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Exploring coherence of individual excitons in InAs quantum dots
embedded in natural photonic defects: Influence of the excitation intensity
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The exact optical response of quantum few-level systems depends crucially on the exact choice of the incoming
pulse areas. We use four-wave mixing (FWM) spectroscopy to infer the coherent response and dynamics of single
InAs quantum dots (QDs) and study their pulse area dependence. By combining atomic force microscopy with
FWM hyperspectral imaging, we show that the retrieved FWM signals originate from individual QDs enclosed in
natural photonic defects. The optimized light-matter coupling in these defects allows us to perform our studies in
a wide range of driving field amplitudes. When varying the pulse areas of the exciting laser pulses, Rabi rotations
of microscopic interband coherences can be resolved by the two-pulse FWM technique. We investigate these
Rabi coherence rotations within two- and three-level systems, both theoretically and experimentally, and explain
their damping by the coupling to acoustic phonons. To highlight the importance of the pulse area influence, we
show that the phonon-induced dephasing of QD excitons depends on the pulse intensity.
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I. INTRODUCTION

Measuring and manipulating the coherence of single emit-
ters in semiconductor nanostructures, for example, excitons in
quantum dots (QDs), is a challenging research field within the
optics of condensed matter systems. The ongoing progress
in this field enhances the potential for implementing such
solid state structures as qubits in information technologies
exploiting optical interfaces [1]. To optimize the control of
single emitters, the interfacing of the solid state system with
light has to be controlled with high accuracy. Modern optical
techniques allow to create light beams of almost arbitrary
dynamics [2], frequency modulation [3], and even vortex
beams with higher angular momenta [4]. On the solid state
side, the epitaxy of QDs and chemical synthesis of nanocrystals
[5] has reached a tremendous quality. Additionally, the
fundamental interaction between light and the single emitter
has to be known in detail. Coherent nonlinear spectroscopy
of QD excitons provides a powerful technique to study the
interplay between the emitter and the optical fields, inferring
both local and propagative phenomena [6,7]. In particular, by
combining heterodyne detection with spectral interferometry,
one can access and control coherence dynamics in single
QDs by investigating their four-wave mixing (FWM) [8] and
six-wave mixing [9,10] responses.

Retrieving FWM signals from a single, strongly confined
exciton embedded in a planar sample is challenging [11] as
the signal coexists with a resonant background, dominating
FWM signals typically by 6-8 orders of magnitude in the field
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amplitude. It has recently been shown that using nanopho-
tonic devices with embedded QDs—specifically, microcavities
[8,9], photonic-waveguide antennas [10], and deterministic
microlenses [12]—one can penetrate efficiently across the
vacuum-dielectric boundary and intensify the electromagnetic
field locally around the QD. This drastically decreases the
inconvenient resonant excitation background, improving the
signal-collection efficiency considerably and allows for a
variation of the driving intensities over a wide range. In a
recent study, we have noticed that the dynamics of the FWM
signals generated in single QDs strongly depends on the pulse
areas acting on the exciton complexes [8].

Having recognized the importance of the exact knowledge
of the supplied pulse areas on the QD coherent response, in
this paper we focus on the intensity dependence of two-pulse
FWM signals. Therefore we introduce the concept of Rabi
coherence rotations (RCRs), which describe the rotation of the
light-induced optical coherence as a function of the pulse area
in analogy with the well-known Rabi rotations which describe
the pulse area dependence of optically generated exciton or
biexciton populations. We analyze the RCRs of individual
excitons strongly confined in InAs QDs. The damping of the
RCRs in a two-level system will be explained by the cou-
pling to longitudinal acoustic (LA) phonons. In a traditional
Rabi rotation measurement, e.g., differential transmission or
photocurrent experiments [13,14], the occupation of the QD
states is measured. Recently, also transient FWM [15] and
photon echo experiments [16,17] have been performed to
study Rabi rotations of exciton/biexciton and trion systems
in inhomogeneously broadened QD ensembles. In contrast,
in the two-pulse FWM experiments presented here, we are
dealing with the coherences within a single few-level system.
This makes FWM especially interesting for the investigation
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of the phonon coupling because the pure-dephasing type
coupling to the excitons directly acts on the coherences, while
the occupations are only indirectly affected by the phonons.
We extend the study of RCRs to a three-level system where
the interplay between the transitions makes the situation
more involved. In parallel, in Ref. [12], we have studied the
influence of the exciton-phonon coupling on the FWM signal
dynamics. We found that the creation of phonon wave packets
leads to a loss of exciton coherence within a few picoseconds,
which is called phonon-induced dephasing (PID). In this work,
we will show that the PID effect also depends crucially on the
pulse area of the driving laser pulses, when the pulse durations
are in the range of τ ≈ 0.5 ps and therefore in the range of the
typical time scale of the interacting phonons.

In the experiment, we use a train of short pulses generated
by a Ti:Sapphire laser, which is split into a pair with field
amplitudes E1 and E2, and with a variable temporal delay τ12

(positive for E1 leading). Using acousto-optic modulators, the
two optical beams are frequency shifted by radio-frequencies
�1 = 80 MHz and �2 = 80.77 MHz, respectively. The FWM
signal is selected in reflectance via interference with a
reference field shifted by 2�2 − �1. This FWM heterodyne
beating carries the third-order polarization proportional to
E�

1E2
2 and higher order terms with the same phase evolution,

which dominate at high pulse areas. Details regarding the
employed experimental configuration can be found in Ref. [9].

The QDs are embedded in an epitaxially grown,
one-lambda semiconductor microcavity, with the mirrors
formed by distributed Bragg reflectors (DBR). We use the
same sample as in Refs. [8,9]. Its quality factor of 170 results
in a cavity mode width of about 12 meV, well adapted to the
spectral spread of femtosecond pulses. The mode center can
be tuned between 910 and 915 nm, owing to a slight gradient
of the cavity width along the sample, in order to match the
QD transition energies. An exceptionally high efficiency
of the FWM signal retrieval has been recently reported for
this structure [8,9], as a result of two main factors. Firstly,
the impinging excitation penetrates into the structure, while
avoiding spectral filtering, and is amplified at the QD location
by the field cycling within the cavity. Secondly, as will be
discussed in more detail in the next paragraph, the sample
contains photonic defects [18,19] naturally forming during the
microcavity growth, providing extra spatial localization for
the optical excitation and extraction efficiency of up to 40%.

