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Spin-Seebeck effect and spin polarization in a multiple quantum dot molecule
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In this work, we study the conductance and the thermoelectric properties of a quantum dot embedded between
two metallic leads with a side-coupled triple quantum dot molecule under a magnetic field. We focus on the spin
polarization and thermoelectric quantities. Our results show the possibility of designing an efficient spin-filter
device in addition to a noticeable enhancement of the Seebeck coefficient driven by the asymmetry in the quantum
dot energy levels, and a tunable pure spin-Seebeck effect is obtained. This behavior also holds in the interacting
case, where a pure spin-Seebeck effect can be obtained for fixed values of the embedded quantum dot energy
level. Our findings could lead to the implementation of a new pure spin energy conversion and capable spin-filter
devices working with weak magnetic fields.
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I. INTRODUCTION

Thermoelectric phenomena characterize the ability of a
system to convert waste from heat into electricity (or vice
versa) when exposed to a temperature gradient across it
(or voltage, when it is the other way around). Nanoscale
devices show enhanced thermoelectric properties concerning
their macroscopic counterparts, allowing them to be very
promising candidates for energy-efficient devices. While
several studies have shown that a temperature gradient can
produce electric currents, there are a few effects where the
same gradient can generate spin currents or, better yet, in
the total absence of electrical current, leading to an efficient
nondissipative information processing. This new emerging
area is known as spin caloritronics [1,2]. A promising effect
is the so-called spin-Seebeck effect (SSE), which allows
converting heat into a spin current (and vice versa via
the inverse spin Hall effect [3]), allowing us to transport
energy and information through materials such as ferro-
magnets, antiferromagnets, and quantum dots (QDs), among
others.

The SSE, first observed by Uchida et al. [4] in a ferro-
magnetic metal, has received a lot of attention in recent years
[5,6]. It has been observed in ferromagnetic [4], insulating
[7], semiconducting [8], and conductive materials. More
recently, the antiferromagnetic SSE has been predicted [9] and
measured [10] in MnF2. Its enhancement has also been studied
in heavy-metal-based hybrid structures [11], depending on
thickness, temperature, and interfacial effects. The SSE can
be characterized by the spin-resolved Seebeck coefficient (or
thermopower) S when both spin components, S↑ and S↓, show
equal magnitude and different signs, leading to the suppression
of the charge-Seebeck coefficient (Sc ∝ S↑ + S↓) while the
spin Seebeck coefficient is finite (Ss ∝ S↑ − S↓), producing
the spin voltage at the time that the charge voltage is zero
[12–15].
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Although much SSE research has been done on ferromag-
netic materials, less attention has been given to conductive
ones, such as molecular junctions and QD systems [16,17].
In these systems, attractive effects for achieving SSE are an
enhanced thermoelectricity and spin polarization. Enhanced
thermoelectric phenomena have been proved to exist if the
transmission is strongly affected by quantum interference
effects [18–23], in particular the Fano effect [24]. On the
other hand, the presence of a magnetic field or ferromagnetic
leads is necessary in order to the thermoelectric response
of the system becomes spin polarized. Pure spin Seebeck
coefficients have been found for diverse setups; the closed
Aharonov-Bohm ring is one of the most studied, such as
for Rashba QD molecule rings [25,26], for a degenerate
molecular QD in a ring [27], and for a mesoscopic ring
in the presence of both Rashba and Dresselhaus spin-orbit
interactions [28]. The Coulomb correlation in a single QD
in the presence of metal and magnetic insulator leads has
also been proved to tune and enhance the SSE, leading to
an efficient thermovoltaic transistor [29]. A T-shaped strongly
coupled double-QD system has been shown recently to exhibit
SSE in the regime of the second stage of the Kondo effect [30].

A similar effect, the so-called spin-current Seebeck effect,
which is the charge voltage generation by a spin current,
has been studied in graphene [31] and a single QD with
electron-electron Coulomb interaction [32,33]. While most
of the studies on QDs have focused on closed geometries
such Aharonov-Bohm interferometers [25–27] or single QDs
in the presence of ferromagnetic leads [30,34], only a few
have focused on the generation of spin currents of nonclosed
systems in the presence of metallic leads, systems such as
single QDs [35] and lateral groups of multiple QDs. A setup
for the latter has recently been grown experimentally, and an
excitonic electron attraction mediated by Coulomb repulsion
was reported and schematized with a model using a lateral
group of multiple QDs [36].

