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The study of Weyl semimetals (WSMs) lies at the forefront of the nontrivial topological phenomena in
condensed-matter physics. In this work, we study the effect of on-site repulsive Hubbard interaction on the
WSM system with a nonzero tilt at half filling. Within the Hartree-Fock mean-field approximation, we treat the
Hubbard interaction self-consistently and find that the Fock exchange field vanishes, while the Hartree field can
renormalize the topological mass, the tilt, and the Fermi velocity of the Weyl cones. When the renormalized tilt
is larger than the renormalized Fermi velocity, the Hubbard interaction will induce the quantum phase transition
from a type-I WSM to a type-II WSM. We then provide the interaction-induced phase diagrams of WSMs in
different parametric spaces, in which the antiferromagnetic order at strong interaction is also considered. In
addition, we analyze another model hosting two pairs of Weyl nodes, and similar results are obtained. The
implications of these results are discussed.
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I. INTRODUCTION

Since the discovery of topological insulators [1,2], the
conventional band theory of solids has been dramatically
revolutionized. The topologically nontrivial quadratic
Hamiltonians have been extended to the three-dimensional
(3D) Weyl semimetals (WSMs). One of the most important
features that the WSMs bring to this area is that they are
gapless states of matter, which are topologically nontrivial and
whose realizations are of significant importance, just like the
gapped topological insulators. The theoretical proposals for
the Weyl nodes in the band structure of solid-state materials
require breaking either inversion symmetry or time-reversal
symmetry (TRS), resulting in the separation of a pair of Dirac
nodes into Weyl nodes with opposite chiralities [3–7]. The
ideal WSM has a conical spectrum and a pointlike Fermi
surface at the Weyl node. When strain or chemical doping is
present, the energy dispersion in the momentum space at a
Weyl node can generally be tilted along a certain direction.
If the tilt is small enough that the Fermi surface remains
pointlike, the system is classified as a type-I WSM (WSM1).
When the tilt becomes large enough, the Fermi surface may
no longer remain pointlike but instead may consist of electron
and hole pockets. In this case, the system is called a type-II
WSM (WSM2) [8]. Besides the inversion symmetry or TRS,
WSM2 additionally breaks the Lorentz invariance.

Initially, WTe2 was predicted by ab initio calculations
to be a possible candidate for the experimental realization
of WSM2 [8]. Later, MoP2 and WP2 were predicted
to host four pairs of type-II Weyl points and have long
topological Fermi arcs, which make them readily accessible
in angle-resolved photoemission spectroscopy (ARPES) [9].
Meanwhile, the transport and thermodynamical properties
of WSM2 are evidently different from those of WSM1 and
have attracted much interest in theory, for example, the
field-selective anomaly in magnetotransport [10–12], the
intrinsic anomalous Hall effect [13], and the tilt-dependent
optical conductivity [14]. These can be attributed to the
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overtilted Weyl cones and the finite density of states at the
Fermi level of WSM2. In a recent work, Park et al. considered
the possibility of a disorder-induced WSM1-WSM2 transition
in the framework of the Born approximation, which provides
a possible route to realize the WSM2 phase [15]. There are
also several experimental studies reporting the ARPES and
scanning tunneling microscopy (STM) evidence for WSM2
in MoTe2 [16–19], MoxW1−xTe2 [20], and LaAlGe [21].

It is well known that when the two-dimensional (2D)
topological states are combined with the Hubbard interaction,
the interplay between the correlation and band topology can
drive the system towards different electronic orders [22–29].
The correlation effects in 3D WSM are worth exploring as
well [30,31]. In nodal loop semimetals, it has been found that
the Hubbard interaction can induce the surface ferromagnetic
phase through the continuous quantum phase transition, while
the bulk remains robust against local interaction [30]. In an-
other work on line-node semimetals, either the antiferromag-
netic order or charge-density wave dominates the system, de-
pending on the relative strength of on-site and nearest-neighbor
repulsions [31]. Motivated by this progress, in this work we
will study the effect of repulsive Hubbard interaction in induc-
ing the quantum phase transitions in WSM with a nonzero tilt.

