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Carrier spin relaxation in diluted magnetic quantum wells: Effect of Mn spin correlations
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We demonstrate theoretically that the presence of holes, either resident or photocreated, in diluted magnetic
quantum wells accelerates the spin relaxation of electrons via a mechanism which has been previously overlooked.
This effect is due to the spin correlations, which establish between magnetic ions coupled via hole-mediated
Ruderman-Kittel-Kasuya-Yoshida interactions in the paramagnetic phase. As a consequence, the electron
spin relaxation becomes temperature and hole density dependent, in contrast to existing theories. Our theory
qualitatively reproduces the increase of the electron spin relaxation rate with pump power observed in n-doped
CdMnTe magnetic quantum wells [Ben Cheikh et al., Phys. Rev. B 88, 201306 (2013)]. It also predicts a decrease
of the spin relaxation rate with temperature, as observed, although not in the same temperature range.
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I. INTRODUCTION

The physics of the nonequilibrium spin in semiconduc-
tors and semiconductor nanostructures has been extensively
studied during the past decades, both experimentally and the-
oretically, boosted by the ideas of potential applications [1,2].
The density and temperature dependence of the electron spin
relaxation time in nonmagnetic n-doped bulk semiconductors
and quantum wells (QWs) is relatively well understood [3,4].
Depending on the density of electrons, either hyperfine (low
density) or spin-orbit (high-density) interaction dominates
the relaxation process [3]. Spin relaxation times of order
of ∼100 ns have been achieved in bulk semiconductors
with intermediate electron density close to metal-to-insulator
transition, where a compromise between hyperfine and spin-
orbit spin relaxation is achieved [5]. The spin relaxation
in two-dimensional nanostructures is usually faster, and for
the same reason as in bulk semiconductors the longest spin
coherence times are obtained for weakly localized spins
[6]. In the samples with the optimized electron density,
the increase of the lattice temperature leads to additional
delocalization of electrons, so that spin-orbit relaxation is
enhanced via Dyakonov-Perel mechanism [7]. The increased
optical pumping power has the same effect on the electron
spin; the reason for this behavior is assumed to be the heating
of the resident electrons by the photoexcitation [8].

Diluted magnetic semiconductors (DMSs), and their nanos-
tructures eventually hosting a two-dimensional electron or
hole gas, do not fit the scheme described above. In these
materials the carrier spin relaxation is much faster than in
their nonmagnetic counterparts. Such fast relaxation is a
consequence of the exchange scattering with the magnetic
dopants [9–13]. The role of the exchange scattering is also
evidenced by the magnetic field dependence of the transverse
electron spin relaxation time T ∗

2e, measured by Kerr rotation ex-
periments in Voigt geometry [10,13–16]. Indeed, T ∗

2e exhibits a
very characteristic nonmonotonous magnetic field dependence
(at least at relatively low Mn concentrations and at liquid
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helium temperatures): an initial decrease at low fields up to
1–2 T, followed by an increase at higher fields. Recalling that
inhomogeneous broadening mechanisms contribute to T ∗

2e, this
behavior can be consistently understood if the inhomogeneous
heating of the Mn spin system induced by the laser pulses is
taken into account [13,15]. As the temperature is increased
the inhomogeneous heating is strongly suppressed, and one
observes a nearly field-independent T ∗

2e [13].
Studies of the temperature dependence of the electron spin

relaxation time in magnetic QWs are scarce but indicate
either almost constant spin relaxation time [10,11], or even
weakly increasing relaxation time with temperature in a regime
of low manganese concentration [13]. The zero-field power
dependence is also puzzling as the spin relaxation time may
either decrease [13] or increase [10] with optical pump power.

