
PHYSICAL REVIEW B 96, 165409 (2017)

Dissipatively driven hardcore bosons steered by a gauge field
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The interplay between dissipation, interactions, and gauge fields opens the possibility to rich emerging physics.
Here we focus on a setup in which the system is coupled at its extremities to two different baths which impose
a current. We then study the system’s response to a gauge field depending on the filling. We show that the
current induced by the baths has a marked dependence on the magnetic field at low fillings which is significantly
reduced at larger fillings. We explain the interplay between interactions, gauge field, and dissipation by studying
the system’s energy spectrum at the different fillings. This interplay also results in the emergence of negative
differential conductivity. For this study we have developed a number-conserving treatment which allows a
numerical exact treatment of fairly large system sizes, and which can be extended to a large class of systems.
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I. INTRODUCTION

A deeper understanding of the far-from-equilibrium trans-
port properties of complex quantum systems would lead to fas-
cinating progress for future nanotechnologies. A particularly
interesting challenge is that of characterizing and controlling
the transport properties of quantum systems. In such systems,
many-body effects can induce, remove, or shift phase transition
lines. This significantly affects the properties of a system and
our ability to control it. Another salient tool used to control
transport and induce new phases of matter is a gauge field.
The quantum Hall effect is a paramount example of the role
of gauge fields on transport properties [1,2]. In a type-II
superconductor the increase of the magnitude of the magnetic
field can drive a transition from a diamagnetic Meissner phase
to a superconductor with an Abrikosov vortex lattice [3].
Adding interactions to this system can lead to even more exotic
phases of matter with topological order [4–6].

The minimal setup in which such rich phenomenology can
be explored is that of coupled chains (a ladder) with a gauge
field such as the one depicted in Fig. 1. This system has
attracted intense theoretical scrutiny [7–23] and it has been
experimentally studied both with Josephson-junction arrays
[24–27] and with ultracold gases with bosons and fermions
[28–30], thanks to the use of synthetic gauge fields [31,32].

Here we will consider a quantum system in the presence of
a gauge field and connected at its extremities to two different
baths which would impose a current through it (so-called
dissipatively boundary-driven systems). Ion trap experiments
promise to be an ideal setup for a clean realization and study of
such transport problems [33–35]. The setup could be realized
using ion microcavity arrays with a nonlinear local potential
[35–39], for which the gauge field is generated by Raman
coupling [40]. It should be noted that magnetic fields have
already been used to effectively modify heat transport in
Josephson junctions [41].

Recently, a boundary-driven coupled chain of free bosons
under the effect of a gauge field was studied [42]. There it
was shown that, depending on how the baths were coupled
to the ladder, the chiral current changes abruptly on two
phase transition lines, implying the emergence of a previously
unpredicted nonequilibrium phase transition. At this transition
line, coinciding with the opening of a gap in the bulk spectrum,

the total current through the system also starts to change
significantly; hence the gauge field can be used to strongly
control the current flow.

However it is necessary to gain a deeper understanding of
how the interplay between the gauge fields and interactions
between the bosons will affect the transport. Hence in this
paper we are going to study the steady state transport properties
of hardcore bosons driven out of equilibrium by dissipative
boundary driving. We will show that the controllability of the
current via a gauge field (i.e., the ability to alter the current)
is significantly reduced as the average filling is increased. We
will also show that the nonlinear dependence of the current on
the density also results, depending on the gauge field, in the
emergence of negative differential conductance. To this end
we mention that although in one-dimension there is an exact
mapping between hardcore bosons and free fermions, for a
ladder this is not possible. This lack of mapping is central for
the nonlinear behavior, which would not exist for free fermions
following Ref. [42].

Importantly, in order to analyze this system, we introduce
an exact numerical approach with conserved quantum numbers
to compute the steady state. With this method we are able to
readily study the exact density matrix of a system with up to
14 sites. Moreover this method also allows us to gain a much
deeper understanding of the system.

The paper is composed of the following sections: In Sec. II
we present the model, then in Sec. III we describe the current
as a function of filling and gauge field. In Sec. IV we describe
the numerical method introduced in this work and the insight
that it allows us to gain. In Sec. V we show the emergence of
negative differential conductance and how this can be tuned
via the gauge field, and finally we draw our conclusions in
Sec. VI.

