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Based on the extended variable range hopping mechanism in a disordered energy landscape with a Gaussian
density of states, we determine the dependence of the magnetoresistivity on temperature, carrier density,
magnetic field, and electric field. Experimental electric-field and temperature characteristics in device based
on organic semiconductors are excellently reproduced with this unified description of the magnetoresistivity. We
further show that the spin transport indeed can be explained by the fact that magnetic field will decrease the
density of transport states and similar to the decrease of carrier density without it. We finally demonstrate that
magnetoresistivity is strongly dependent on the carrier density; by changing the carrier density in the hopping
system, the magnetoresistivity can increase more than 500 times.
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I. INTRODUCTION

Organic semiconductors exhibit the characterization of a
high disorder in morphology, chemical purity, and molecular
structure, which differs in many regards from inorganic
or purely carbon based-materials [1–4]. Recently, because
of hyperfine interactions [5] and large room-temperature
magnetoresistance (up to ∼20%) [6], organic spintronics
have attracted more interest [7,8]. Generally, due to the
existence of localized states and weak spin-orbital coupling,
charge transport in organic semiconductors under the effect
of magnetic field provides dramatically different phenomena
from inorganic semiconductors or metals [7–10]. Organic
magnetoresistance (MR) can date back to 1967 and a pro-
nounced MR in organic devices has been frequently observed
over the years [11–13], however several confusing phenomena
and fundamental characteristics in organic MR have been
only partially addressed until recently. For example, why do
positive MR (+MR) and negative MR (−MR) traces display
the line shape [14]? Do the spin correlations between same
or oppositely charged carriers play a more important role
[15,16]? Understanding the transport mechanism of charge
carriers under the magnetic field is of crucial importance to
design and synthesize better materials and further improve the
MR of organic semiconductor devices.

The initial model explaining magnetic-field effects is the
carrier-pair mechanism [17], which described field-induced
changes of spin permutation symmetry. But this mechanism
cannot explain organic semiconductors operating at the single
carrier regimes. Recent works have proposed some theoretical
descriptions of organic MR based on percolation theory.
For example, Harmon et al. presented a model for organic
MR to describe the effects of spin dynamics on hopping
transport [15]. Then they extended the theory of MR to
include exchange and dipolar couplings between polarons
[16]. Recently, we have also developed a theory to interpret
organic MR based on bipolaron-assisted transport mechanism
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[10]. However, these current theories only considered the
effects of bipolaron formation, spin exchange, or spin-spin
interactions on MR. Generally, organic devices usually work
in a larger carrier density and high electric field. Therefore,
it should be interesting to know how the electric field and
carrier density affect the charge transport in organic spintronic
devices. It is widely accepted that the charge transport in
organic semiconductors depends on temperature T , electric
field F , and charge-carrier density n [18–21]. The electric
field has been observed to significantly affect spin transport
in inorganic semiconductors [22]. Our previous work also has
indicated that the electric field will significantly affect spin
diffusion in disorder organic semiconductors [23]. On the other
hand, the probability of bipolaron formation, spin exchange,
and polaron hopping are closely related to temperature,
electric-field, and carrier-density [24–26]. Thus these relative
effects on charge transport should be taken into account when
discussing the MR in organic spintronic devices. However,
to the authors’ knowledge the relationship between MR and
T , F , and n is still lacking. The purpose of this work is to
establish a unified theoretical description of the full T , F , and
n dependence of MR, and to critically compare the results with
experimental data and further analyze these effects on MR in
organic spintronic devices.

II. THEORETICAL MODEL

It is well known that organic semiconductors display a
higher degree of disorder, and charge (polaron) transport takes
place mostly by hopping between localized states [27,28]. In
the absence of magnetic field, one can consider hopping as a
thermally assisted tunneling process and assume coupling to a
system of acoustical phonons. The transition rate for a carrier
moving from site i to site j is based on the Miller-Abrahams
(MA) transition rate as follows [29,30]:

wij = ν0

{
exp

(−2αRij − Ej −Ei

kBT

)
, Ej − Ei > 0

exp(−2αRij ), Ej − Ei < 0
, (1)
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where v0 is the attempt-to-jump frequency, α is the inverse
localized length, Rij is the hopping distance, Ei and Ej are
the on-site energies at sites i and j , respectively, and kB is
the Boltzmann constant. When an electric field F is applied

to the system, it will weaken the Coulomb barrier and hence
reduce the thermal activation energies [20]. The transition rate
with normalized energy (ε = E/kBT and rij = 2αRij ) under
the electric field is of the form [23,31]

wij =
{
v0 exp[−(1 + β cos θ )rij − εj + εi + U ], εj − εi + U > −βrij cos θ

v0 exp(−rij ), εj − εi + U < −βrij cos θ
, (2)

where β = qF/2αkBT comes from the difference of the
energy due to a contribution qFrij cosθ of electric field F