Calculations of the electron spin relaxation time based
on the Fermi golden rule fail to reproduce the experimental
results, even in the simplest case of conduction band electrons
confined in a CdMnTe quantum well. Indeed, calculated spin
relaxation times are systematically about five time longer than
the experimental values [12,13]. More elaborate theories based
on quantum kinetic equations have been developed [17,18].
In the theory presented in Ref. [17] the electron spins were
considered as a subsystem interacting with a bath of magnetic
impurities. In Ref. [18] the authors established the quantum
kinetic equations for the whole electron-impurity system,
thereby including the electron-impurity spin correlations [18].
These theories allow calculating the magnetic field dependence
of both the longitudinal and the transverse electron spin
relaxation times. However, the calculated values do not differ
at zero field from those obtained within the Fermi golden-rule
approach. Shmakov et al. considered another electron spin
relaxation process, which appears in the presence of a nonzero
magnetization and of quantum well width fluctuations [16]. In
such circumstances, in addition to the magnetic fluctuations,
the electron spin experiences long-range fluctuations of the
exchange field related to the quantum well width fluctuations.
Being long range, these fluctuations can be more efficient
for electron spin relaxation than the magnetic fluctuations.
However, this mechanism is not effective in zero magnetic field
and cannot fill the gap between the existing experimental data
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and theory. Recent quantum kinetic theory points towards the
importance of non-Markovian effects, particularly in the case
of excitons [19], which may explain the difference between
theory and experiment at least in the case of nondegenerate
QWs.

Concerning the hole spin relaxation, it has been clearly
shown that the quantum confinement stabilizes the heavy-hole
spin [10] and that the spin relaxation time decreases at elevated
temperatures due to heavy-hole–light-hole mixing away from
the � point [11]. Indeed, at the � point in absence of mixing the
hole spin flip by p-d exchange scattering is strictly forbidden.

In this paper we point out the effect of manganese spin-
spin correlations on carrier spin relaxation [20,21]. These
correlations induced by holes via Ruderman-Kittel-Kasuya-
Yoshida (RKKY) interactions lead to a novel contribution
to the carrier spin relaxation, which is not captured by the
Fermi golden rule. RKKY interactions mediated by holes are
responsible for the carrier-induced ferromagnetism in DMSs
and are known to be strongly temperature dependent [22].
Decreasing temperature leads to the buildup of correlations
even well above the ferromagnetic transition. We show that
these correlations are responsible for temperature and power
dependence of the electron spin relaxation.

Electrons could also induce spin correlations between
magnetic atoms. However, we note that ferromagnetic ordering
has never been observed in n-doped QWs, in agreement with
the Mermin-Wagner theorem, which forbids a ferromagnetic
ordering at finite temperature in case of Heisenberg-like inter-
action [23]. Even if one argues that a ferromagnetic transition
can exist in n-doped QWs due to spin-orbit interaction [24],
the Curie temperature will be lower than the mean-field
approximation value, itself being already quite low due to
the small values of the s-d exchange constant α compared
to the p-d exchange constant β (in CdMnTe α = 0.25β) and of
the electron effective mass. Hence, electron-induced Mn-Mn
spin correlations are expected to be quite small and can be
safely neglected.

Let us outline that the enhancement of the carrier spin
scattering due to hole-induced magnetic correlations in the Mn
spin system has a well-known analogy in the physics of phase
transitions. Indeed, the enhancement of the light scattering
in the vicinity of the gas-to-liquid transition takes place due
to the enhancement of the density fluctuations in this critical
regime. This phenomenon is called critical opalescence. In
the DMS spin system, the role of the light is played by
electron or hole spin, and the enhanced spin scattering is due
to the critical magnetic spin fluctuations in the vicinity of
the paramagnetic-to-ferromagnetic transition, instead of the
density fluctuations.

In the following we will focus on spin relaxation of
electrons. We will not consider hole spin relaxation in order
to avoid complications due to the valence band mixing, but
in principle, the theory can be extended to this case. For
simplicity, the theory is developed for strictly two-dimensional
systems.

The paper is organized as follows. The theoretical descrip-
tion of electron spin relaxation in the presence of Mn spin-spin
correlation is given in Sec. II. Then in Sec. III we discuss
how this theory may explain the existing experimental results,
especially the observed power and temperature dependence of

electron spin relaxation time in n-doped DMS QWs. Finally,
our results are summarized in Sec. IV.