II. IMAGING

In Fig. 1(a), we show the sample topography recorded
with atomic-force microscopy (AFM), revealing oval defects
covering the whole surface. The close up scanning electron
microscope (SEM) image of a single defect in (e) provides a
typical lateral size of a few microns and a height of 10–15 nm.
Their shape is elongated along the [1 1 0] direction. The
distribution of the defects is random, with a characteristic
spatial density of 0.1μm−2. FWM hyperspectral imaging
[6,8,9] was carried out on the same area as for the AFM and
three exemplary spectral frames of this mapping are presented
in Figs. 1(b)–1(d) for photon energies of 1359.84, 1361.46, and
1362.57 meV, respectively. For each FWM map in (b)–(d), we
averaged over an energy window of 0.1 meV around the given

FIG. 1. Photonic defects. (a) Atomic-force microscopy carried
out on the low-Q microcavity revealing natural photonic defect on
the surface. (b)–(d) Examples of FWM images for two different
energies. The circles illustrate apparent correlation between AFM and
FWM. τ12 = 0.2 ps, (P1, P2) = (200, 400) nW. (e) Scanning electron
microscopy (SEM) image of one photonic defect. (f) SEM image of
the cross section of a photonic defect after cutting it with a focused
ion beam (FIB) along the dotted line in (e).

energy. By comparing numerous AFM with FWM mappings, it
can be recognized that the spatially localized spots with intense
FWM signals coincide with locations of photonic defects. As
a guide to the eye in (b)–(d) we plot circles marking bright
FWM features [white in (b), blue in (c), and green in (d)]. When
overlaying these circle patterns with the AFM image in (a), we
find that from the 36 circles 17 clearly coincide with distinct
defects on the surface of the sample. Another ten could be
associated with one of two defects. The remaining nine circles
cannot be associated with a specific defect because they mark
positions without distinct defects appearing at the surface.
We also note that the emission from the defects might occur
not perpendicularly to the sample surface and is conditioned
by the exact form of a deformation propagating through the
Bragg structure. This then leads to a slight mismatch between
the projected position of the FWM signal and the defect, as
can be seen in (a) when some of the circles hit the edge of
the defects. Similar correlations were found when comparing
AFM topography with photoluminescence mapping of the
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same area (not shown). These observations indicate that the
defects provide an enhanced in- and out-coupling efficiency
for the optical field [18,19].

To elucidate the reason for the increased FWM signals at
the positions of the photonic defects we have cut one of the
defects with a focused ion beam (FIB) and scanned the cross
section with an SEM. The result is given in Fig. 1(f) and shows
clearly the layered structure of the top and bottom DBR. The
QD layer, marked by the blue line, is located in the center of the
spacer between the two DBRs. The dotted red line at the top
highlights the lens shaped contour of the defect at the surface.
When we follow this pattern further down into the sample, we
find that the deformation is carried on into the layers of the
top DBR toward the QD layer. This microscopic patterning of
the photonic structure, in the form of a lenslike deformation
conically propagating towards the surface (marked as dotted
red line), leads to the efficient in- and out-coupling of the light
[18,19], as pointed out in simulations [20]. These defects allow
us to tune the driving field amplitudes at the locations of the
emitters over a large range. We have observed different spatial
patterns of the FWM signal, when varying the powers P1,2

of the pulses E1,2 (not shown). This is due to the distribution
of optical coupling conditions realized by different defects,
supplying different pulse areas θ1,2 at the QD layer, when
scanning the sample surface.

III. THEORY

Excitons in a QD provide an ideal playground to study
different few-level schemes within the same quantum system.
Restricting our study onto the time scale of a few picoseconds,
we can choose between a two- or a three-level system by
selecting circularly or linearly polarized light for the excitation,
respectively. As depicted in Fig. 2(a), an excitation with
right circularly polarized laser pulses drives the transition
between the ground state |g〉 and the single exciton state
|σ+〉. To reach the biexciton state |b〉 a second pulse with
left circular polarization would be needed. In general, the
cylindrical symmetry of the QD is broken, which leads to
the coupling between the single exciton states. As a result, the

(a) (b)

|g

|σ− σ+

|b

|g

|y |x

|b

σ+-pol.

σ+-pol. σ−-pol.

σ−-pol. x-pol.

y-pol. x-pol.

y-pol.

Δ Δ

δ

FIG. 2. Schematic picture of the QD exciton transitions.
(a) Circularly polarized excitation is restricted to the two-level system
gσ+. (b) Linearly x-polarized excitation reaches a three-level system
(gxb).

energy eigenstates are the linearly polarized states:

|x〉 = 1√
2

(|σ+〉 + |σ−〉), (1a)

|y〉 = i√
2

(|σ+〉 − |σ−〉). (1b)

The linearly x-polarized light is a superposition of σ+ and σ−
and therefore the biexciton state is naturally reached with a
single pulse. This shows that the system has to be modeled
by three levels, when driven with x-polarized pulses. This
scenario is summarized in Fig. 2(b), where also the energy
reduction � of |b〉 with respect to twice the single exciton
energy is of importance, i.e.,

� = 2h̄ωx − h̄ωb, (2)

which is called the biexciton binding energy (BBE). � is
usually on the order of a few meV [8].

The coupling between the two σ excitons further leads to
an energy splitting between the linearly polarized excitons,
known as fine structure splitting (FSS) δ, which in our
case is typically on the order of a few tens of μeV [8].
One consequence of the FSS is that the coherences in the
σ -polarized basis are not stationary, but transform into each
other on the time scale of tens to hundreds of picoseconds
[8,11,21]. Therefore it is also necessary to restrict the studies
to times in the few picosecond range to certainly reduce the
whole system to only two levels in the case of excitation by
circularly polarized pulses.