As multiple-QD systems have received increasing attention
since they have been proved to be useful setups to enhance
thermoelectric quantities [22,37,38], this prompts the question
of whether they are capable of achieving the SSE when
connected to normal metallic leads in the presence of a
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FIG. 1. Schematic view of our model: An embedded quantum dot
between two metallic leads with a side-coupled triple-QD molecule.
A magnetic field B is set perpendicular to the plane. The electrodes
are given different temperatures, as shown.

magnetic field. Previously, we studied a closed setup of a
Rashba quantum dot molecule embedded in an Aharonov-
Bohm interferometer, and we showed that SSE could be
achieved in the presence of normal metallic leads by only
suitably tuning the different phases [26]. Later, we studied
an open setup of a multi-QD system attached laterally to the
conduction channel, namely, a side-QD molecule, for which
we showed it could exhibit bound states in the continuum and
the Fano effect in the absence of electron-electron interaction
[39]. In the present work, we study the creation of a pure SSE
in the side-QD-molecule system connected to metallic leads,
and the Fano effect’s role on the thermoelectric properties.
We use a multi-impurity Anderson Hamiltonian to model the
system, and the Green’s functions formalism to calculate the
transmission probability via the equation of motion (EOM)
procedure and the thermoelectric quantities of the system. We
also consider electron-electron interaction within the Hubbard
III approximation. We show that a tunable SSE can be achieved
for different system temperatures. Moreover, we demonstrate
that the SSE obtained in our system can be tuned via a magnetic
field and/or energy asymmetry of the external QDs for the
noninteracting case. For the interacting case, in the Coulomb
blockade regime, we find that a pure SSE can be achieved
by fixing the energy level of the QD embedded between the
two metallic leads, and we show that the system can act as an
efficient spin-filter device.

This paper is arranged as follows: Sec. II shows the
theoretical model, the electron-electron interaction approach,
and the thermoelectric phenomena we are using. Section III
shows our results and the discussion, and Sec. IV gives the
concluding remarks of this work.

II. MODEL

The system consists of an array of coupled quantum dots,
each of them with a single energy level. One of them (QD0) is
embedded between two leads at some temperature difference
�T . The others QDs (labeled QD1, QD2, and QD3) form a
side molecule (QDM), which is side coupled to QD0, as shown
in Fig. 1. We model the system with an Anderson tunneling
Hamiltonian within the second quantization framework as
follows:

H = Hleads + Hdots + Hdot-leads, (1)

where each contribution on the right side is given by

Hleads =
∑
kα,σ

εkα,σ c
†
kα,σ ckα,σ , (2)

Hdots =
3∑

j=0,σ

εj,σ d
†
j,σ dj,σ +

∑
σ

(td†
0,σ d1,σ + H.c.)

+Un0,↑n0,↓ +
3∑

j=2,σ

(vjd
†
1,σ dj,σ + H.c.), (3)

Hdot-leads =
∑
kα,σ

(ναc
†
kα,σ d0,σ + H.c.), (4)

where d
†
j,σ (dj,σ ) is the electron creation (annihilation) operator

in the j th (QDj ) quantum dot with spin σ =↑ or ↓ and c
†
kα,σ

(ckα,σ ) is the electron creation (annihilation) operator in the
lead α = L,R with momentum k and spin σ . να is the tunneling
coupling between the embedded QD (QD0) and the lead α. U

is the Coulomb interaction in QD0, t is the tunneling coupling
between QD0 and QD1, and v2(3) is between QD1 and the
extremal QD2(3). In order to break the spin degeneracy, we
include a magnetic field of magnitude B to split each dot
energy level by the Zeeman effect, as εj,σ = εj + σεz, where
εj is the isolated dot energy level in the j th quantum dot and
εz = gμBB is the Zeeman energy, with g being the Landé
factor and μB being the Bohr magneton. Last, we adopted
σ =↑ (↓) as +1 (−1).

We used the Green’s function method as the starting point
to obtain the transport quantities of interest with the EOM
procedure. The retarded Green’s function in the energy domain
for the embedded quantum dot is given by (see the Appendix)

〈〈d0,σ ,d
†
0,σ 〉〉ε = 1 − 〈nσ̄ 〉

ε − ε0,σ + i� − �QDM,σ (ε)

+ 〈nσ̄ 〉
ε − ε0,σ − U + i� − �QDM,σ (ε)

, (5)

where � is the coupling strength between both leads and QD0
in the wideband limit. The function

�QDM,σ (ε) = t2[(ε − ε1,σ )2 − �2]

(ε − ε1,σ )[(ε − ε1,σ )2 − �2 − 2v2]
(6)

is the self-energy due to the lateral coupling of the molecule
with QD0, where we have defined v2 = v3 ≡ v and set
ε2(3),σ ≡ ε1,σ + (−)�, with � being an asymmetric energy
parameter for the external dots and 〈nσ̄ 〉 being the occupation
number with spin σ̄ , opposite to σ , given by