II. THEORY

A. Electron spin relaxation in the presence
of Mn spin correlations

The Hamiltonian describing the exchange interaction be-
tween electron and manganese has the form

V̂ = αŜ · M̂(r), M̂(r) =
∑

i

δ(ri − r)Ĵi , (1)

where Ŝ and Ĵi are electron and manganese spin operators,
respectively, and ri are manganese 2D coordinates. The
von Neumann equation describing the time evolution of the
electron density matrix can be written in the basis of plane
waves as
∂ρ̂kk′

∂t
= − i

h̄
(Ek − Ek′)ρ̂kk′ − i

h̄

∑
p

(V̂kpρ̂pk′ − ρ̂kpV̂pk′ ). (2)

We consider typical DMSs where the manganese concentration
nMn is much larger than the electron concentration ne.
Therefore, one can assume the Mn spins to be static. In the
case of small perturbation, the off-diagonal matrix elements
of the density matrix are much smaller than the diagonal
matrix elements. Hence, one can solve Eq. (2) for the off-
diagonal elements omitting terms Vkpρpk′ and then reintroduce
the calculated off-diagonal elements in the equation for the
diagonal elements. After Fourier transform we get

−iωρ̂kk(ω) + i

h̄
[V̂kk,ρ̂kk] = −2π

h̄

∫
dpδ(Ep − Ek)

×
[

V̂kpV̂pkρ̂kk(ω) + ρ̂kk(ω)V̂kpV̂pk

2
− V̂kpρ̂pp(ω)V̂pk

]
.

(3)

In Eq. (3) one can average over the manganese spatial and spin
distribution assuming that average value of manganese spin is
zero. Under this assumption, the linear α term disappears and
the correlator of the exchange interaction reads

〈V̂kpV̂pk〉 = α2Ŝi Ŝj

∫
drei(p−k)r〈M̂i(0)M̂j (r)〉. (4)

The Mn spin-spin correlator Gij (r) ≡ 〈M̂i(0)M̂j (r)〉 in this
equation is assumed to be translation invariant; i.e., it depends
only on the differences between space coordinates. For elec-
tron spin Sk = Tr(Ŝρkk) one can write the dynamic equation

∂Sk

∂t
= −�̂(k)Sk, (5)

�̂(k) = α2me

2h̄3

∫
drJ0(kr)e−ikr

×
[

Î Tr{Ĝ(r)} − Ĝ(r) + ĜT(r)

2

]
, (6)

where the superscript T stands for the transposition, me is the
electron effective mass, and J0 is the Bessel function of the
first kind.

165304-2



CARRIER SPIN RELAXATION IN DILUTED MAGNETIC . . . PHYSICAL REVIEW B 96, 165304 (2017)

In the limit of uncorrelated manganese spins, the correlator
in (4) becomes

G
ij

0 (r) =
〈∑

nm

Ĵ i
nδ(rn)Ĵ j

mδ(rm − r)

〉

= δij δ(r)
J (J + 1)nMn

3
. (7)

Inserting this correlator in Eq. (6) one obtains the well-known
result for the electron spin relaxation rate due to the exchange
interaction with magnetic impurities [17,25],

γ0 = α2J (J + 1)nMnme

3h̄3 , (8)

which is independent of both electron momentum and electron
concentration.

Let us take into account the correlations between man-
ganese spins. The interaction between manganese spins can
be written as

V̂JJ =
∑
n�=m

Ĵ i
nBij (rn − rm)Ĵ j

m, (9)

where Bij (rn − rm) represents one-half of the Mn-Mn interac-
tion in order to take into account the double counting in the
sum. The manganese concentration being much larger than
the electron concentration, there is a large number of magnetic
centers within an area with characteristic size of the order of
the electron wavelength. One can thus replace the discrete Mn
distribution by a continuous Mn spin distribution and consider
Mi(r) as a classical field,

VJJ ({M}) =
∫

drdr′Mi(r)Bij (r − r′)Mj (r′). (10)

Furthermore, we assume a Gaussian Mn spin distribution. The
resulting correlator reads

Ĝ(r) =
∫

D[M] M(0)MT(r)e−A
∫

M2dSe− VJJ ({M})
T∫

D[M] e−A
∫

M2dSe− VJJ ({M})
T

= Î
δ(r)