Within the Hartree-Fock mean-field (MF) approximation,
we treat the on-site Hubbard interaction on a 3D Weyl fermion
self-consistently. The main results obtained are as follows:
(a) At the MF level, the Fock exchange field vanishes, while
the Hartree field can renormalize the topological mass. We find
that the local magnetization plays a key role in determining the
topological phase transitions and its magnitude is strengthened
by the Hubbard interaction. We also perform a detailed
analysis of how the local magnetization is related to the
effective magnetic field and the tilt of the cone. (b) When the
renormalized tilt is larger than the renormalized Fermi velocity,
the interaction-induced quantum phase transition from WSM1
to WSM2 will occur. Based on these results, the interaction-
induced phase diagrams are obtained in different parametric
spaces. The effect of thermal fluctuations is also analyzed. We
suggest that the Hubbard interaction can provide an effective
route in driving the phase transitions to WSM2. (c) The

2469-9950/2017/96(16)/165203(10) 165203-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.165203


YI-XIANG WANG, FUXIANG LI, AND BAOAN BIAN PHYSICAL REVIEW B 96, 165203 (2017)

antiferromagnetic (AFM) order is studied within an enlarged
unit cell, and it can appear when the Hubbard interaction is
strong enough. (d) We analyze the model hosting two pairs
of Weyl nodes, and similar results are obtained. We hope
our work will provide some insights into the understanding
of the competition between the correlation and topology in
3D WSM. The interaction-driven WSM2 phase may be of
particular interest for semiconductor technology in the future.

II. NONINTERACTING MODEL

We start from the spinful Hamiltonian H = H0 + Ht

describing a pair of Weyl fermions (the lattice constant is
set as a = 1) [15,32]:

H0 = t(sinkxσx + sinkyσy) + (m1 + tcoskz)σz

+m0(2 − coskx − cosky)σz − μσ0,

Ht = atsinkzσ0. (1)

Here σ ’s are the Pauli matrices denoting the spin-1/2 degree
of freedom. t and m1 are the hopping integral and topological
mass, respectively. When |m1| < t , the Weyl cones are located
at K± = (0,0, ± Q) in the 3D Brillouin zone (BZ), where
Q = arccos(−m1

t
) > 0. μ is the chemical potential of the

system. The term of the Wilson mass m0 ensures the stability
of the Weyl cones. H0 preserves the inversion symmetry
I−1H0(k)I = H0(−k) with the inversion operator I = σz but
breaks the TRS with the time-reversal operator defined as T =
K, with K being the complex-conjugation operator [33]. Ht

specifies the tilt in the z-axis direction. Such a tilting term that
is odd in momentum and breaks the inversion symmetry was
analyzed and discussed in the context of WSM2 in previous
works [8,11,17,34]. A similar two-band model was shown to
emerge from a topological-insulator-normal-insulator (TI-NI)
heterostructure [4], and the tilting term can be generated by in-
cluding the spin-orbit coupling (SOC) between the TI-NI inter-
faces [35]. In the following, we will use t as the unit of energy.

The low-energy Hamiltonian can be obtained by expanding
H around the Weyl nodes K± as (h̄ = 1)

H±(q) = v(qxσx + qyσy) ∓ vzqzσz + (γzqz ± c0)σ0, (2)

with the momentum q = k − K± being the deviation from
the Weyl nodes. The Fermi velocities are given as v = t and
vz = tsinQ, so the Weyl cones are generally not isotropic. The
tilting factor is given by γz = atcosQ and the constant term
c0 = atsinQ. When the tilting factor becomes larger than the
Fermi velocity in the same direction, γz > |vz|, the system
enters the WSM2 phase. In Fig. 1, the schematic plots of the
tilting Weyl cones in the kx-kz plane are shown for the WSM1
[Fig. 1(a)] and WSM2 [Fig. 1(b)].