〈nσ 〉 = − 1

π

∫
f (ε,μ) Im[〈〈d0,σ ,d

†
0,σ 〉〉ε] dε, (7)

with f (ε,μ) being the Fermi distribution function. We calcu-
late the transmission probability across the embedded quantum
dot using

Tσ (ε) = −� Im[〈〈d†
0,σ d0,σ 〉〉ε], (8)

for which the final analytical expression can be found at
the end of the Appendix. For the thermoelectric properties,
we consider a system in the linear-response regime. In this
regime, we can write the charge and heat currents, Icharge and
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Iheat, respectively, in terms of a potential difference �V and a
temperature difference �T between the two leads as [40]

Icharge = −e2L0,σ�V + e

T
L1,σ �T , (9)

Iheat = eL1,σ �V − 1

T
L2,σ �T , (10)

where T is the absolute temperature, e is the electron charge,
and the kinetic coefficients are given by

Ln,σ (μ) = 1

h

∫
[−∂f (ε,μ)/∂ε](ε − μ)nTσ (ε)dε, (11)

where μ is the chemical potential and h is Planck’s con-
stant. The spin-dependent electrical conductance is obtained
directly from the above as Gσ (μ) = e2L0,σ (μ). The Seebeck
coefficient S is the proportionality between the temperature
difference �T and the potential difference �V caused when
the charge current vanishes, so it is defined, per spin, as

Sσ (μ) = −�V

�T
= − 1

e T

L1,σ

L0,σ

. (12)

We define the charge-Seebeck coefficient Sc(μ) and spin-
Seebeck coefficient Ss(μ) as [12–15]

Sc(s)(μ) ≡ S↑(μ) + (−)S↓(μ). (13)

In order to explore the ability of the system to work as a
spin filter, we consider the weighted polarization, defined as

Pσ = Gσ

G0

(
G↑ − G↓
G↑ + G↓

)
, (14)

where G0 = e2/h.

III. RESULTS

In what follows, we use � = 1 meV as the energy unit,
and the coupling between QD1 and QD2 (QD3) is fixed as
v = �/2. For instance, according to this the Zeeman energy
εz = 0.1 � corresponds to a magnetic field B ∼ 1 T. The
first is a suitable choice since for the experimental targets
of our system, one could consider QDs where � = 5 meV
[41] or molecular junctions where � = 2.1 − 5 meV [42].
In addition, we fixed the molecule QD energy level to be
resonant with the Fermi energy, εF ≡ 0. Last, we note that
the proposed effects presented here could be achieved in
laboratories by measurements of thermoelectric quantities
[43–46] and by a suitable combination of tunable parameters
such as small magnetic fields [45,47], Coulomb interactions
[36], and temperatures [46,47].

A. Noninteracting case: U = 0.

First, we show the results for a vanishing Coulomb
interaction in QD0, so the spin degeneracy breaking is due
completely to the magnetic field via the Zeeman effect. As a
way of comparison, we start without magnetic field, and then
we discuss the spin-dependent case.

An important point of this work focuses on the effect of a
side-coupled QDM on S. The case without the magnetic field,
that is, spin independent (εz = 0), can be explored for two
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FIG. 2. Conductance G for kBT/� = 6.89 for different values of
� as a function of μ for fixed ε0 = 0 (a) and ε0 for fixed μ = 0 (b).
Here t = ν = �/2.

scenarios: first, by changing the hopping parameter t for the
symmetric case, i.e., all the extremal QDs (QD2 and QD3) have
the same energy (� = 0), and, second, by fixing the hopping
parameter t and changing the asymmetric energy parameter of
external QDs �.

We begin by discussing the conductance shape. Figure 2
shows the effect of the asymmetry parameter � on the
conductance for the case without magnetic field (εz = 0).
First, from Fig. 2(a), for � = 0 (black solid line) we observe
two Fano antiresonances in the conductance as a function
of μ, which arise from the interference between continuum
states of the embedded QD and localized states in the side-
coupled molecule. Turning on � 	= 0 (patterned lines) the
conductance displays peaks due to the degeneracy splitting
of the resonances, hence contributing with additional Fano
line shapes. This feature has a notorious consequence in
Fig. 2(b), which is to decrease the conductance amplitude as a
function of the QD0 energy level, which is proportional to the
Onsager coefficient L0. So, for weak changes in the Onsager
coefficient L1, the net effect of the asymmetry parameter
should be the enhancement of the Seebeck coefficient because
it is proportional to the ratio L1/L0. From Fig. 3(a), we note
the effect on S for different values of the coupling tunneling
between QD0 and QD1 for vanishing �. We note that for larger
values of t we obtain an increasing value of S, but to obtain a
significant Seebeck coefficient value, a so-called good Seebeck
[48–50] (S � 1 in units of kB/e), we need a value of t ≈ 6 �.
On the other hand, by taking advantage of the asymmetry
parameter dependence on the conductance shape, in Fig. 3(b)
we plot S for a fixed value of t and different �, observing
a substantial enhancement of the Seebeck coefficient when
0 < � � �. It is important to note that the more asymmetry
in the external QDs there is, the more notorious the Seebeck
we obtain. Also, from the inset in Fig. 3(b), in addition to
the change in amplitude for S by tuning � = 0 to � 	= 0, we
observe a sign inversion in S.
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FIG. 3. Seebeck coefficient S as a function of ε0 using � = 0:
(a) for different t and (b) fixed t = �/2 for different �. Here the
temperature is fixed to kBT/� = 6.89.