(q is the elementary charge of the carrier and θ is the angle
between the electric field and the hopping direction), U is the
Hubbard energy. The variations in the on-site energy due to
disorder are usually assumed to be Gaussian density of states
(DOS), which holds for spin transport in disordered organic
semiconductors as well [7,23],

g(E) = Nt√
2πσ

exp

(
− E2

2σ 2

)
, (3)

where Nt is the total density of localized states and σ is the
width of energetic disorder.

Then, let us consider the situation that a carrier with unit
charge q (electron or hole) moves under the influence of an
electric field, a site with energy εi in the hopping space; the
most probable hop for a carrier on this site is to an empty
site at a range Rij , for which it needs the minimum energy. The
conduction is a result of a long sequence of hops through this
hopping space. In this situation, the average hopping range Rnn

can be obtained following the approach used in our previous
work [32] by solving the equation

Bc = 1

8α3

∫ π

0
sinθdθ

∫ Rnn

0
2πr2dr

×
∫ Rnn+εi−r(1+βcosθ)

−∞

g(ε)

1 + exp(ε − εf )
dε, (4)

where Bc = 2.8 is the percolation criterion for a three-
dimensional system and εf denotes the Fermi level.

Under the effect of magnetic field, both charge and spin
motion are coupled, and three types of transport should be
considered, as shown in Fig. 1(a): (i) spin exchange, (ii)
polaron hopping toward an empty site, and (iii) polaron
hopping toward a singly occupied site (i.e., bipolaron for-
mation) with subsequent hopping including bipolaron motion
and dissociation. Here we only consider MR deriving from
the interaction between charge carriers of the same sign
[10,15,16]. The first transport only exchanges the spin state of
two adjacent sites and generates a net spin current, and hence
does not contribute to MR for its zero charge current. The last
two transports can carry charge current and hence contribute
to MR. Figure 1(b) illustrates the diagram of variable range
hopping (VRH) transport with the density of states under
the effect of electric and magnetic field, where the current
is carried by the hopping of polarons or bipolarons.

As described by Harmon, et al. [15], spin affects electronic
transport in hopping transport through the Pauli exclusion
principle, and faster spin-flip transitions coming from the
hyperfine interaction open up “spin-blocked” pathways to
become viable conduction channels, and external magnetic
field suppresses this spin flip and changes the effective density
of hopping sites, thus producing magnetoresistance. In the
hopping space, it is most common for a polaron with arbitrary
spin to hop to an unoccupied site. At the same time, there is
a probability that a polaron may hop to a site singly occupied
to form a singlet bipolaron, taking into account the probability
of spin flips. Then, Eq. (4) is rewritten as

Bc = 1

8α3

∫ π

0
sinθdθ

∫ Rnn

0
2πr2dr

⎡
⎣∫ Rnn+εi−r(1+βcosθ)

−∞

Nt√
2πσ

exp
(− ε2

2σ 2

)
1 + exp(ε − εf )

dε

+
∫ Rnn+εi−r(1+βcosθ )−U

−∞

⎛
⎝ Np

4
√

2πσ
exp

(− ε2

2σ 2

)
1 + exp(ε − εf )

+
3pNp

4
√

2πσ
exp

(− ε2

2σ 2

)
1 + exp(ε − εf )

⎞
⎠dε

⎤
⎦, (5)

where Nt and Np are the density of localized states for polarons
and bipolarons, respectively. As described above, a polaron
with arbitrary spin may hop to an unoccupied site; it may also
hop to a site singly occupied with antiparallel spin, or that with
parallel spin accompanying spin flips. The respective densities
of these three types of sites correspond to the three parts in
the last bracket of Eq. (5). In Eq. (5), the parameter p is the
probability for the blockade to cease when the next hop is

attempted as [16,23]

p = 1

3
−

∫ ∞
0 exp(−t/τh)

[
1 − aeff

2t2

8

(
1 + 2sin2ω0t/2

(ω0t/2)2

)]
dt

3τh

,

(6)

where τh = wij
−1 is the hopping time, ω0 = γeBẐ is the

applied external magnetic field (γe is the gyromagnetic ratio
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FIG. 1. (a) Three types of transport mode in organic spintronic
devices, such as spin exchange, polaron hopping, and bipolaron
hopping. (b) Diagram of variable range hopping (VRH) transport
with the density of states under the effect of electric and magnetic
field, where the current is carried by the hopping of polarons or
bipolarons.