A
− 1

A

∫
dk

(2π )2
e−ikrB̂(k)[ÎAT + B̂(k)]−1

≡ Ĝ0 + Ĝc, (11)

where T is the lattice temperature, and the functional integral∫
D[M] is carried out over all possible magnetic configura-

tions M . Hereafter we omit the argument (r) of the correlation
function. The normalization constant A is determined from the
requirement that one must recover the correlator in Eq. (7) in
the absence of interaction

Ĝ −−−−→
B(k)=0

Ĝ0 = Î
δ(r)

A
, A = 3

J (J + 1)nMn
. (12)

Substituting (11) and (12) in (6) one obtains the electron
spin relaxation rate caused by spin-flip scattering on correlated
manganese spins,

�̂(k) = γ0[Î + Ĝ(k)], (13)

Ĝ(k) = A

2

∫
drJ0(kr)e−ikr[Î Tr{Ĝc} − Ĝc]. (14)

Note that this spin relaxation rate depends on the electron
wave vector, in contrast with the prediction of the Fermi
golden rule.

B. Hole-mediated RKKY correlations

Let us apply the results of Sec. II A to the hole-mediated
correlations of magnetic impurities or so-called RKKY cor-
relations [20,21]. We consider that the interaction between
magnetic ions is isotropic in space and has a uniaxial spin-spin
anisotropy. The corresponding Hamiltonian reads

V̂JJ =
∑
n�=m

B⊥(rnm)
(
Ĵ n

x Ĵ m
x + Ĵ n

y Ĵ m
y

) + B‖(rnm)Ĵ n
z Ĵ m

z . (15)

We focus on the z component of electron spin relaxation, which
depends only on B⊥(r); thus, we keep only the first term of
Eq. (15).

This interaction is characterized by its strength B∗ and by
its spatial range ri ,

B∗ = −
∫

drB⊥(r), (16)

r2
i = 1

2

∂2

∂k2

[
B⊥(k = 0)

B⊥(k)

]∣∣∣∣
k=0

. (17)

Here we defined B∗ such that B∗ > 0 to account for the
ferromagnetic character of the RKKY interaction at short
distance, and ri can be identified with the hole coherence
length and is given by 1

ri
∼ 1

λT
+ 1

lp
, where lp is the hole mean

free path and λT = h/
√

2mhkBT is the thermal length. The
general expression for B∗ is given by

B∗(n,T ) = β2mh

4πh̄2 F

(
T

TF

)
, (18)

where TF = πh̄2nh/mh is the Fermi temperature, and F is a
function defined in the Appendix.

In the limiting case of degenerate (nondegenerate) hole gas
F (t) → 1 (F (t) → 1/t), one gets

degenerate: B∗(n,T ) ∼ β2mh

4πh̄2 , (19)

nondegenerate: B∗(n,T ) ∼ β2nh

4T
, (20)

where mh is the heavy-hole mass and nh is the hole concen-
tration.

In order to obtain a simple analytical expression for the
electron spin relaxation rate, we use the approximation

B⊥(r) = − B∗

2πr2
i

K0

(
r

ri

)
, (21)

where K0 is the modified Bessel function of the second
kind. This function has the expected asymptotic behavior
for the RKKY interaction as B⊥ ∼ ln(r), r → 0 and B⊥ ∼
e−r/ri ,r → ∞. Inserting Eq. (21) into Eqs. (11) and (14) one
obtains the in-plane correlation function

Gc = B∗

2πr2
i A2T

K0

(
r

rc

)
, (22)
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where

rc = ri

√
T

T − B∗/A
, (23)

and the electron spin relaxation rate

�z(k) = γ0

[
1 + B∗/A

T − B∗/A
1√

1 + (2krc)2

]
. (24)

We can express this equation in terms of Curie temperature
TC , that is, the temperature at which the correlation length rc

in Eq. (23) diverges:

TC − B∗(n,TC)

A
= 0. (25)

For T � TF the hole gas is degenerate. We get

�z(k) = γ0

[
1 + TC

(T − TC)
√

1 + (2krc)2

]
, (26)