When a magnetic field is turned on, the spin-dependent
conductance takes the form shown in Fig. 4. From it, we can
understand the effect and the role of the self-energy �QDM,σ (ε).
For the disconnected case (t = 0), we expect a maximum
in the conductance at a point near ε0 + (−)εz = εF, so for
our case (εF ≡ 0), that point must be close to ε0 ≈ −(+)εz.
Then, the single peak in the conductance for the disconnected
case for spin up (down) must be located on the left (right)
in Fig. 4(a) [Fig. 4(b)]. Hence, the effect of the side-coupled
QDM (t = �/2 	= 0) is to provide an additional shift of the
conductance peak �QDM,↑(↓) to the right (left) for spin up
(down). Note that the conductance amplitude decreases as �

increases for fixed Zeeman energy as a consequence of the
finite temperature in the system and the increment of �QDM,σ ,

0

1

G
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)

= 0.05 Γ

Δ = 0.00 Γ
Δ = 0.05 Γ
Δ = 0.20 Γ
Δ = 0.50 Γ
Δ = 1.00 Γ

-20 -10 0 10 20
0

1

G
(e
2 /h
)

ε0 (Γ)
-20 -10 0 10 20

Spin down

Spin downSpin up

Spin up

(c)

(a) (b)

(d)

Δ = Γ

= 0.01 Γ

= 0.025 Γ

= 0.05 Γ

ε0 (Γ)

FIG. 4. Conductance G for (a) spin up and (b) down for different
values of � and fixed εz = 0.05 �. Conductance G for (c) spin up
and (d) down for different values of εz and fixed � = �. In all panels
kBT/� = 6.89, μ = 0, and t = �/2.
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FIG. 5. Seebeck coefficient S as a function of μ for fixed εz =
0.015 � and different �: (a) and (d) � = 0.2 �, (b) and (e) � = 0.5 �,
and (c) and (f) � = 0.8 �. Left panels are for spin-resolved S, while
right panels are for charge and spin S. Here kBT/� = 5.17, t = �/2,
and ε0 = 0.

which is in agreement with the case without magnetic field. On
the other hand, Figs. 4(c) and 4(d) show another remarkable
and counterintuitive effect, which is the increasing of �QDM,σ

as the magnetic field decreases with fixed �, bringing the
consequence of the decrease in the conductance amplitude and
also a larger spin-up-down peak shifting with smaller magnetic
fields.

In the left panels of Fig. 5 we can observe the splitting
of S in S↑ and S↓ as a function of the chemical potential
due to the Zeeman effect. Moreover, in the right panels of
Fig. 5 an important feature in our model arises. For a fixed
μ = 0 the charge-Seebeck coefficient always vanishes, while
the spin-Seebeck coefficient is nonzero, i.e., S↑(μ = 0) =
−S↓(μ = 0) 	= 0. To clarify this, we show a contour plot of the
spin-Seebeck coefficient in Fig. 6 in the space of parameters εz

and � using μ = 0 and ε0 = 0. For this range of parameters Sc

always vanishes (not shown), whereas Ss is finite and nonzero
in most of the area in this domain. Therefore, we have a
pure spin-Seebeck effect for fixed μ = 0. In addition, we can
observe a special zone in Fig. 6 in which the spin-Seebeck
coefficient maximizes, which takes place for low magnetic
fields and large �. To explore this, we show the behavior
of both Sc and Ss [Eq. (13)] as a function of the Zeeman
energy for three fixed � values in Fig. 7(a), in which we
note that the amplitude and sign of Ss can be controlled via
tuning the direction and/or amplitude of the magnetic field.
In Fig. 7(c) we plot Ss as a function of � for three different
Zeeman energies, where we obtain an asymptotic behavior
of S for large � values, i.e., � � �. We emphasize that
both results correspond to a pure spin-Seebeck effect since
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FIG. 6. Spin-Seebeck coefficient Ss as a function of εz and � for
μ = 0, kBT/� = 5.17, t = �/2, and ε0 = 0.