II. MODEL

We study a ladder made of two coupled chains (or legs)
each composed of L sites. As we focus on the role of strong
interactions, we consider hardcore bosons, for which at most a
single boson can occupy one site. Two sites which are coupled
and belong to different chains form a rung. The ladder is
coupled at its extremities to two baths which can inject or
remove bosons at different rates. The setup is depicted in Fig. 1.
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FIG. 1. Ladder made of two coupled linear chains, referred to
as legs, with local bosonic excitations described by the annihilation
operators at site j, âj,p, where p = 1,2 respectively for the upper and
the lower leg. K is the tunneling amplitude between the legs, on what
are referred to as rungs of the ladder, while J is the amplitude of
tunneling between sites in the legs. A gauge field imposes a phase
φ. The coupling to the baths is represented by the thick arrows. Each
bath is characterized by the average density of bosons n̄j the bath
itself imposes on the rung j and the strength of the coupling �.

The evolution of the density operator ρ̂ is given by a master
equation with a Lindbladian L,

dρ̂

dt
= L(ρ̂) = − i

h̄
[Ĥ ,ρ̂] + D(ρ̂), (1)

where the Hamiltonian Ĥ is given by

Ĥ = −J
∑

p,j

ei�p â
†
j,pâj+1,p − K

∑

j

â
†
j,1âj,2 + H.c. (2)

Here K is the tunneling constant in the rungs, J for the legs,
and the phase of the tunneling in the legs �p = (−1)(p−1)φ/2
such that a particle doing a loop around one plaquette acquires
a phase φ. The operator âj,p (â†

j,p) annihilates (creates) a boson
in the upper (p = 1) or lower (p = 2) chain at the j th rung
of the ladder. And the hardcore constraint means â

†
j,pâ

†
j,p = 0.

The dissipator in Lindblad form [43,44] is given by

D(ρ̂) =
∑

j=1,L

�[(1 − n̄j )(âj,1ρ̂â
†
j,1 − âj,1â

†
j,1ρ̂)

+ n̄j (â†
j,1ρ̂âj,1 − â

†
j,1âj,1ρ̂) + H.c.], (3)

where j = 1 or L, and � is the overall coupling constant. The
dissipator tends to set the local density at site (j,1) to the
value n̄j if decoupled from the others [45]. The baths will thus
induce a particle current when �n̄ = n̄1 − n̄L �= 0.

III. TOTAL CURRENT

We focus our attention on the particle current at steady state
[46]. The total current through the system, J , is given by the
sum of the current in each legJ = ∑

p J L
j,p, where the current

in the p leg is J L
j,p = 〈iJ ei(−1)p+1φ/2â

†
j,pâj+1,p + H.c.〉/h̄ and

〈. . . 〉 means the expectation value for the steady state. The
current in the rungs is instead given byJ R

j,1→2 = 〈iKâ
†
j,1âj,2 +

H.c.〉/h̄. The leg and rung currents are associated with
the continuity equations ∂〈n̂j,1〉

∂t
= J L

j−1,1 − J L
j,1 − J R

j,1→2 and
∂〈n̂j,2〉

∂t
= J L

j−1,2 − J L
j,2 + J R

j,1→2 for 1 < j < l. We also define
the average density as n̄av = (n̄1 + n̄L)/2.

In Fig. 2(a) we show the total current in the system as a
function of the gauge field φ for a small value of �n̄ in panel
(a) (�n̄= 0.1) and a larger value in panel (b) (�n̄= 0.4). As

FIG. 2. Total current J versus phase φ for different values of
average density n̄. As the system approaches n̄av = 0.5 the current
becomes much less sensitive to the phase. (a), (b) The continuous
red lines are for free bosons and a ladder of length L = 200. The
other three lines are for L = 6 and free bosons (blue dotted line
with ×), n̄av = 0.1 (purple dashed line with ∗), and n̄av = 0.5 (green
dashed line with triangles). In panel (a) �n̄ = 0.1, while in panel (b)
�n̄ = 0.4. The inset of panel (a) shows the controllability C versus
n̄av for �n̄ = 0.1 (circles) and for free bosons (dashed green line).
The controllability is strongly reduced as the average filling increases.