The Fermi arc that links the projection of the bulk Weyl
points with opposite chiralities in the surface BZ is one of
the most prominent features of the WSM [5]. Consider a
slab of WSM that is infinite in the x and z directions while
semi-infinite in the y direction, filling the y > 0 half plane.
The energy eigenvalue problem in real space is H±(qx, −
i∂y,qz)�s±(r) = Es±(qx,qz)�s±(r), where the Hamiltonian
around the Weyl node K± is

H±(qx, − i∂y,qz) = vxqxσx − ivy∂yσy ∓ vzqzσz

+ (γzqz ± c0)σ0 + M(y)σz. (3)

FIG. 1. Schematic plot of the tilting Weyl cones in the kx-kz plane
of (a) WSM1 with γz = 0.4 and (b) WSM2 with γz = 1.2. The Chern
numbers are shown in different layers. As shown in (a), when the
Hubbard interaction induces the renormalized topological mass m′

1

increases, the Weyl nodes will move to the edge of the BZ, and
the Weyl cones will become more tilted. Note the energies of Weyl
nodes are unequal, leading to the existence of electron and hole Fermi
surfaces at half filling.

Here to model the boundary, we take M(y) = M for y < 0 and
M(y) = 0 for y > 0 [36]. Taking the limit of M → ∞ models
the interface with vacuum or a large-gap trivial insulator. It
can be shown that only the state corresponding to eigenvalue
+1 of the matrix σx can lead to the normalizable solution. So
the eigenenergy is

Es±(qx,qz) = vxqx + (γzqz ± c0), (4)

and the corresponding wave function is

�s±(r) =
√

qz

2
eiqxx∓iqzze

− vz
vy

qzy

(
1

1

)
, (5)

with qz > 0. Equation (4) tells us that the surface states at
different Weyl nodes have a certain energy difference if at �=
0. The linear characteristic of the surface states is in good
agreement with the ARPES measurement in MoTe2 [16].

In Hamiltonian H±, the tilting factor γz, and the Fermi
velocity vz in the z direction are strongly dependent on the
topological mass m1 and tilting parameter at . Thus the change
in m1 and at may drive the system to enter different phases.
The phase diagram of noninteracting WSM in the parametric
space of m1 and at is shown in Fig. 2. One can clearly
see that there exist two kinds of phase transition [15]: the
metal-insulator transitions and the WSM1-WSM2 continuous
transitions, where the phase boundaries are shown with the
dashed and dotted lines, respectively.

These different phases can be characterized by the non-
trivial Hall conductance, which is obtained from the famous
Kubo’s formula [37]. When |m1| < t , a pair of gapless Weyl
nodes exists. To calculate the Hall conductance, the 3D system
can be considered the stacking of the 2D slices at each
momentum kz. Each slice describes the 2D gapped Dirac
fermions in the kx-ky plane with mass m±(kz) = ∓vz(kz ∓ Q)
around the Weyl nodes K±, and the mass vanishes at K±.
It should be noted that the Dirac fermions around K± have
the same chiralities. The total Hall conductance σH of the 3D
system is a summation over each slice and is given as [4]

σH = e2

2πh

∑
kz∈BZ

[sgn(kz + Q) − sgn(kz − Q)]. (6)

As shown in Fig. 1, only topologically nontrivial layers with
Chern number C = 1 in the middle region (−Q < kz < Q)
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FIG. 2. Phase diagram of the WSM in the noninteracting case
with m0 = 2, where the different phases are shown with different
colors. The phase boundary of solid lines characterizes the metal-
insulator topological phase transition, while the dotted lines describes
the WSM1-WSM2 continuous transitions. Stars a–c are the initial
phases for interaction-induced phase transitions, as denoted by the
arrows in Fig. 3.

contribute to σH , while the topologically trivial layers with
C = 0 in the left (kz < −Q) or right (kz > Q) region make
no contribution to σH . The corresponding Hall conductance
of the system is given by σH = Qe2

πh
, i.e., is proportional to

the separation between the two Weyl nodes. When |m1| >

t , the two Weyl nodes meet and annihilate, so that the
system becomes gapped and thus enters the insulator phase.