and Ẑ is the magnetic direction), aeff is the effective hyperfine
coupling width due to all the nuclei at a site, and t is the
time. The main difference between our work and Ref. [16]
is that we introduce the Fermi level (corresponding to carrier
density), energetic disorder, and electric field into this model.
In the presence of an electric field, a particle with energy εi

at a given site hops a distance Rnn in the hopping space, the
average hopping distance along the electric field is xf (the
detailed derivation of xf is in the Appendix). In the hopping
space, the probability of all these hops is exp(−Rnn); after
knowing the average hopping distance, it is possible to say
that the average rate of the transport is v0xf exp(−Rnn), hence,
the mobility at energy εi is given as

μ(εi,B,F,T ,εf ) = v0xf exp(−Rnn)

F
. (7)

Then, the total resistivity of the hopping system is obtained
from the mobility as

R(B,F,T ,εf ) = 1

σcon(B)
= 1∫ ∞

−∞ qg(εi)μ(εi,B,F,T ,εf )kBT /[1 + exp(εi − εf )]dεi

. (8)

After defining the MR as MR = [R(B,F,T ,εf )−R(0,F,T ,εf )]
R(0,F,T ,εf ) , based on Eq. (8) one can write the final MR as

MR =
∫ ∞
−∞ qg(εi)μ(εi,0,F,T ,εf )kBT /[1 + exp(εi − εf )]dεi∫ ∞
−∞ qg(εi)μ(εi,B,F,T ,εf )kBT /[1 + exp(εi − εf )]dεi

− 1. (9)

III. RESULTS AND DISCUSSION

In Fig. 2, we display the comparison between the theo-
retical calculation and experimental data for magnetic-field
dependence of MR at different electric fields (voltage). This
dependence shows a striking similarity to the B dependence
found by the empirical relation MR ∝ B2/(B2 + B2

0 ) [25],
that is, MR increases with |B| and saturates at high external
magnetic field. The parameters used for the calculation here
are Nt = Np = 1 × 1028 m−3, Ef /σ = 6.5, α−1 = 1 Å, v0 =
1 × 1010 s−1, γe = 2.1 × 108 ns−1mT−1, U = 0.5 eV, and

FIG. 2. Magnetic field dependence of magnetoresistance (MR) at
various voltages. Symbols: experimental data from Ref. [37]. Lines:
fits using the theoretical model given by Eq. (9).

aeff/v0 = 1.5. These parameters are typical ones for organic
semiconductors [16,33]. Currently, the physical origin for MR
saturation is attributed to the decrease in hyperfine interaction
induced spin mixing with the Zeeman split energy levels [34].
The saturation should occur when B � aeff [16]. Here, using
our model, we can understand this mechanism in the language
of equilibrium energy. The conduction occurs when the ratio of
bond density and site density reaches the bonding criterion Bc.
Hyperfine interaction induced spin flip increases the possible
hopping destinations, corresponding to bond density. External
magnetic field suppresses this effect and thus decreases the
bond density. The decrease of bond density will result in
the decrease of site density required for percolation path
forms, i.e., the decrease of the Fermi level. Therefore the
influence of magnetic field can be seen as decreasing the
Fermi level of the hopping system. The value of MR can be
regarded as proportional to the conductivity ratio, i.e., MR =
σcon(B = 0)/σcon(B) − 1. With the increase of B, correspond-
ing to the decrease of the Fermi level, it has been well known
that the conductivity of the hopping system will decrease with
Fermi level decreasing, thus the MR will increase. However,
when the Fermi level is decreased to the so-called equilibrium
energy [35], the conductivity will keep a constant, so MR will
saturate finally. The critical carrier concentration, above which
the mobility will increase, is nc = Ntotal

2 exp[−(εT − εf )] when
εf is below the so-called equilibrium energy ε∞ = −( σ

kBT
)2

[35,36], where εT is the transport energy. Under the influence
of magnetic field, the total density of localized states Ntotal is
simply rewritten as Nt + Np/4 + 3pNp/4. In this situation,
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FIG. 3. Electric-field dependence of MR for a larger localization
length of a−1 = 5 Å. Inset: for a smaller localization length of a−1 =
1 Å.

nc=Nt+Np/4+3pNp/4
2 exp (−{εT − [εf +ln( Nt+Np/4+3pNp/4

Nt
)]}),

where one can see that the increase of B will lead to the

decrease of p and if εf + ln(
Nt+ Np

4 + 3pNp

4
Nt

) = ε∞, the mobility
will stay constant and MR will saturate.