A. Two-level system

We first focus on the instructive case of the two-level
system under σ+-polarized excitation. The Hamiltonian for
the coupled exciton-light system in the usual rotating wave
approximation is given by

H (2) = h̄ωσ |σ+〉〈σ+| −
2∑

i,j=1

h̄M(2)|i〉〈j |, (3)

where the interaction matrix is given by

M(2) =
(

0 M2

M∗
2 0

)
. (4)

The transition matrix element

M2 =
∑

n

μ

h̄
eiϕnEn(t) =

∑
n

1

2
eiϕnω

(n)
R (t)e−iωLt (5)

is determined by a sequence of laser pulses with the pulse areas

θn = 2

h̄

∫
μ|En(t)|dt, (6)

the dipole moment μ, relative phase factors with ϕn and the
instantaneous Rabi frequencies ω

(n)
R (t), which describe the

temporal envelopes of the pulses En. The central frequency
of the laser pulses is ωL.

When considering a single, resonant excitation, the final
properties of the exciton state are unequivocally determined
by the pulse area θ . The final occupations of the two states
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FIG. 3. Excitation in the two-level system. (a) Occupation of the
single σ+-exciton state as a function of pulse area. (b) Absolute value
of the microscopic polarization between |g〉 and |σ+〉. (c) FWM
amplitude as a function of pulse areas θ1 and θ2 (2D-RCRs).

fσ = 〈|σ+〉〈σ+|〉 and fg = 〈|g〉〈g|〉 and the microscopic
polarization pgσ = 〈|g〉〈σ+|〉 are given by

fσ = sin2

(
θ

2

)
, (7a)

fg = 1 − fσ , (7b)

pgσ = i

2
sin (θ ). (7c)

The exciton occupation fσ is plotted in Fig. 3(a) and shows
the periodic Rabi rotations, where a pulse area of θ = π fully
inverts the system from fσ = 0 to fσ = 1. The RCRs in (b)
accordingly vanish when the system is either fully excited or
de-excited and is maximal |pgσ | = 0.5 when the system is in
an equal superposition of |g〉 and |σ+〉.

The spectroscopy method to gain information about the
polarization in the system is the FWM technique. To model the
amplitude of the FWM signal SFWM in the regime of ultrafast
laser pulses, we choose the pulse functions in Eq. (5) in the
delta-pulse limit, i.e.,

|En(t)| = h̄

2μ
θnδ(t − tn). (8)

To generate a FWM signal, the system has to be excited by
at least two pulses. While through a three-pulse excitation,
the occupations in the system can be analyzed [8], we
here restrict ourselves to the two-pulse scheme analyzing
the coherence properties. The FWM-polarization after the
two-pulse excitation is selected by a specific combination
of the appearing phase factors eiϕn . The term proportional
to the phase factor with 2ϕ2 − ϕ1, according to the choice
of radio-frequency shifts 2�2 − �1 in the experiment, will
give us the FWM-polarization pFWM. The detected signal
amplitude will then be proportional to the absolute value of
this polarization.

While the delay dynamics of the FWM signals is in
detail investigated in Ref. [8], we are here interested in its
dependence on the pulse areas θ1 and θ2 of the two driving
pulses E1 and E2, which is given by

SFWM ∼ |pFWM| =
∣∣∣∣sin(θ1) sin2

(
θ2

2

)∣∣∣∣. (9)

This result for the FWM amplitude is shown in Fig. 3(c) as
a function of θ1 and θ2, we call this kind of plot 2D-RCRs.
We find the strongest signal for odd multiples of θ1 = π/2
and θ2 = π , as found in pioneering FWM experiments on
single quantum states [22]. This can be easily understood when
recalling the Bloch sphere representation of the exciton state.
To get a strong signal the polarization after the first pulse has to
be maximal, i.e., the Bloch vector has to point on the equator of
the sphere, which is found for θ1 being odd multiples of π/2.
The FWM signal is proportional to the FWM polarization after
the second pulse, therefore the Bloch vector should still point
to the equator after the second pulse. This is achieved with a
half rotation of the Bloch vector, i.e., for pulse areas θ2 of odd
multiples of π .

Within this basic two-level system the dynamics of the
FWM signal is trivial, because without any coupling to
phonons or any other type of dephasing it is just a constant
function of the delay τ12 between the pulses [8]. Nevertheless,
the RCRs are important on the one hand to maximize the
FWM signal and on the other hand to perform a calibration
that correlates the pulse intensities in the experiment to pulse
areas in the theory. In Sec. IV, we will see that the details of
the exciton-phonon coupling lead to a damping of the RCRs,
which makes the intuitive picture of the two-level system more
involved.

B. Three-level system

We increase the complexity and turn to the linearly x-
polarized excitation sketched in Fig. 2(b). The Hamiltonian
for the coupled exciton-light system is given by

H (3) = h̄ωx |x〉〈x| + (2h̄ωx − �)|b〉〈b|

−
3∑

i,j=1

h̄M(3)|i〉〈j |. (10)

We now assume that the spectral width of the driving laser
pulses is larger than the BBE � and centered around the single
exciton energy h̄ωx , and that the ground state to biexciton
transition is not driven. This is modeled by the transition matrix

M(3) =
⎛⎝ 0 M3 0

M∗
3 0 M3

0 M∗
3 0

⎞⎠, (11)

where the matrix element is given by

M3 =
∑

n

μ

h̄
eiϕnEn(t)

∑
n

1

2
√

2
eiϕnω

(n)
R (t)e−iωLt (12)

and the pulse area reads

θn = 2
√

2

h̄

∫
μ|En(t)|dt. (13)

At this point it is important to note that compared to Eq. (6) the
pulse area is scaled by an additional factor of

√
2. The reason

for this are the final occupations and microscopic polarizations
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FIG. 4. Excitation in the three-level system. (a) Occupations of
all three states (fg , fx , and fb) as a function of pulse area. (b) Absolute
values of the polarizations (|pgx |, |pxb|, and |pgb|). [(c) and (d)] FWM
amplitudes as a function of the pulse areas θ1 and θ2 for τ12 = 0. (c)
gx transition and (d) xb transition.