T FD
C ∼ β2mhJ (J + 1)nMn

12πh̄2 , (27)

rc ∼ (1/λT + 1/lp)−1

√
T

T − TC

, (28)

while for T � TF the holes obey a Boltzmann statistics.
We get

�z(k) = γ0

[
1 + T 2

C(
T 2 − T 2

C

)√
1 + (2krc)2

]
, (29)

T B
C ∼

√
β2nhJ (J + 1)nMn

12
, (30)

rc ∼ (1/λT + 1/lp)−1

√
T 2

T 2 − T 2
C

. (31)

The relaxation rate given by Eqs. (26) and (29) includes
two terms: a spin-flip term γ0, which is the Fermi golden rule
result, and a second term γc corresponding to the relaxation
on the correlated Mn spin field. The latter can be understood
as the result of the spin diffusion on correlated areas with
characteristic size rc. Indeed, an electron passes through such
areas during an average time τf l = rc/ve, where ve is the
electron velocity (ballistic regime, i.e., rc � lep, where lep is
the electron mean free path). In these correlated areas the
average value of a Mn spin field is nonzero. As an example,
in the case of Boltzmann distribution, its order of magnitude
is given by the square root of the prefactor in Eq. (22): M ∼√

J 2nMnT
2
C/(λh

T T )2. So, electron spin rotates by the angle
δϕ = ωf lτf l � 1 while passing this area. Using ωf l ∼ α

h̄
M

we obtain δϕ =
√

h̄γ0/E
e
F TC/

√
T − TC . For temperatures

not too close to TC , δϕ � 1, so that the electron spin
diffusion coefficient reads Dϕ ∼ ω2

f lτf l . This contribution to
the electron spin relaxation rate 1/τ ′

s can therefore be obtained
from the condition Dϕτ ′

s = 1,

1

τ ′
s

≈ ω2
f lτf l, (32)

which identifies with the second term in (29).

FIG. 1. 2D color maps of the enhancement factor �z(k)/γ0 (mh =
0.25m0, me = 0.11m0, β = 0.012 eV nm2, nMn = 1.8 × 1014 cm−2,
and m0 is the free electron mass). The white area corresponds
to the ferromagnetic phase where the theory is not valid. (a)
Boltzmann distribution of electrons; (b) Fermi-Dirac distribution
(ne = 2 × 1011 cm−2).

C. Results

The above theory applies equally to two different exper-
imental situations. First, it applies to n-doped QWs submit-
ted to continuous-wave optical excitation, where Mn spin
correlations are induced by the photoexcited holes. These
correlations then impact the resident electrons spin relaxation.
Second, it applies to p-doped QWs, where the resident
holes imprint Mn spin correlations. These correlations then
impact the spin relaxation of photoexcited electrons. These
two cases are quite generally described by the same set of
equations (23)–(25), which reduce either to Eqs. (29) and
(30) when T � TF or to Eqs. (26) and (27) when T � TF.
In addition, the electron spin relaxation rate must be evaluated
either at the thermal wave vector (electron Boltzmann dis-
tribution) or at the Fermi wave vector (electron Fermi-Dirac
distribution).

The main results of the theory are gathered in Fig. 1,
which shows color maps of the enhancement factor �z(k)/γ0

calculated in the plane (nh,T ) for T > TC , and for two different
electron distributions: first, in the case of a nondegenerate
electron gas [Fig. 1(a)], �z(k) being evaluated at the thermal
wave vector k = kT ; second, in the case of a degenerate
electrons gas [Fig. 1(b)], �z(k) being evaluated at the Fermi
wave vector k = kF = √

2πne [26]. For the calculation we
assume a short-range scattering mechanism in which the
scattering time is constant (τp = 140 fs, corresponding to a
hole mobility μh = 1000 V cm−2 s−1).