Another interesting property in Fig. 2 is that the MR will
decrease with the increase of electric field. However, this is
not a general rule. For a larger localization length, MR will
increase with electric field, as shown in Fig. 3. The negative
MR will also appear at a larger electric field, as shown in the
inset in Fig. 3. Actually, both decrease and increase of MR with
electric field have been observed by experiments [34,38]. The
physical reason has been attributed to the different injection
efficiency [15]. Basically, the charge hopping conductivity σcon

can be described by phenomenological Gill equation as [39]

σcon ∝ exp

[
−Ea − β0

√
F

kB

(
1

T
− 1

T ∗

)]
, (10)

where T ∗ is the “Gill temperature,” Ea is the zero-field
activation energy, and β0 is the constant. Both electric field
and carrier density will change T ∗, and T ∗ will increase with
qα−1F and decrease with carrier density. As pointed above,
the MR can be described as

MR = σcon(B = 0)

σcon(B)
− 1

= exp

[
β0

√
F − Ea

kB

(
1

T ∗(B)
− 1

T ∗(B = 0)

)]
− 1. (11)

If the localization length α−1 is small, the influence of
qα−1F is very weak, due to the effect from magnetic field
being similar to the decrease of carrier density, T ∗(B) >

T ∗(B = 0), therefore, MR will decrease with electric field.
However, with the increase of α−1, the influence of qα−1F

becomes dominant; MR reasonably increases with electric
field.

Next, we want to discuss the temperature dependence of
MR. Figure 4 shows the comparison between the calculation
and experimental data for the temperature dependence of
MR. The parameters used for calculation here are Nt = Np =

FIG. 4. Temperature dependence of MR. Symbol: experimental
data from Ref. [41]. Solid line: fits using the theoretical model given
by Eq. (9). Inset: temperature dependence of magnetic resistivity.

2 × 1028 m−3, F = 4.5 × 105 V/m, α−1 = 8 Å, Ef /σ = 2.1,
and the other parameters are the same as those in Fig. 2. It
is clear here that even the magnetic resistance will increase
with temperature (as shown in inset in Fig. 4), and the
value of MR will decrease with increasing temperature. The
physical explanation is the same as discussed above; the
hopping conductivity for the medium carrier-density regime
can also be simplified as [40] σcon ∝ exp( qEf

kBT
), then MR =

σcon(B=0)
σcon(B) − 1 = exp( qEf (B=0)−qEf (B)

kBT
) − 1, due to the influence

from B being the same as the decrease of the Fermi level, so
the MR will decrease with the increase of temperature.

In what follows, we want to discuss the carrier-density
dependence of the MR in detail. It is widely known that the
hopping transport properties are strongly dependent on the
carrier density, but the experimental research for such an issue
has been very scarce. Using the same parameters as those in
Fig. 2, we plot the carrier-density dependence of MR in Fig. 5.
Very strikingly, the MR will increase the carrier density steeply
after passing a peak value. It will decrease to zero eventually.

FIG. 5. Carrier-density dependence of MR for different temper-
atures and magnetic field.
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FIG. 6. MR as a function of Hubbard energy for different disorder
parametric in the normalized Fermi level Ef /σ .

To clearly understand the effect of Hubbard energy on
MR, we then calculate the MR at different Hubbard energies.
Figure 6 shows MR as a function of Hubbard energy for
different disorder parametric in the normalized Fermi level
Ef /σ . The parameters used for calculation here are F =
105 V/m, α−1 = 8 Å, and the other parameters are the same as
those in Fig. 2 One can see that the calculated MR decreases
with raising Ef /σ . Otherwise, it is obvious that the MR effect
will reach the maximum around U = 0. In the U > 0 regime
MR shows the decreasing trend, while showing the opposite
result as U becomes negative. This result is consistent with
our previous work [10].

Finally, we want to discuss the physical origin for MR under
the effect of magnetic field. The schematic picture is plotted in
Fig. 7. As we discussed above, the magnetic field affecting the
charge transport can be regarded as the Fermi level decreasing
(corresponding to carrier density decreasing). We have also
pointed out that the hopping conductivity is strongly dependent
on carrier density. The typical carrier-density dependence of
the hopping mobility is as the blue line in Fig. 7 [42]. The
mobility is a constant at the low-density regime, while it
increases as a power law as soon as the Fermi level approaches

FIG. 7. Schematic explanation for carrier-density dependence
of MR.

the equilibrium energy, and saturates at the very high-density
regime. Since the influence from the magnetic field is similar
to the carrier density decreasing, the blue line will shift right
to the red line, which is presented as the density dependence of
mobility under the magnetic field B. So the MR will increase
with carrier density at first, and reach the peak where the
mobility of the red line starts to increase. After that, the MR
decreases to zero.

