = 3.7.

spectrum with spin-split Andreev levels and therefore does
not yield information on the topological nature of the Andreev
spectrum.

B. Low temperature: Revealing topological
crossings at zero energy

We have so far discussed the phase dependence of χ ′′
D at

temperatures of the order or larger than the superconducting
gap. In the low-temperature limit, the derivative of the Fermi
function in expression (6) selects the very low-energy contribu-
tion (below kBT ) of the Andreev levels. For a nontopological
spectrum (see Fig. 10), χ ′′

D vanishes if the temperature is
smaller than the energy gap at π separating electrons and hole
states. This sensitivity to the existence or absence of energy
levels at zero energy can be exploited to reveal the presence of
topological crossings at zero energy, as we discuss below.

We move to the case of the Kane and Mele topological
insulator in the presence of protected crossings at zero
energy yielding nonzero single-level current at π . When the
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/ 2
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FIG. 10. Phase dependence of χ ′′
D computed for the hexagonal

lattice in the nontopological (no SOI, upper panel) and topological
regimes (with SOI λ = 2�, lower panels), at temperatures equal to
0.01� (blue) and 0.1� (red). Other parameters are Nx = 10 and
Ny = 60. In the topological regime, we also show data for Ny = 20
(crosses). The peak at π carries the signature of the disorder-protected
level crossing in the spectrum and is very sensitive to the presence of
the coupling between the edges when the width of the sample is of
the order of the superconducting coherence length. The lowest panel
illustrates the effect of a Zeeman field which splits the zero-energy
level crossing into two crossings that are symmetric around π .

165415-8



ANDREEV SPECTRUM WITH HIGH SPIN-ORBIT . . . PHYSICAL REVIEW B 96, 165415 (2017)

temperature is much smaller than the superconducting gap,
χ ′′

D(φ) does not go to zero and exhibits a sharp peak at π ,
as shown in Fig. 10. However, because of the finite width of
the wire, the two edge states are coupled at the NS interface.
This coupling leads to an exponentially small avoided crossing
of the levels at π and to a sharp and narrow dip of χ ′′

D(φ)
within the peak at π . This dip observed for Ny = 20 fades
out when the wire is much wider than the superconducting
coherence length. When this coupling between edge states is
negligible, χ ′′(π ) diverges at low temperature as 1/T , like the
derivative of the Fermi function at zero energy. In contrast, the
split peak in the nontopological case has an amplitude which
varies like ∂f/∂ε = 1/4kBT ch2(δ/2kBT ), where δ is the level
spacing around π . It is therefore exponentially depressed at
low temperature compared to δ. In this comparison, shown
in Fig. 10, we neglect the temperature and phase dependence
of the phenomenological parameter τin, which should also be
considered. τin was experimentally determined for diffusive
SNS junctions from the measurement of the frequency de-
pendence of χD and found to be in the ns range at 1 K. We
expect its value to be enhanced due to topological protection in
quantum spin-Hall systems and to be limited by the coupling
between the edges and quasiparticle poisoning. This signature
of a topological crossing as a sharp peak in χ ′′

D at φ = π is
strongly related, through the fluctuation dissipation theorem, to
the Josephson current thermal noise S(ω) = 2kBT χ ′′

D(ω)/πω

as initially derived for atomic contacts [50] and, more recently,
in [6] in the context of quantum spin-Hall insulators-based
Josephson junctions. We also find that this peak of dissipation
at π is split by a Zeeman field perpendicular to the plane
(i.e., along the SO axis in the Kane-Mele model). We expect
instead, in the nontopological case, peaks of dissipation to
show up at very low temperature only if a Zeeman field is
applied perpendicularly to the Rashba SO field.

This dissipation peak at π in the nonadiabatic linear
response function and its splitting in a small Zeeman field
also presents strong similarities with the predictions of [51]
in the normal state. It should provide a unique signature of
the nature of the level crossing at zero energy and constitutes
therefore a stringent check of the topological nature of the
Andreev spectrum. This is different from the proposals of
Refs. [52–54] focused on the contribution of the nondiagonal

elements, χ ′′
ND , coupling Andreev states to the continuum

above the gap. Those transitions involve frequencies of the
order of the superconducting gap or Thouless energy for long
junctions, whereas we have discussed smaller frequencies, of
the order of 1/τin.

V. CONCLUSION

From the analysis of the phase-dependent Andreev spec-
trum of SNS junctions, we have extracted several observ-
able signatures of large spin-orbit interactions. The phase
dependence of the dc Josephson current is very sensitive to
the formation of disorder-protected topological edge states.
On the other hand, measurements of the current response
to a small ac phase bias are very sensitive to the spin
splitting of the Andreev states. At temperatures of the order
of the superconducting gap, such measurements should reveal
crossings between Andreev levels at multiples of π and their
sensitivity to small Zeeman fields both in topological and
nontopological junctions. By contrast, at very low temperature,
these finite-frequency experiments can be used to reveal
the presence of topological crossings at zero energy. These
experiments can be conducted very close to thermodynamic
equilibrium, in contrast to the switching current measurements
proposed in [54]. They also allow an independent control of the
amplitude and frequency excitation. This is not the case in ac
Josephson effect measurements from which it is very difficult
to disentangle topological effects from out-of-equilibrium
Zener tunneling effects.
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