The analogy with critical opalescence mentioned in the
Introduction is clearly seen in Fig. 1. �z(k) increases when
temperature approaches TC and finally diverges at TC , due to
the critical magnetic fluctuations.
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III. DISCUSSION AND COMPARISON
WITH EXPERIMENT

The above theory applies quite naturally to the spin
relaxation of photoexcited electrons in p-type diluted magnetic
QWs [27]. Unfortunately, the experimental data are very scarce
[12] and do not allow a test of the theory. On the other
hand, there are more systematic measurements of electron
spin relaxation in undoped or n-doped QWs [10,13]. In this
case, one may expect to witness the influence of photoexcited
holes on the electron spin relaxation. We focus on the spin
relaxation in absence of external magnetic field to avoid
the spin dephasing introduced by magnetic inhomogeneities
[13]. In this case the calculated electron spin relaxation time
τ e
s = �z(k)−1 can be identified with the measured T ∗

2e.
The electron spin relaxation times have been measured by

pump-probe time-resolved Kerr rotation experiments. Thus,
whether the Mn spin correlations will settle or not depends on
the relative values of the Mn spin relaxation time T Mn

1 and of
the pulse repetition period Tp. If T Mn

1 � Tp, spin correlations
will establish at the same value as in a continuous-wave
excitation of the same average power. On the contrary, if
T Mn

1 � Tp, spin correlations will decay between optical pulses
and are not expected to be important.

Both of these situations have been encountered experimen-
tally [10,13]. In Ref. [10] the sample consisted in ZnSe QWs
containing several quarter-monolayer MnSe planes, resulting
in relatively large average Mn concentrations, short T Mn

1 �
1 ns, and very short electron spin relaxation time ∼1 ps. In
addition, Tp = 0.5 μs is much larger than T Mn

1 and there is no
cumulative effect. In these conditions the electron looses its
spin before Mn spin correlations settle. It is unlikely that Mn
correlations affect the electron spin relaxation in this case. In
Ref. [13] the samples consisted in n-type modulation-doped
CdMnTe QWs with much lower Mn concentration. The laser
repetition period was Tp = 12 ns, and T Mn

1 ∼ 10 ns [28], so
that the correlations will be somewhat weaker than in the
continuous-wave regime. Nevertheless, we will still use cw
excitation to handle this situation. In addition, in these samples
the doping level was high enough to suppress excitonic effects
by screening, thereby making it possible to study the electron
spin relaxation not influenced by the binding into an exciton.
This is in contrast with pump-probe experiments on undoped
bulk CdMnTe, which revealed the exciton spin relaxation
[14]. The measured electron spin lifetime is also weakly
influenced by the optical pumping because, the density of
carriers photoexcited by a pump pulse is much less than ne,
and second the recombination time τr � τ e

s . In these conditions
the calculated τ e

s can be directly compared to the experimental
value [29].

Figure 2(a) shows how the calculated power dependence
compares with the data for samples A and B taken from
Ref. [13] (Sample A, ne = 3.4 × 1011 cm−2, atomic fraction
of manganese x = 0.0021, QW width L = 30 nm; Sample B,
ne = 1.9 × 1011 cm−2, x = 0.0007, L = 30 nm). The Fermi
temperatures are, respectively 85 K and 47 K for these
two samples. Hence, at the temperatures T < 15 K explored
in Ref. [13] the electron gas is degenerate. The Mn-Mn
correlations are induced by the photoexcited holes in these
n-doped samples. We calculate �z(kF ) using Eq. (24) and

FIG. 2. Comparison between calculated (lines) and measured
(circles) electron spin relaxation rates. Solid lines are calculated by
taking into account the Mn-Mn correlations induced by photo-excited
holes assuming either a Boltzmann statistics of holes [Eq. (20), solid
lines], or a Fermi-Dirac statistics [Eq. (18), dashed lines]. In order to
fit the experimental values (open circles from Ref. [13]) the calculated
γ0 [Eq. (8)] had to be multiplied by a correction factor f . (a): Power
dependence of the electron spin relaxation rate for samples A and
B. (b): Temperature dependence for sample A. The highest plausible
hole density in the experimental conditions of Ref. [13] has been
assumed in this calculation (all data from Ref. [13]).