in the system, which are then given by

fb = sin4

(
θ

4

)
, (14a)

fx = 1

2
sin2

(
θ

2

)
, (14b)

fg = cos4

(
θ

4

)
, (14c)

pgx = i√
2

sin

(
θ

2

)
cos2

(
θ

4

)
, (14d)

pxb = i√
2

sin

(
θ

2

)
sin2

(
θ

4

)
, (14e)

pgb = −1

4
sin2

(
θ

2

)
. (14f)

Due to this definition of the pulse area, the maximum of the
exciton occupation fx is found for a pulse area of θ = π ,
as in the two-level system. All three occupations are shown
in Fig. 4(a) as a function of pulse area. We find that the
maximal single exciton occupation only reaches fx = 0.5.
This shows that the system cannot be prepared purely in |x〉
by a single pulse. However, for a 2π pulse, the system is
fully inverted, i.e., it is purely in |b〉. Overall, the system has
a pulse area dependent periodicity of 4π . When focusing on
the microscopic polarizations in Fig. 4(b), we see that the
optically inactive polarization pgb is only about half as strong
as the two which directly couple to the optical field, namely pgx

and pxb.
To determine the FWM signals in the three-level system

for δ pulses, we follow the same strategy as described above.
Now the two optical active polarizations pgx and pxb lead to

FWM signals. The amplitudes are given by S
gx
FWM ∼ |pgx

FWM|
and Sxb

FWM ∼ |pxb
FWM| with

p
gx
FWM = sin

(
θ1

2

)
cos2

(
θ1

4

)
cos2

(
θ2

2

)
− 2 sin

(
θ1

2

)
sin2

(
θ1

4

)
cos

(
θ2

2

)
sin2

(
θ2

4

)
× exp

(
i
�

h̄
τ12

)
, (15a)

pxb
FWM = sin

(
θ1

2

)
sin2

(
θ1

4

)
cos2

(
θ2

2

)
− 2 sin

(
θ1

2

)
cos2

(
θ1

4

)
cos

(
θ2

2

)
sin2

(
θ2

4

)
× exp

(
−i

�

h̄
τ12

)
. (15b)

Due to the mixing of the two polarizations into both FWM
signals, we find a quite involved dependence on the pulse
areas θ1 and θ2 and an influence of the delay τ12 between the
two exciting pulses. This periodicity of the delay is determined
by the BBE � because the relative phase between pgx and pxb

rotates with their energy difference, i.e., with �. Note that
the commonly employed representation of Rabi rotations, as
evolution of a state vector on a Bloch sphere, does not hold
here anymore due to the higher dimensionality of the state
vector.

Figures 4(c) and 4(d) show the 2D-RCRs of the FWM
amplitudes for the gx and the xb transitions, respectively. For
these pictures, the pulse delay was chosen to τ12 = 0. We find
that the strength of the FWM signal strongly depends on the
pulse areas of both pulses and does not simply recover the
rotations of the polarizations for a single pulse. The strongest
signals are achieved for θ2 = 2π , which in analogy to the
two-level system corresponds to a fully inverting pulse. But
depending on the first pulse area the maxima of S

gx
FWM and

Sxb
FWM do not coincide. The first one for S

gx
FWM [see Fig. 4(c)] is

found for θ1 > π , while the first one for Sxb
FWM [see Fig. 4(d)]

appears at θ1 < π . For the special case of multiples of θ1 =
2π , all FWM signals vanish, which is in agreement with the
vanishing polarizations for this pulse area in (b).

We see that already the consideration of a third level
makes the RCRs much more complex. Here it is not possible
to optimize both of the FWM signals at the same time.
The dynamics of the FWM in a three level system is often
dominated by quantum beats, which arise due to the different
transition energies in the system. In Ref. [8], it was shown that
the appearance of these beats strongly depends on the chosen
pulse areas, which already shows the importance of an exact
knowledge and calibration of the pulse areas in the experiment.

Details of the 2D-RCR structure change significantly when
increasing the delay to half a BBE period τ12 = πh̄/� as can
be seen in Fig. 5. The maxima stay approximately at the same
positions, but for smaller and larger θ2 the picture looks quite
different. This demonstrates that not only the specific choice of
the pulse areas is crucial for the FWM signals but also the exact
knowledge of the pulse delay is important. Animations for the
complete time-dependence of the 2D-RCRs between Figs. 4
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and 5, showing the smooth transition between the pictures, can
be found in Ref. [23].

Assuming a positive delay, i.e., pulse 2 arrives after pulse
1, in the three-level system it is also possible to retrieve
FWM signals for the phase combination 2ϕ1 − ϕ2, which is
not possible in two-level systems. In the phase combination
2ϕ2 − ϕ1, this corresponds to negative delays τ12 < 0 for
which E2 arrives before E1. In this case the two FWM signals
are the same and they are proportional to the polarization
between the ground state and the biexciton state after the
first pulse, i.e., S

gx
FWM,τ<0 = Sxb

FWM,τ<0 ∼ |pgx/xb
FWM,τ<0| ∼ |p(1)

gb |.
Therefore the signal is called two-photon coherence. The pulse
area dependence is given by

p
gx/xb
FWM,τ<0 = sin2

(
θ1

2

)
sin

(
θ2

2

)
cos2

(
θ2

4

)
. (16)

It is interesting to note that the signals are 2π -periodic
depending on θ1, while they are 4π -periodic for positive
delays. Another striking difference is that the signals vanish
for θ2 = 2π , where they were maximal for positive τ12.