Figs. 7(b) and 7(d) show the vanishing of Sc and that we can
obtain a sizable spin-Seebeck-coefficient value with a weak
Zeeman splitting, meaning a weak magnetic field.

In Fig. 8 we show the Seebeck coefficient as a function
of the embedded dot energy level ε0, which can be seen
as a tunable gate potential. Figures 8(a) and 8(b) contain
spin-resolved Seebeck coefficients, while Figs. 8(c) and 8(d)
show the charge- and spin-Seebeck coefficients, respectively.
In Fig. 8(c) we observe a linear behavior of Sc around ε0 = 0
with Sc(ε0 = 0) = 0. This allows for a pure SSE to appear
since there exists a Ss(ε0 = 0) 	= 0, increasing its value with
temperature, as shown in Fig. 8(d).

B. Interacting case: Finite U

In this section, we will analyze the system by including
interaction in the QD0. We emphasize that we are interested
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FIG. 7. Spin-Seebeck Ss (top) and charge-Seebeck Sc (bottom)
coefficients as a function of (a) and (b) εz and (c) and (d) �. Here
kBT/� = 5.17, t = �/2 and μ = ε0 = 0.
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FIG. 8. Seebeck coefficient S as a function of ε0 using εz =
0.05 � and � = � for (a) spin up and (b) down and for (c) charge
and (d) spin.

in a Coulomb blockade regime in which charge fluctuations
are the dominant events in transport. Hence, the Green’s
function (see the Appendix) can be taken within the Hubbard
III approximation, which corresponds to the most suitable
description of the electronic correlations in the Coulomb
blockade scenario, given by U � � [12,51,52]. This kind of
approach yields an excellent characterization of the Seebeck
coefficient and the conductance of strongly interacting QDs
for temperatures higher than the Kondo temperature [53] or
when the localized level is weakly coupled to electrodes [50].
Throughout this section, we use the chemical potential fixed at
μ = 0 and U = 10 � for the Coulomb interaction, locating the
system in the so-called Coulomb blockade regime. It is worth
mentioning that in this work, according to the parameters, the
Kondo temperature is approximately kBTK ∼ 0.05 �.

Figure 9 shows the conductance as a function of ε0. In the
case with t = 0 and zero magnetic field (solid black line),
we find the standard structure of the Coulomb blockade, i.e.,
two peaks around the energies ε0 = 0 and ε0 = −U . When
the magnetic field is turned on with t = 0 (red dashed line),
the positions of the peaks of the conductance are shifted by
εz; however, for this value of the magnetic field, this shift is
negligible. For the case with t = �/2 (blue dot-dashed line),
the conductance shows two asymmetric peaks. Note that due
to the presence of the side-attached QDM and the magnetic
field, the peaks in the conductance show an important shift.
In fact, now the peaks are located around the energies ε0 ≈
(−εz − U − �QDM,↑(↓)) and ε0 ≈ (−εz − �QDM,↑(↓)). Clearly,
the contribution of the self-energy �QDM,↑(↓) is negative
(positive) because these two asymmetric peaks move to the
right (left), as seen in Fig. 9(a) [Fig. 9(b)], with respect to the
disconnected case but satisfying the condition |�QDM,↑(↓)| <

(εz + U ). This agrees with the noninteracting case (but for
t 	= 0) in Fig. 4, and moreover, the value of the highest peak
in Fig. 9 is equal to the value of a single peak in Fig. 4 for the
same parameters under study.

In Fig. 10 we further analyze the dependence of the
spin-resolved conductance of the magnetic field. In Fig. 10(a)
we observe that the conductance peak shifting is very sensitive
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to subtle changes in the magnetic field amplitude as a conse-
quence of the connection to the QDM self-energy �QDM,σ .
Note that the peak shifting is larger as the Zeeman splitting
decreases, leading to zones with nonvanishing conductance for
only one spin with a lower magnetic field. By taking advantage
of this behavior, we plot in Fig. 10(b) the dimensionless
weighted polarization. We note the possibility of a weak
magnetic field spin polarizer by tuning ε0 above or sufficiently
below Fermi energy in our system. Note that for ε0 ∼ −U/2
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FIG. 10. Comparison of (a) spin-resolved conductances G and (b)
weighted polarization P at kBT/� = 1.72. The magnetic fields are
εz = 0.05 � (solid lines), εz = 0.03 � (dashed lines), and εz = 0.02 �

(dot-dashed lines). In all panels black (red) curves are for spin up
(down), μ = 0, t = �/2, � = �, and U = 10 �.
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FIG. 11. Spin-resolved conductance G for different temperatures
in the range 1.72 � kBT/� � 8.62 as a function of ε0. Here the
parameters are � = �, εz = 0.05 �, t = �/2, and μ = 0.

the conductance is completely nonpolarized regardless of the
magnetic field values. Additionally, we can appreciate that the
peaks of the spin-dependent conductance, and, consequently,
of the spin-dependent polarization, decrease with the magnetic
field. This behavior is due to the fact that as the magnetic
field is reduced, higher values of ε0 (in absolute value) are
needed to bring the system in resonance with the Fermi
energy. As ε0 is increased, the transmission function becomes
asymmetrical, and its area is reduced around the Fermi energy,
and consequently, the peak of the spin-dependent conductance
decreases. The above also holds for the noninteracting case.

Another important aspect is focused on the conductance
dependence on the temperature for the case with t 	= 0. When
we set t = 0, in both noninteracting and interacting cases,
it is straightforward to obtain a moderate dependence of the
conductance on the temperature. On the contrary, for t 	= 0,
in Fig. 11 the conductance exhibits a notorious dependence of
the temperature by showing a decrease in amplitude at higher
temperatures.

Figure 12 displays the Seebeck coefficients for spin up
and down, charge, and spin as a function of ε0 for different
temperatures. The Seebeck coefficient for both spins vanishes
at the resonance points discussed previously. The dependence
of the temperature shown in Fig. 12 agrees with the one shown
before for the conductance. The Seebeck coefficient amplitude
must be larger for higher temperatures, contrary to the case of
the conductance. In Figs. 12(c) and 12(d), we also can obtain
a pure SSE effect for fixed ε0, similar to the one described
for the noninteracting case. Figure 13 shows the charge- and
spin-Seebeck effects as a function of the Zeeman energy. For
fixed ε0 = −4.98 � ∼ −U/2, a pure SSE is reached for a
broad range of the Zeeman energy since SS � SC, which is
enhanced as � increases [Figs. 13(a) and 13(b)]. On the other
hand, Fig. 13(c) shows that the tuning of SS as a function
of � can achieve a pure SSE, even for weak magnetic field
since SC approaches vanishing [Fig. 13(d)]. Then, it is clear
that the SSE amplitude increases as more energy asymmetry
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FIG. 12. Seebeck coefficient S as a function of ε0: spin-resolved
coefficient for (a) spin up and (b) spin down, (c) charge-Seebeck
coefficient, and (d) spin-Seebeck coefficient. Here the parameters are
� = �, μ = 0, and t = �/2 for different temperatures in the same
range used in Fig. 11.

is considered in the external QDs as a consequence of the
intensified interference phenomena in the system, in analogy to
the noninteracting case. These results constitute evidence that
even in the presence of interactions in the Coulomb blockade
regime a tunable pure SSE can be reached in our system.

IV. SUMMARY

We studied the conductance and the Seebeck coefficient
between two metallic leads at a temperature difference through
a QD with a side-coupled QDM structure. We considered
two different cases: without and with Coulomb interaction
in the embedded QD. For the first case (U = 0) without a
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FIG. 13. Spin-Seebeck Ss (top) and charge-Seebeck Sc (bottom)
coefficients as a function of (a) and (b) εz and (c) and (d) �. Here
kBT/� = 6.89, t = �/2, μ = 0, and ε0 = −4.98 �.

magnetic field, we controlled the enhancement of the Seebeck
coefficient including energy asymmetry in the QDM. The spin-
resolved Seebeck coefficient supports a pure SSE by applying
a magnetic field with μ = 0, ε0 = 0, and � 	= 0 for weak
magnetic fields. For the second case, in the Coulomb blockade
regime, we showed that our system could be used as an efficient
spin-polarizer device in a wide range of ε0. In addition, we also
obtained a pure SSE by tuning ε0 and holding fixed the other
parameters in the system. Moreover, for a fixed ε0 ∼ −U/2,
the effect is achieved in the entire Zeeman energy range
considered. In analogy to the charge Seebeck effect which
requires breaking particle-hole symmetry, the SSE arises
through the combination of particle-hole symmetry breaking
and high spin polarization. In our configuration, a small break
in the spin degeneracy produces a high spin polarization and
an enhancement of the spin Seebeck coefficient. Our findings
could lead to implementing new exciting spintronic devices,
capable of spin polarization and generating a pure SSE energy
conversion for weak magnetic fields [36].
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APPENDIX: EMBEDDED QUANTUM
DOT GREEN’S FUNCTION