introduce the correlations induced by a nondegenerate hole gas
[Eq. (20), or using the general expression given by Eq. (18)
(solid and dashed lines, respectively]. Note that because
the holes are photoexcited they may have a temperature
higher than the lattice. In absence of experimental data on
hole mobility in CdMnTe QWs we treated τp as a fitting
parameter. The increase of the observed spin relaxation rate
is well reproduced by the calculation provided one assumes a
nondegenerate hole gas and τp = 0.5 ps (0.1 ps) for sample
A (sample B). However, for the hole densities estimated from
experimental conditions the general expression Eq. (18) should
be used, because the hole gas becomes degenerate as the power
increases. In these conditions the variation of the relaxation
rate becomes very weak, because the critical temperature
is almost independent of hole density. Note, however, that
experimentally the effect is not very pronounced either, so
that agreement can be considered as reasonable (note that the
absolute value of τ e

s was scaled by a factor f ∼ 5 in order
to account for the fact that the measured relaxation time is
systematically shorter than the calculated one [12]).

Figure 2(b) shows the calculated and measured temperature
dependencies of the spin relaxation rate. Experimental data
correspond to sample A from Ref. [13]. The calculation
does predict a decrease of relaxation rate with increasing
temperature, as observed, albeit at a lower temperature.
Clearly, the theory is not able to reproduce quantitatively
the observed temperature dependence. One must assume that
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another mechanism is responsible for the observed decrease of
the relaxation rate. A more convincing test of the theory would
be a comparison with temperature dependence of electron
or hole spin relaxation in p-doped QWs, but systematic
measurements are missing in this case [12].

IV. CONCLUSIONS

In conclusion, we have considered theoretically the influ-
ence of Mn spin correlations on the electron spin relaxation
time in zero magnetic field in CdMnTe quantum wells.
Such spin correlations may be induced by holes via RKKY
interaction. At low temperatures an additional contribution to
the spin relaxation rate comes from the fluctuating exchange
field created by correlated Mn spins. As temperature increases,
spin correlations weaken, and electron spin relaxation slows
down to the value given by the temperature-independent single
spin-flip processes. Increasing the optical pumping power, and
thus the hole density, favors the buildup of spin correlations
and thereby accelerates the electron spin relaxation.

We compared the predictions of the theory with available
experimental data on n-doped CdMnTe QWs. We found some
qualitative agreement but clearly the observed and predicted
power dependence of spin relaxation rates are too weak to
allow for a very reliable test of the theory. The observed
temperature dependence is more pronounced but cannot be
reproduced by the theory. We are led to the conclusion that
the observed decrease of electron spin relaxation rate has a
physical origin different from the mechanism considered in
this paper. In addition, the quantitative mismatch, as large as
a factor of five, between experimental and theoretical spin
relaxation times is not solved by the proposed theory. Finally,
a more relevant test of the theory would require systematic
measurements of electron or hole spin relaxation in p-doped
samples having higher Mn concentrations. This would permit
measurements closer to the ferromagnetic transition, where a
steeper acceleration of spin relaxation due to critical magnetic
fluctuations is expected.
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APPENDIX

The RKKY interaction between magnetic ions in two
dimensions has been discussed in Ref. [21] for degenerate
carriers. In order to take into account the temperature depen-
dence, one must use the more general formula [30,31]

B∗(r) = β2mh

4πh̄2

∫ ∞

0
dkkJ0(kr)N0(kr)

1

1 + e
Ek−μ(T )

T

, (A1)

μ(T ) = T ln
(
e

TF
T − 1

)
, (A2)

where J0 and N0 are, respectively, Bessel and Neumann
functions of first and second kind and μ(T ) is the chemical
potential of carriers responsible for the RKKY interaction.
In order to obtain the interaction strength B∗, one needs to
integrate this equation on space coordinates

B∗(n,T ) = β2mh

4πh̄2 F

(
T

TF

)
, (A3)

F

(
T

TF

)
= −2π

∫ ∞

0
dqq

∫ ∞

0

dxxJ0(qx)N0(qx)

1 + e
q2TF
2πT

− μ(T )
T

. (A4)

The temperature dependence of function F is presented
in Fig. 3.
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