C. Phonon coupling in a two-level system

The main mechanism that leads to the dephasing of the
exciton state on a picosecond time scale is the coupling to
longitudinal acoustic phonons [14,24–27], where the dominant
interaction in InGaAs-based QDs is the deformation potential
coupling [28]. The Hamiltonian of the two-level system
including the coupling to phonons reads

H
(2)
ph = h̄ωσ |σ+〉〈σ+| −

2∑
i,j=1

h̄M(2)|i〉〈j |

+
∑

q

h̄gq(bq + b†q)|σ+〉〈σ+|︸ ︷︷ ︸
Hx−ph

+
∑

q

h̄ωqb
†
qbq, (17)

where b
†
q (bq) are the phonon creation (annihilation) operators

with wave vector q and a linear dispersion ωq = cLAq is
assumed. The phonon energies are in the range of a few
meV and cannot lead to transitions between the exciton states.
Therefore the interaction is modeled via the pure dephasing
coupling between the exciton state |σ+〉 and the phonons. The

FIG. 6. Phonon spectral density. Spectral density J of the coupled
phonons as a function of the phonon energy h̄ωph for electron and
hole localization length ae = 8 nm and ah = 2 nm, respectively.

related coupling constant reads [29]

gq =
√

q

2ρcLAh̄V

[
Dee

−(qae)2/4 − Dhe
−(qah)2/4

]
. (18)

On the one hand, it depends on the semiconductor material
via the mass density ρ = 5.37 g/cm3, the sound velocity
cLA = 5110 m/s, and the deformation potential coupling
constants De/h for electron/hole and on the other hand on the
QD geometry via the electron and hole localization lengths
ae/h. V is a normalization volume. From gq, we can calculate
the phonon spectral density

J (ωph) =
∑

q

|gq|2δ(ωph − ωq) , (19)

which is a measure for the exciton-phonon coupling strength
depending on the phonon energy h̄ωph.

Figure 6 shows the phonon spectral density for a QD
with localization lengths ae = 8 nm and ah = 2 nm, and
deformation potentials De = 7 eV and Dh = −3.5 eV [29],
which will be used in Sec. V. Note that due to numerical
reasons, we here assume a spherical QD but can mimic a lens
shaped dot by choosing quite different values for ae and ah. We
see that the energies of the coupled phonons basically spread
between 1 and 14 meV. The coupling becomes ineffective for
very small energies and energies above 14 meV.

The influence of the exciton-phonon coupling on the
dephasing can best be understood in the dressed state basis,
which is given by the eigenstates of the coupled exciton-light
system [30]. When the light field is in resonance with the
exciton transition, the dressed states are given by

|ψ±〉 = 1√
2

(|g〉 ∓ |σ+〉) (20)

with the energies

E± = 1
2 h̄(−ωpol ± ωR) , (21)

where h̄ωpol = ∑
q |gq|2/ωq is the polaron energy. The energy

splitting between the two dressed states, E+ − E− = h̄ωR, is
therefore determined by the Rabi frequency. Keeping in mind
that the Rabi frequency is proportional to the amplitude of the
driving laser fields, this is also the case for the splitting of the
dressed states.
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Transformed into the dressed state basis, the exciton-
phonon coupling Hamiltonian reads

Hx−ph =
∑

q

h̄

2
gq(bq + b†q)(|ψ+〉〈ψ+| + |ψ−〉〈ψ−|

− |ψ+〉〈ψ−| − |ψ−〉〈ψ+|) , (22)

where now transitions between the dressed states are medi-
ated via the emission or absorption of a phonon given by
b
†
q|ψ−〉〈ψ+| and bq|ψ+〉〈ψ−|, respectively. In analogy to the

rotating wave approximation in the Jaynes-Cummings model,
we can neglect the processes that emit a phonon and excite the
system or absorb a phonon and de-excite it, i.e., b

†
q|ψ+〉〈ψ−|

and bq|ψ−〉〈ψ+|, in the discussion. Because this study is
restricted to temperatures of T ≈ 5 K, we can also assume
that only a small amount of phonons is thermally occupied
and the phonon coupling is dominated by a relaxation from
the upper dressed state to the lower one by the emission of
phonons [26,31–33].

Together with the phonon spectral density we can conclude
that the phonon effect on the exciton system will strongly
depend on the laser intensity. When the splitting of the dressed
states, which is governed by the laser intensity, agrees with
large values of the spectral density J the interaction is stronger
than for very small and large splittings, i.e., for small and large
laser intensities [33].

To calculate the exciton polarizations in the phonon coupled
system, from which we retrieve the FWM signals, we use a
correlation expansion and truncate the equations of motion on
the second order. The full set of equations can be found in
Ref. [34]. The FWM signal is then calculated numerically via
a Fourier expansion with respect to the phases ϕ1 and ϕ2 [35].

IV. FWM INTENSITY DEPENDENCE
IN AN EXCITON-BIEXCITON SYSTEM

As highlighted in the Sec. III, the pulse area is a decisive
parameter when performing FWM spectroscopy of exciton
complexes, as it governs not only the signal amplitudes, but
also dynamics and couplings [8]. We assume that the system
is driven with Gaussian pulses of the form

|En(t)| = h̄

2μ
ω

(n)
R (t) = En exp

[
−1

2

(
t − tn

τ

)2
]

, (23)

where En is the amplitude and τ the duration of a pulse arriving
at tn. Then the power of the pulse is Pn = |En|2, which leads
to a pulse areas with

θn ∼ τ
√

Pn . (24)

Note that this pulse duration corresponds to a full width at half
maximum of 2

√
ln(2) τ of the intensity.

A. Two-level system

When we apply the co-circular excitation, as described in
Sec. III, we do not excite the biexciton state. When we further
restrict our investigations to the few picosecond time scale,
the other circularly polarized exciton does not contribute to
the signals, such that we are dealing with a two-level system.

1356 1358 1360 1362 1364

(a) (b)

(c) (d)

τ <0.2ps

τ ≈0.6ps

τ ≈2ps
FWM
gσ+

0 10 20 30 40 50

τ ≈3.5ps 0.1

0.2

0.3

0 1 2 3 4

0 10 20 30 40 50

0 1/2 1 3/2 2
i=1, θ2 =π

i=2, θ1 = π
2

F
W

M
am

pl
./
E 1

in
te

ns
.

photon energy (meV)

F
W

M
am

pl
.