The retarded Green’s function in time domain Gr (τ,0) for
fermionic operators A and B is defined as

Gr
A,B(τ ) = 〈〈A,B〉〉rτ = −iθ (τ )〈{A(τ ),B(0)}〉, (A1)

whose EOM in energy space takes the following form in the
energy domain:

(ε + i0+)〈〈A,B〉〉rε + 〈〈[H,A],B〉〉rε = 〈{A,B}〉, (A2)

where H i the Hamiltonian given in Eq. (1) and 0+ is an
infinitesimal number. In what follows, we will not write either
the superscript r or the infinitesimal number 0+ for simplicity.
For QD0, it is straightforward to show that the corresponding
Green’s function 〈〈d0,σ ,d

†
0,σ 〉〉

ε
is given by

(ε − ε0,σ )〈〈d0,σ ,d
†
0,σ 〉〉

ε
= 1 + U 〈〈d0,σ n0,σ̄ ,d

†
0,σ 〉〉

ε

+
∑
kα

ν∗
α〈〈ckα,σ ,d

†
0σ 〉〉ε

+ t〈〈d1,σ ,d
†
0,σ 〉〉ε. (A3)

The equation for 〈〈ckα,σ ,d
†
0,σ 〉〉

ε
is found to be

〈〈ckα,σ ,d
†
0,σ 〉〉

ε
= να

(ε − εkα
)
〈〈d0,σ ,d

†
0,σ 〉〉ε, (A4)
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and that for 〈〈d1,σ ,d
†
0,σ 〉〉 is

(ε − ε1,σ )〈〈d1,σ ,d
†
0,σ 〉〉ε − t∗〈〈d0,σ ,d

†
0,σ 〉〉ε

= v(〈〈d2,σ ,d
†
0,σ 〉〉ε + 〈〈d3,σ ,d

†
0,σ 〉〉ε). (A5)

In Eq. (A5), we use the definition v2 = v3 ≡ v in order
to simplify the discussion. The expressions for the Green’s
functions 〈〈d2,σ ,d

†
0,σ 〉〉 and 〈〈d3,σ ,d

†
0,σ 〉〉 are given, respectively,

by

〈〈d2,σ ,d
†
0,σ 〉〉ε = v

(ε − ε2,σ )
〈〈d1,σ ,d

†
0,σ 〉〉ε, (A6)

〈〈d3,σ ,d
†
0,σ 〉〉ε = v

(ε − ε3,σ )
〈〈d1,σ ,d

†
0,σ 〉〉ε. (A7)

We set ε2(3),σ ≡ ε1,σ + (−)�, so we can combine Eqs. (A5),
(A6), and (A7) to find

〈〈d1,σ ,d
†
0,σ 〉〉ε = t∗

[
(ε − ε1,σ )2 − �2

(ε − ε1,σ )[(ε − ε1,σ )2 − �2 − 2v2]

]

×〈〈d0,σ ,d
†
0,σ 〉〉ε. (A8)

Inserting Eq. (A8) into Eq. (A3) we obtain the form

[ε − ε0,σ − �QDM,σ (ε) − �(ε)]〈〈d0,σ ,d
†
0,σ 〉〉ε

= 1 + U 〈〈d0,σ n0,σ̄ ,d
†
0,σ 〉〉

ε
, (A9)

where we define

�QDM,σ (ε) = t2[(ε − ε1,σ )2 − �2]

(ε − ε1,σ )[(ε − ε1,σ )2 − �2 − 2v2]
(A10)

and

�(ε) =
∑
kα

|να|2
ε − εkα

. (A11)

Now we calculate the EOM for the Green’s function
〈〈d0,σ n0,σ̄ ,d

†
0,σ 〉〉ε. The complete equation for this case is given

by

(ε − ε0,σ − U )〈〈d0,σ n0,σ̄ ,d
†
0,σ 〉〉ε

+
∑
kα

να〈〈c†kα,σ d0,σ̄ d0,σ ,d
†
0,σ 〉〉ε

−
∑
kα

να〈〈d†
0,σ̄ ck,σ̄ d0σ ,d

†
0,σ 〉〉ε −

∑
kα

να〈〈ck,σ n0,σ̄ ,d
†
0,σ 〉〉ε

+ t〈〈d1,σ̄ d0,σ̄ d0,σ ,d
†
0,σ 〉〉ε − t〈〈d0,σ̄ d1,σ̄ d0,σ ,d

†
0,σ 〉〉ε

− t〈〈d1,σ n0,σ̄ ,d
†
0,σ 〉〉ε = 〈n0,σ̄ 〉. (A12)

We keep only the correlations 〈〈ck,σ n0,σ̄ ,d
†
0,σ 〉〉ε and

〈〈d1,σ n0,σ̄ ,d
†
0,σ 〉〉ε in Eq. (A12), so the EOM can be approx-

imated as

(ε − ε0,σ − U )〈〈d0,σ n0,σ̄ ,d
†
0,σ 〉〉ε

−
∑
kα

να〈〈ck,σ n0,σ̄ ,d
†
0,σ 〉〉ε − t〈〈d1,σ n0,σ̄ ,d

†
0,σ 〉〉ε ≈ 〈n0,σ̄ 〉.