Especially for the case of m1 > t , the Weyl nodes are
annihilated at (0,0, ± π ), the boundary of the BZ, leading
to σH = e2

h
, and the system enters the quantum anomalous

Hall insulator (QAHI) phase. For the case of m1 < −t , the
Weyl nodes are annihilated at (0,0,0), the center of the BZ,
leading to σH = 0, and the system enters the normal-insulator
(NI) phase.

The transition from WSM1 to WSM2 at nonzero m1

happens when the tilting factor γz increases and becomes larger
than the Fermi velocity in the z direction, γz > |vz|, i.e.,

at

∣∣∣m1

t

∣∣∣ > t

√
1 −

(m1

t

)2
, (7)

which shows the phase boundary is nonlinear. As m1 ap-
proaches zero, the phase boundary of WSM1-WSM2 tran-
sitions extends to infinity.

III. MEAN-FIELD THEORY

We consider the half-filling case; that is, there is only one
electron on each site. This can be achieved by modulating
the chemical potential in the system. As the energies of Weyl
nodes are unequal, the electron and hole Fermi surfaces can
coexist. Then the long-range Coulomb interaction is expected
to be effectively screened by the finite density of states at half
filling and can instead be described by the on-site Hubbard
interaction [38,39]:

HU = U
∑

l

nl↑nl↓, (8)

where U > 0 is the repulsive interaction strength and nlα =
c+
lαclα denotes the electron number at site l with spin α. When

the interaction is strong and much larger than the energy scale
of the system, U 
 t , it is evident that the ground state of
the system is a charge-localized Mott insulator [27]. However,
for intermediate interaction strength, U ∼ t , the correlation
effect between electrons will compete with the topology of the
bands.

To decouple the local Hubbard interaction, we apply the
Hartree-Fock MF approximation, with all possible channels
included. The MF theory has been successfully applied
in several fields of strongly correlated electrons [22–31].
Previously, we applied the MF theory in two spatial dimensions
to investigate the topological phase transitions in the arbitrary
Chern number insulator [29]. Here we further extend the MF
theory and consider the 3D Weyl system.

We define the MF parameters of local charge density ρl =∑
α〈nlα〉 and local magnetizationMl = ∑

αβ〈c+
lασ αβclβ〉 [27].

It should be noted that Mlz is not a symmetry-breaking order
parameter and leads only to the shift of the quantum critical
points at which the energy bands become gapless. Ml− =
Mlx − iMly can act as a symmetry-breaking order parameter,
whose nonvanishing value will lead to a spontaneous nematic
order, suggesting that the lattice rotational symmetry around
the z direction is broken [24]. With the help of these MF
parameters, the Hubbard term can be decoupled as

Hd
U = U

2

∑
l

ρl

∑
σ

c+
lσ clσ − U

2

∑
l

Ml · σ l , (9)

in which σ l = (σlx,σly,σlz) are the Pauli matrices representing
an electron’s spin at site l. We have dropped the constant terms
in Eq. (9).

IV. MAIN RESULTS

A. Renormalized topological mass

First, we study the renormalization of topological mass
and ignore any kind of many-body instabilities. Under this
assumption, the bulk system possesses the translational sym-
metry, and the MF parameters should be spatially uniform. So
in the following we use ρ and M to represent the local ρl

and Ml .
In the framework of MF theory, the Hubbard interaction

will modify the original noninteracting Hamiltonian to the
MF Hamiltonian Hmf, which in momentum space takes the
following form:

Hmf(k) =
(

Ak − U
2 Mz Bk − U

2 M−
B∗

k − U
2 M+ −Ak + U

2 Mz

)

+
(

atsinkz + U

2
ρ

)
σ0. (10)