√
P1

√
nW in

v.
R

C
R

pe
ri

od
√

nW
−1

pulse duration τ (ps)

F
W

M
am

pl
.

√
Pi

√
nW

pulse area θi (π)

FIG. 7. RCRs in a two-level exciton system. (a) Spectrally-
integrated FWM amplitude as a function of θ1 and θ2 showing RCRs.
Measurement in blue and orange for τ12 = 0.2 ps, theoretical fits
from Eq. (9) in dashed yellow. Full theory including exciton-phonon
coupling in dotted violet for τ12 = 0.1 ps and τ = 200 fs pulses. (b)
Spectral shape of the exciting pulses with different durations τ used
in (c) and FWM amplitude of targeted gσ+ transition (filled area). (c)
FWM amplitude as a function of

√
P1 for different pulse durations

τ . Co-circular polarization of E1,2 and τ12 = 0.2 ps for (a)–(c). (d)
inverse RCR period retrieved from (c) against pulse duration from (b)
with linear fit.

Within this system the ordinary RCRs should appear, which
provide a calibration for the pulse areas.

In Fig. 7(a), we present measurements of the RCRs, when
probing the FWM as a function of θ1 or θ2 and fixing
the respective other. We see that the measured RCRs are
damped for growing pulse areas. In traditional Rabi rotation
measurements, where the occupation (not the coherence as in
our FWM study) after a single pulse excitation is measured
as a function of the pulse area, the damping of the rotations
happens due to the coupling to phonons [14,25–27,36–42].
As explained in Sec. III the exciton-phonon coupling leads to
transitions between the two dressed states. For small laser
intensities, the splitting of the dressed states is small and
corresponds to minor values of the phonon spectral densities.
Therefore the interaction between the exciton and the phonons
is negligible and the RCRs follow the unperturbed harmonic
prediction. When the pulse intensities and thereby the pulse
areas increase also the dressed state splitting grows and
gets into the range of larger values of the phonon spectral
density. This leads to a rising influence of the phonons, which
causes stronger dephasing. This dephasing directly leads to
a decrease of the exciton coherence and thereby also affects
the occupation. In the full picture of the Rabi population and
coherence rotations, one finds the fading of the measured signal
with increasing pulse areas [26]. When increasing the pulse
intensities even further the splitting of the dressed states would
reach energies that are larger than the energy of the maximal
exciton-phonon coupling in Fig. 6. From this point on, the
dephasing influence of the phonons would shrink again and
the signals should recover, which is called reappearance of
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the Rabi rotations in the literature [26,43]. While this regime
cannot be reached easily with the laser pulses used in our
approach, it was recently realized by using excitations with
chirped laser pulses [44].

However, for excitations with ultrafast laser pulses with
durations τ � 200 fs the measured damping of the FWM
amplitude in Fig. 7(a) (blue and orange) is too strong to happen
only due to phonon assisted transitions between the dressed
states. In traditional single-pulse Rabi rotation measurements
at low temperatures, multiple flops could be resolved [26].
In our case, the strongest contribution to the discovered
significant damping lies in the dynamical character of the
two-pulse FWM technique and the choice of the short delay
τ12 = 0.2 ps between the two pulses. It is known that the FWM
amplitude performs the characteristic PID drop (see Fig. 11)
for τ12 > 0 because of the coherence loss accompanying the
emission of a phonon wave packet [12]. The dependence of this
effect on the driving pulse areas will be discussed in Sec. V.
Because the FWM signal is absent before the second laser
pulse and the described drop within a few picoseconds, the
FWM amplitude has a maximum at delays τ12 < 1 ps. We will
see in Sec. V that this maximum of the FWM amplitude shifts
in delay τ12 as a function of the pulse area. Typically, in the
measurement, a short delay is chosen in order to minimize
the dephasing between the pulses and retrieve a strong FWM
signal. The delay is therefore in the range of the FWM
maximum and the amplitude for varying pulse areas is affected
by the slight changes of the FWM dynamics, i.e., the position
of the maximum.

Note that this complex dependence of the exciton-phonon
coupling on the laser pulse intensity is not covered by
models that treat the interaction by a single phenomenological
dephasing time T2. The RCRs retrieved from the full theory
including the exciton-phonon coupling is given as dotted violet
curve for the QD size considered in Fig. 6 and Sec. V, pulse
durations of τ = 200 fs and for a delay of τ12 = 0.1 ps.
We see that the damping of the FWM amplitudes is well
reproduced by the model. We also find that the decay can
be simulated by simply adding an exponential damping of the
FWM amplitude as function of the pulse area to Eq. (9). The
fits in the plot (dashed yellow) still confirm the predicted pulse
area dependencies satisfyingly. It is quite remarkable that for
this range of small pulse areas the complex interplay between
the exciton and the phonons and the specific choice of the pulse
delay can be modeled by a single exponential laser intensity
dependence.

Coming back to the initial motivation for this measurement,
it serves as a calibration of the pulse area for the following
experiments in the three-level system. Specifically, we find
that

θ = π/2 =̂
√

P ≈ 13.1
√

nW . (25)

So far, we have used pulse durations in the range of
τ � 200 fs to excite the system. For the investigation of the
PID in Sec. V, we will use longer laser pulses. Therefore
we briefly wish to characterize also the RCRs for increased
pulse durations. Between τ = 0.4 ps and 0.8 ps we shape the
pulses spectrally as shown in Fig. 7(b), which also presents
the FWM signal of the gσ+ transition. For durations above
1 ps we employ a picosecond Ti:Sapphire laser, instead of
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FIG. 8. RCRs on an exciton-biexciton system. (a) gxb system
identified by measuring its coherence dynamics via the τ12 depen-
dence of the FWM signals under colinear polarization of E1,2. gx
(xb) is represented with green (orange) traces, open symbols indicate
the noise level. Fitted curves in blue. (Inset) FWM spectrum at
τ12 = 0.5 ps. (b)–(d) Measured and calculated FWM amplitudes
as a function of θ1 ∼ √