(A13)

Under the same approximation treated in the previous case
(leaving out the higher-correlation terms), we obtain for
the Green’s function 〈〈ck,σ n0,σ̄ ,d

†
0,σ 〉〉ε the approximate form,

which is given by

〈〈ck,σ n0,σ̄ ,d
†
0,σ 〉〉ε = να

(ε − εkα
)
〈〈d0,σ n0,σ̄ ,d

†
0,σ 〉〉ε, (A14)

and for 〈〈d1,σ n0,σ̄ ,d
†
0,σ 〉〉ε we obtain

(ε − ε1,σ )〈〈d1,σ n0,σ̄ ,d
†
0,σ 〉〉ε − t〈〈d0,σ n0,σ̄ ,d

†
0,σ 〉〉ε

− v〈〈d2,σ n0,σ̄ ,d
†
0,σ 〉〉rε − v〈〈d3,σ n0,σ̄ ,d

†
0,σ 〉〉ε = 0. (A15)

At this point, it is straightforward to obtain the two last
Green’s functions under this approximation, which are given
by

〈〈d2(3),σ n0,σ̄ ,d
†
0,σ 〉〉ε = v

(ε − ε2(3),σ )
〈〈d1,σ n0,σ̄ ,d0,σ 〉〉ε. (A16)

Hence, by combining Eq. (A16) with Eq. (A15) and then
substituting into Eq. (A13), we obtain the Green’s function
〈〈d0,σ n0,σ̄ ,d

†
0,σ 〉〉ε, given by

〈〈d0,σ n0,σ̄ ,d
†
0,σ 〉〉ε = 〈n0,σ̄ 〉

[ε − ε0,σ − �(ε) − �QDM,σ (ε) − U ]
.

(A17)

Finally, inserting Eq. (A17) into Eq. (A9), we obtain the
EOM for our problem, which is given by

〈〈d0,σ ,d
†
0,σ 〉〉ε = 1 − 〈nσ̄ 〉

ε − ε0,σ − �(ε) − �QDM,σ (ε)

+ 〈nσ̄ 〉
ε − ε0,σ − U − �(ε) − �QDM,σ (ε)

.

(A18)

For the calculation of self-energy �(ε), we calculate the
integral

�(ε) =
∫

dεkα
ρ(εkα

)
|ν(εkα

)|2
ε − εkα

= P

∫
dεkα

ρ(εkα
)
|ν(εkα

)|2
ε − εkα

−iπρ(ε)|ν(ε)|2. (A19)

Using the wideband approximation, we assume that the
product of ρ(εkα

)|νε(kα)|2 is constant in the band limit, −D <

εkα
< D, and therefore,

2πρ(εkα
)|ν(εkα

)|2 =
{
�, for −D < εkα

< D,

0, for D < |εkα
|. (A20)

Under this consideration, we obtain

�(ε) ≈ −�

π
ln

∣∣∣∣D + ε

D − ε

∣∣∣∣ − i
�

2
. (A21)

Therefore, we can reduce the expression for Eq. (A18) to the
form

〈〈d0,σ ,d
†
0,σ 〉〉ε = 1 − 〈nσ̄ 〉

ε − ε̃0,σ + i�̃ − �QDM,σ (ε)

+ 〈nσ̄ 〉
ε − ε̃0,σ − U + i�̃ − �QDM,σ (ε)

, (A22)
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where we define �̃ = �/2 and ε̃0,σ = ε0,σ + Re(�(ε)). It is
important to recall that the function that we obtain inRe(�(ε))
varies slowly (with respect to energy) and in the integrals can
be considered a constant. Throughout this work, we do not

use the notation �̃ and ε̃0,σ in order to avoid an overpopulated
notation.

Last, the spin-dependent transmission probability defined
in Eq. (8) is explicitly given by

Tσ (ε) = �2

[
(ε − ε0,σ − U − �QDM,σ )2 + �2 − U 〈nσ̄ 〉[U − 2(ε − ε0,σ − �QDM,σ )]

[(ε − ε0,σ − U − �QDM,σ )2 + �2][(ε − ε0,σ − �QDM,σ )2 + �2]

]
. (A23)
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