a reference, the red continuous thin line shows the current for
a large ladder (L = 200) of noninteracting bosons. This was
computed in Ref. [42] and it shows a significant change in the
total current at the critical gauge field φc = 2π/3. However,
because of the computational complexity of a ladder of hard-
core bosons, in this work we are limited to short ladders, which,
as shown later, already manifest remarkable effects. In order
to fairly compare the strongly interacting bosons to the nonin-
teracting ones, we show, with the blue dotted line with crosses,
the total current versus φ for a ladder of 6 rungs of free bosons.
The curve is smooth and has larger oscillations; however it still
shows a marked dependence on the phase φ, and it shows a
strong current suppression for φ approaching π . We now con-
sider the case of hardcore bosons, from low average filling, to
around half fillings. At low n̄av, the behavior of the current as a
function of the phase naturally resembles that of noninteracting
bosons (see pink dashed line with ∗). However, as we increase
n̄av such that the local occupation reaches half filling, the
difference between the response of the free bosons compared
to the hardcore bosons is striking. In particular, close to half
filling the dependence of the current on the gauge field is highly
reduced, as shown by the bold green continuous line. One
direct consequence is that, at larger fillings, the current can be
much larger than for free bosons because the gauge field cannot
significantly reduce it (see the region for φ close to π ). This
may seem surprising from an analysis of the ground state be-
cause, near half filling, the spectrum of the hardcore boson lad-
der is gapped. In the following we will explain the mechanisms
behind this behavior. Figure 2(b) shows a similar behavior but
with less marked difference because in this panel �n̄ = 0.4.

In the inset of Fig. 2(a) we show the controllability
C, which describes how well the gauge field can tune the
current in the system. For given dissipative boundary driving
and tunneling parameters, the controllability is given by
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C = [maxφ J − minφ J ]/{[maxφ J + minφ(J )]/2}. The in-
set shows that, for �n̄ = 0.1, the controllabilityC is suppressed
by one order of magnitude as the average filling increases.

IV. EXACT NUMERICAL APPROACH WITH
QUANTUM NUMBERS

To gather a deeper understanding and to be able to analyze
in a numerically exact way this system, we have developed an
approach which takes into account the total quantum number.
We first write the density operator as

ρ̂ =
∑

�mN , �m′
N ′ ,N,N ′

ρ
�mN ,N

�m′
N ′ ,N ′ | �mN,N〉〈 �m′

N ′ ,N
′|, (4)

where N (N ′) is the total number of particles respectively for
the ket (bra), while �mN ( �m′

N ′ ) describes the distribution of the
N (N ′) atoms between the 2L sites. It should be noted that the
Hamiltonian Ĥ in Eq. (2) conserves the total number of atoms
either in the bra or in the ket. Moreover the dissipator D in
Eq. (3) only couples an element ρ

�mN ,N

�m′
N ′ ,N ′ with another element

ρ
�nN±1,N±1
�n′

N ′±1
,N ′±1 where the total number of particles in the ket and

bra is either increased or decreased by one particle. Last it
should be pointed out that since the steady state is unique and
the initial condition can be chosen to be in a pure state, the
steady state is exactly described by a much simpler ansatz of
the form

ρ̂ss =
∑

N

ρ̂N
ss =

∑

�mN , �m′
N ,N

ρ
�mN ,N

�m′
N ,N

| �mN,N〉〈 �m′
N,N |, (5)

where the total number of particles in the bra or in the ket is
the same. Hence, to find the steady state we can use a state
within one number block as an initial condition and evolve it
using the ansatz in Eq. (5) with the master equation (1). For
chains up to 7 rungs (14 sites), we compute the steady state
of the Lindbladian L by directly solving the linear equation
L(ρ̂) = 0 with ARPACK.

The exact ansatz (5) also allows us to gain a deeper
understanding of the system. In fact it is now possible to
compute the current for each number sector and thus realize
which sectors contribute most to the current [47]. We thus
fix �n̄ as in Fig. 2(a) and we compute the current in
each number sector N,JN , for various values of n̄1. More
precisely JN = ∑

p〈iJ ei(−1)p+1φ/2â
†
j,pâj+1,p + H.c.〉N/h̄ and

〈. . . 〉N means expectation over ρ̂N
ss . In Fig. 3 we show JN

as a function of the sector’s particle number N , for different
values of the gauge field φ. We observe that for low fillings
the current is mostly due to the sector with 1 particle and also
that the total current strongly varies as the gauge field changes.
In particular for φ = π (blue dashed line with ×), the current
is significantly lower than for φ = 0,π/2 (blue dashed lines
with respectively ◦ and +). For larger n̄av the particle number
sectors which contribute most to the current are those of larger
particle number and, for them, the current is much less affected
by a change in the gauge field.