P1 for fixed θ2, P2 = (250, 600, 1300) nW,
respectively. The QD is the same as in Fig. 7.

a femto-second one. In Fig. 7(c), we now show the FWM
amplitude as a function of

√
P1 for the different pulse durations

τ . For clarity, in Fig. 7(b), the narrow lineshape of the
excitation pulse yielding the violet curve in (c) (τ ≈ 3.5 ps)
is not presented. We directly see that the RCR period shortens
with increasing pulse duration, such that less pulse power P1 is
needed to attain θ1 = π/2. To get a more quantitative picture,
we fit the RCRs with the expected | sin(θ1)| dependence and
extract the Rabi frequency. Figure 7(d) summarizes the fitted
inverse RCR periods as a function of the pulse duration τ ,
which was extracted from the Fourier transforms of the pulse
spectra in (b). Note that the duration of the longest pulse was
estimated to τ = (3.5 ± 0.7) ps. The points confirm the linear
relation between the pulse area and the pulse duration from
Eq. (24) as can be seen from the linear fit in blue.

B. Three-level system

The intensity dependence of the FWM signals becomes
more intriguing when going beyond a two-level system.
The natural extension is to consider the linearly polarized
three-level system gxb in a neutral QD, as described in
Sec. III B. Such a gxb system, with a BBE of � = 3.6 meV,
has been identified by measuring the τ12 dependence of
the FWM signals, as described in Ref. [8]. It was carried
out on the same QD as in Fig. 7, but now under colinear
polarization aligned along one of the fine-structure axes. The
characterization of the system is presented in Fig. 8(a). The
measured coherence dynamics of the gx and the xb transition
display pronounced beatings for τ12 > 0, with a period of
T� = 2πh̄/�. Additionally, we measure FWM signals for
τ12 < 0, equally strong on both transitions, induced by the
two-photon coherence between the ground state |g〉 and the
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TABLE I. Parameters for the pulses used in Fig. 8.

panel
√

P2

(√
nW

) √
2 θ

exp
2 (π ) θfit

2 (π )

b) 15.8 0.85 0.7
c) 24.5 1.35 1.25
d) 36.1 1.95 2

biexciton |b〉 [8]. The FWM spectrum of the system is shown in
the inset, which confirms the BBE between the two transitions.

In Figs. 8(b)–8(d), we present the measured FWM ampli-
tudes of gx (green) and xb (orange) and the corresponding
simulations (blue) as a function of

√
P1 (θ1) for fixed

√
P2

(θ2), respectively. Note that only in the χ (3) regime, i.e., for
small pulse areas, we recover that the gx signal is twice as
strong as the xb one, as expected when considering Feynman
diagrams of the gxb system [11]. With increasing

√
P1 (θ1) the

FWM amplitudes exhibit oscillations on both, the gx and the
xb transitions. However, now the two generated RCRs depend
strongly on

√
P2 (θ2) and are more complex than in the case

of a two-level system in Fig. 7. Comparing the measured data
with the simulated curves we find an excellent agreement. For
the simulations we choose τ12 = 0 and added an exponential
decay for the θ1 dependence in Eqs. (15) as explained in
Sec. IV A. Note that the damping is also correctly reproduced
in a microscopic model including the coupling to phonons. To
give a quantitative comparison between the pulse intensities in
the experiment and the pulse areas in the theory, we summarize
the crucial parameters in Table I. From the pulse intensities P2

in each panel (b)–(d) in Fig. 8, listed in the table, and the
calibration of the pulse areas in the experiment in Eq. (25) we
find the pulse areas in the experiment θ exp

2 . Due to the rescaling
of the transition matrix element in Eq. (12), we have to compare
the scaled values

√
2 θ

exp
2 with the theoretical fitted pulse areas
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FIG. 9. 2D-RCRs on an exciton-biexciton system. [(a) and (b)]
Measured (

√
P1,

√
P2)-dependence of the FWM amplitude at gx in (a)

and xb in (b). [(c) and (d)] Corresponding simulations with additional
exponential damping.

FIG. 10. FWM for two-photon coherence. FWM amplitudes as a
function of pulse intensity

√
P1 (P2 = 600 nW) for a negative delay

of τ12 = −2 ps. gx (xb) is represented with a green (orange) trace,
open symbols indicate the noise level. Fitted curve in blue.

θfit
2 in the table. Through the three values at hand, we find a

reasonable agreement between experiment and theory.
We expand the measurements to a continuous picture, as it

was given in Figs. 4(c) and 4(d). This illustrates the interplay
between the amplitudes of the gx and the xb transitions. The
result of the measurement is shown in Figs. 9(a) and 9(b) for
the gx and the xb FWM signal, respectively, as a function
of

√
P1 and

√
P2. To achieve a reasonable agreement of the

simulation with the measured data, we add an exponential
damping to both pulse areas and show the same 2D-RCRs as
in Sec. III B but with adjusted axis ranges and decay rate in
Figs. 9(c) and 9(d) corresponding to (a) and (b). We directly
see the excellent agreement of the pictures. The most striking
feature is that both signals vanish for θ1 ≈ 2π . For smaller θ1

the gx-signal maximum in (a) follows a positive slope, while
the xb-signal maximum in (b) tends in the other direction,
i.e., to smaller θ1 for growing θ2. These signatures are also
found in the simulations in (c) and (d). Although the signals
are much weaker for θ2 > 2π , which makes an identification
of the patterns quite difficult, we see that the maximum for
gx in a) has a negative slope as in the simulation in (c). The
maximum in (b) for large θ1 shifts to larger values for a growing
θ2, which is also in agreement with the theory in (d).

To finally complete the picture of all possible coherences
in the three-level system, we now focus on the RCRs of the
two-photon coherence measurement, i.e., for negative delays.
The two FWM signals are shown in Fig. 10 as a function
of the amplitude of the first pulse

√
P1. Both signals agree

very well, as it is expected from the theory. The theoretical
fit following Eq. (16) is given as blue line. We find a good
agreement between the measured data and the predicted
sin2(θ1/2) dependence. Note that the data were taken on a
different QD than the data for the rest of the section, which
explains the slight discrepancy of the pulse areas. We here find
that

√
P1 ≈ 25

√
nW corresponds to θ1 = 2π , while in Fig. 9

θ1 = 2π is found for
√

P1 ≈ 30
√

nW.