IV. CONCLUSION

The good fit we obtain with the experimental data of MR
strongly suggests that the underlying dependence of the MR
on temperature, carrier density, and electric field in these
materials is correctly described by extending the variable range
hopping model presented in this work, at least in the regime of
temperature, electric field, and magnetic field considered here.
Another important conclusion is that the influence of magnetic
field on charge transport, can be effectively explained by the
fact that the magnetic field decreasing the hopping density
can be seen as decreasing the total localized density of states
or staying the same in the total localized states, as well as
decreasing the Fermi level of this hopping system. We can
define this Fermi level as magnetic Fermi level Ef (B), which
is usually smaller than the original Fermi level. Moreover,
a markedly larger MR value can be obtained if we find
the proper carrier density in the hopping system, according
to our calculations here, which simulate the experimental
research on this issue. We should, however, also point out
that the spin-orbit coupling is not discussed here. Intuitively,
spin-orbital coupling provides another channel of spin flip,
and thus tends to hinder the hyperfine effect and decrease MR.
In a rough approximation, this effect can be included in the
expression of probability for the blockade to cease [Eq. (6)].
However, the dependence of this effect on various parameters,
particularly external electric and magnetic fields, is nontrivial
and deserves further study.
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APPENDIX

In the presence of an electric and magnetic field, polarons
and bipolarons are more possible hops along the field direction
and, concomitantly, there will be a net spatial displacement.
Summing up the jump trajectories for an initial energy εi ,
the average real forward hopping distance along the electric
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field, xf , is given as

xf (εi,B,F,T ,εf ) = xf
′(εi,B,F,T ,εf )

2α
, (A1)

where xf
′(εi,B,F,T ,εf ) is the normalized average forward hopping distance of polarons and bipolarons given as

xf
′(εi,B,F,T ,εf ) = I1 + I2

I3 + I4
, (A2)

where

I1 =
∫ π

0
dθsinθ

{∫ εi+Rnn

εi−βRnncosθ
dε

[
Nt√
2πσ

exp

(
− ε2

2σ 2

)
[1 − f (ε)]

](
Rnn − ε + εi

1 + βcosθ

)3

+
∫ εi+Rnn−U

εi−βRnncosθ−U

[(Np

4 + 3pNp

4

)
√

2πσ
exp

(
− ε2

2σ 2

)
[1 − f (ε)]

](
Rnn − ε + εi − U

1 + βcosθ

)3
}

× cosθ,

I2 =
∫ π

0
dθsinθ

{∫ εi−βRnncosθ

−∞
dε

[
Nt√
2πσ

exp

(
− ε2

2σ 2

)
[1 − f (ε)]

]

+
∫ εi−βRnncosθ−U

−∞

[(Np

4 + 3pNp

4

)
√

2πσ
exp

(
− ε2

2σ 2

)
[1 − f (ε)]

]}
Rnn

3 × cosθ,

I3 =
∫ π

0
dθsinθ

{∫ εi+Rnn

εi−βRnncosθ
dε

[
Nt√
2πσ

exp

(
− ε2

2σ 2

)
[1 − f (ε)]

](
Rnn − ε + εi

1 + βcosθ

)2

+
∫ εi+Rnn−U

εi−βRnncosθ−U

[(Np

4 + 3pNp

4

)
√

2πσ
exp

(
− ε2

2σ 2

)
[1 − f (ε)]

](
Rnn − ε + εi − U

1 + βcosθ

)2
}

× cosθ,

I4 =
∫ π

0
dθsinθ

{∫ εi−βRnncosθ

−∞
dε

[
Nt√
2πσ

exp

(
− ε2

2σ 2

)
[1 − f (ε)]

]

+
∫ εi−βRnncosθ−U

−∞

[(Np

4 + 3pNp

4

)
√

2πσ
exp

(
− ε2

2σ 2

)
[1 − f (ε)]

]}
Rnn

2 × cosθ,

where f (ε) = 1
1+exp(ε−εf ) is the Fermi-Dirac distribution and 1 − f (ε) is the probability that the final site is empty.
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