The repartition of the density matrix in different number
sectors, as in Eq. (5), can give even further insight. Since the
different number sectors are only coupled by the dissipator, and
since the effectiveness of the coupling is strongly dependent on

FIG. 3. Particle current per number sector JN for average filling
n̄av = 0.05 (blue dashed lines), n̄av = 0.25 (red dot-dashed lines), and
n̄av = 0.5 (green continuous lines). For each n̄av we show the current
for different gauge fields: φ = 0 (◦), φ = π/2 (+), and φ = π (×).
Other parameters are L = 7 and K = J .

the spectrum in each number sector, by analyzing the spectrum
of the Hamiltonian in each sector we can foresee whether the
change of the phase φ would significantly affect the steady
state and hence the current. In the left panels of Fig. 4 [panels
(a), (b), (c)] we show the energy spectrum for total particle
numbers 2 and 3 for a ladder of 10 rungs. The spectrum changes
significantly, especially for N = 2; hence we expect a great
change in the steady state and in the current as φ changes. In
the right panels instead, (d), (e), (f), we show the spectrum
for a ladder of 7 rungs and either 7 or 8 hardcore bosons,
corresponding to half filling and half filling plus one atom,

FIG. 4. : Energy spectra for different particle filling and gauge
fields φ. For (a)–(c) the ladder has 10 rungs and total particle number
2 (blue squares) or 3 (red circles), i.e., close to 1/10 filling, while
for (d)–(f) the ladder has 7 rungs and total particle number 7 (blue
squares) or 8 (red circles), i.e., close to half filling. For panels (a),
(d) φ = 0; (b), (e) φ = π/2; and (c), (f) φ = π . For all these panels
K = J .
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(a) (b)

FIG. 5. Current vs n̄1 for phases φ = 0 (◦), φ = π/10 (∗), φ =
π/2 (+), and φ = π (×). In panel (a) n̄L = 0 while in panel (b)
n̄L = 0.5. Other parameters are L = 7 and K = 1.5J .

two number sectors which would also be directly coupled by
the dissipator. In this case, in contrast to the low-filling case
represented in the left panels, the energy spectrum does not
change so significantly and the curves of the spectrum are
always close to each other [48]. This is why at larger fillings a
much lower variation of the current as a function of the gauge
field φ is expected, which justifies the results in Figs. 2 and
3. It should be stressed that for nonequilibrium steady states,
unlike in (zero temperature) quantum phase transitions, it is
in general important to consider the full spectrum and not just
the low-energy part.

V. NEGATIVE DIFFERENTIAL CONDUCTANCE

Because of the presence of strong interactions, it is possible
for negative differential conductance to emerge [49,50].
However the conductance can also be affected by the gauge
field φ thus possibly altering its character. This is shown in
Fig. 5 where the current is depicted as a function of n̄1 for
different values of n̄L. In particular we show in panels (a) and
(b) respectively the cases for n̄L = 0 and n̄L = 0.5. In both
panels we observe a strong nonlinear response with �n̄ which
is very different for different values of the phase φ.

Interestingly, in panel (a) we observe a strong signature
of negative differential conductance for φ = 0. Increasing the
gauge field the response changes, see red (∗) for φ = π/10,
and becomes roughly linear, yellow (+) for φ = π/2, and then,
at φ = π , purple (×), the response can be superlinear; i.e., the
current increases more than linearly when �n̄ increases.

In panel (b), for n̄L = 0.5, the superlinear behavior is even
clearer, and this time it occurs for φ = 0, the case for which,

at lower n̄L, negative differential conductance occurred. This
behavior could have been anticipated from the results in Fig. 2.
There, for small values of the phase φ, the current is higher for
lower fillings while at large φ the current is in general lower
at lower fillings.

VI. CONCLUSIONS

The interplay between gauge fields and dissipation can
induce nonequilibrium phase transitions and markedly change
the properties of a system. Also the interplay between a gauge
field and interactions can induce quantum phase transitions.
In this work we have studied the interplay of dissipation,
gauge field, and interactions. In particular, we have shown
how interactions can strongly alter the ability to tune the
transport properties of a system using, for example, a gauge
field. Previous works [42] had shown that a gauge field can
be used to strongly vary the current flowing through two
coupled chains, and phase transitions could emerge. Here
we have shown that because of strong interactions, as the
filling increases, the sensibility of the system to the gauge
field is significantly reduced. Due to the interplay between
the gauge field and the filling, the conductance has a strong
nonlinear behavior as a function of the system parameters,
resulting also in a negative differential conductance which
can be tuned with the gauge field. Our calculations are exact
and greatly simplified thanks to the use of quantum number
conservation for the steady state density matrix (a method
which can be readily implemented in many setups and which
allows great insight into the systems). In the future it would
be important to extend the current work to include the role of
finite interactions and longer chains. It would be particularly
interesting to understand the fate of the nonequilibrium phase
transitions predicted for free bosons as the interaction is
smoothly changed from 0 to a finite large value. A different
nature of the particles (e.g., interacting fermions) or of the
baths (e.g., non-Markovian thermal baths) should also be
analyzed to understand deeply the transport properties of
dissipatively boundary-driven many-body quantum systems.
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