V. PHONON-INDUCED DEPHASING

This last section revisits the exciton-phonon coupling in a
two-level system. The aim is to demonstrate that the dynamics
in such basic two-level systems does depend on the pulse
areas when the coupling to phonons has a strong influence.
The excitation of an exciton in a single QD on the ultrafast
time scale is accompanied by the emission of a phonon wave
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FIG. 11. Phonon-induced dephasing. FWM amplitude as a
function of delay τ12 for pulse durations of τ = 400 fs at T = 5 K.
The fitted electron and hole localization lengths are ae = 8 nm and
ah = 2 nm, respectively. (Inset) FWM spectrum in green, laser pulse
spectrum in red.

packet [33]. The reason is the rapid deformation of the lattice
in the QD region to form the new equilibrium state in the
presence of the exciton, i.e., a polaron. If this polaron creation
happens on the picosecond time scale or faster, a phonon
wave packet is emitted as a shock wave. The phonon creation
process leads to the loss of coherence in the excitonic part of
the system, which can be detected as rapid drop of the FWM
signal on the order of a few picoseconds, known as PID. In
a recent study, we have brought investigations of the PID
effect from QD ensembles [45,46] to a single QD [12]. We
found that the effect gets more pronounced when increasing
the temperature. Calculations predict that the PID effect
should not depend on the pulse areas in the δ-pulse limit.
Interestingly, when extending the pulses into the range of a few
hundred femtoseconds the coupling efficiency between the
exciton and the phonons should depend strongly on the pulse
intensity as explained above [33]. While in the δ-pulse limit
only single wave packet emission can be explained, extended
excitations may lead to multiple creations and destructions
of the polaron during a single pulse. These also induce the
emission of sequences of multiple phonon wave packets [33].

Figure 11 shows an exemplary result of the PID effect after
the excitation with longer laser pulses. It shows the FWM
amplitude as a function of the delay τ12 for gx transitions in
two different QDs but in the same defect. A FWM spectrum
taken from this defect is shown as an inset in Fig. 11 in green
together with the laser pulse spectrum in red. The blue data
points are taken from the transition in the center of the pulse
spectrum (gx1 in the inset), the orange ones from a transition at
the edge of the pulse spectrum (gx2 in the inset). Thus the latter
one was excited with less intensity. Obviously, the PID drop
is much more pronounced for the system that is driven with
more intensity. From simulations with extended laser pulses
of τ = 400 fs within the correlation expansion formalism [34]
we found that the curves can be reproduced by choosing
different pulse areas for the two driving pulses. We find an
excellent agreement between measurement and simulation for
θ1 = θ2 = 0.93π and 0.99π , which are shown as solid orange

and blue line in Fig. 11, respectively. The difference of the
pulse areas is reasonable for the two positions in the pulse
spectrum in the inset. In a two-level system that is not coupled
to phonons θ1 ≈ π would lead to a vanishing FWM signal
because the polarization after the first pulse would be zero. The
phonons now lead to dephasing during the extended first pulse,
which results in a finite polarization that can be transferred into
the FWM signal. Note that the data was taken for a temperature
of 5 K. For such low temperatures the theory in the δ-pulse
limit does not predict drops of the FWM signal on the order
of 60%, as it is found here. Therefore the increased interaction
efficiency between the exciton and the phonons for the longer
pulse excitation is responsible for the strong PID effect.

This fit of the dynamics of the PID drop motivated us to
use the localization lengths of ae = 8 nm and ah = 2 nm for
electron and hole, respectively (cf. the phonon spectral density
in Fig. 6). These sizes mimic a rather flat lens shaped dot,
which is in agreement with STEM measurements on similar
QDs [47].

To show that the PID effect is dominantly governed by the
phonon emission after the first laser pulse, which launches
the phonon wave packet that leads to the PID effect, we
additionally show simulations for (θ1,θ2) = (0.93,0.99)π and
(0.99,0.93)π as dashed lines. The deviation from the θ1 = θ2

cases are very small. Because both cases agree in the first
pulse area this confirms the assumption. The second pulse just
transfers the coherence into the FWM signal and its detailed
influence on the coupled exciton-phonon system is not of great
importance.

There is still one open aspect about the dynamics depending
on the pulse area, i.e., the shift of the FWM maximum with
changing pulse area mentioned in Sec. IV. In Fig. 11, we see
this effect quite clearly. Although here the pulses are longer
than for the RCRs investigated in Sec. IV, this shift still remains
for pulses in the τ � 200 fs range, but is less pronounced.

VI. CONCLUSIONS

In summary, we have studied Rabi coherence rotations
(RCRs) within different few-level systems of a QD exciton
complex. We used natural photonic defects that allowed for an
efficient in- and out-coupling of the optical fields, facilitating
the retrieval of FWM signals. The RCRs in a two-level system
that were realized by circularly polarized driving, worked as
calibration for the pulse areas in the experiment. They also
showed that the details of the exciton-phonon coupling play an
important role when describing the damping of the rotations
with increasing pulse area. By choosing linearly polarized
excitations we could investigate all coherences in a three-level
system. Here, the RCRs of the two-pulse FWM signals were
much more involved and a complex interplay between the
two pulse areas was found. In a next step, we showed an
example for the importance of the exact knowledge of the
pulse areas. We pointed out that the PID effect can become
very pronounced for pulse durations in the few hundred
femtosecond range and that its strength decisively depends
on the pulse areas in the experiment. For pulse areas that
significantly exceed π multiple phonon wave packet emissions
take place, which should also lead to more complex dynamics
in the FWM signal. A detailed investigation of the PID effect
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is still needed. The influence of pulse durations, amplitudes
and temperature has to be studied in future projects.
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