Here the variables in the matrix are Ak = m1 − tcoskz +
m0(2 − coskx − cosky), Bk = t(sinkx − isinky). The eigenen-
ergies are given as ε±(k) = ±Dk + atsinkz + U

2 ρ, where

Dk =
√

(Ak − U
2 Mz)2 + |Bk − U

2 M−|2. It is clear that the

term U
2 ρ in the eigenenergies shifts the energy level by U

2 ρ,
while the term atsinkz does not.
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Using the eigenenergies and eigenstates of Hmf(k), the self-
consistent equations for ρ and M are

ρ = 1

N

∑
k

{f [ε+(k)] + f [ε−(k)]}, (11)

M− = 1

N

∑
k

Bk − U
2 M−

Dk
{f [ε+(k)] − f [ε−(k)]}, (12)

Mz = 1

N

∑
k

Ak − U
2 Mz

Dk
{f [ε+(k)] − f [ε−(k)]}, (13)

where f (εα) = 1/(eβ(εα−μ) + 1) is the Fermi distribution func-
tion with the energy εα(k) and inverse temperature β = 1

kBT
.

The chemical potential is set as U
2 ρ to keep the system half

filled. We solve the equations using the self-consistent iterative
approach [27–29]. The steps are as follows: (a) set initial
random values for ρ andM, (b) diagonalize Hmf(k) to solve the
energies and eigenvectors, and (c) use the obtained energies
and eigenvectors to calculate new ρ and M. Repeat these
steps until convergence is reached. The convergence conditions
are set to be |�ρ| < 10−6 and |�M| < 10−6, where �ρ and
�M are the differences in ρ and M between the subsequent
iterations, respectively. As further checks on the numerical
results, we set different initial values for the MF parameters
and find the results exhibit good convergence. In fact in the
case of half filling, the local charge density gives ρ = 1.

The calculation shows that in the zero-temperature case,
M− vanishes, suggesting that there is no rotational-symmetry
breaking and no nematic phase. This can be explained
from Eq. (12) as follows. At zero temperature, the nonzero
contributions must come from the electronic states satis-
fying f [ε+(k)] = 0 and f [ε−(k)] = 1, which requires the
condition

Dk > at |sinkz|. (14)

If the tilting parameter at is small, this condition is automati-
cally satisfied for all momenta in the BZ. If the tilting parameter
at is large, the allowed momentum space is reduced but is still
symmetric with the z axis: (kx,ky,kz) ↔ (−kx, − ky,kz). Then
Eq. (12) can be rewritten as

M− =
1
N

∑
k

Bk
Dk

U
2N

∑
k

1
Dk

− 1
. (15)

As the variables have the properties B(kx,ky) = −B(−kx, −
ky) and D(kx,ky) = D(−kx, − ky), when summing the al-
lowed momenta over the BZ, the contributions from k1 =
(kx,ky,kz) and k2 = (−kx, − ky,kz) will exactly cancel each
other, leading to the vanishing of M−. This conclusion can
be extended to the finite-temperature (T > 0) case. The above
analysis leads to the fact that the MF approximation here is
equivalent to adding a Hartree field to the topological mass
m1, which is renormalized as

m′
1 = m1 − U

2
Mz. (16)

Finite magnetization Mz indicates the existence of ferro-
magnetic order in the system. In fact, when averaged over the
momentum space, the Hamiltonian in Eq. (1) leads to total
energy E ∼ heMz, where we define the effective magnetic

FIG. 3. The magnetizationMz vs (a) the topological mass m1 and
(b) the tilting parameter at at different Hubbard interaction strengths
and Wilson masses (U,m0). We have fixed at = 1 in (a) and m1 =
−0.8 in (b). The legend is the same for both plots.

field he = m1 + 2m0. If the effective magnetic field is negative,
he < 0, to minimize energy,Mz > 0 and vice versa. This leads
to another observation that the role of the Wilson mass term m0

is twofold: it not only can stabilize the Weyl nodes at K± but
can also provide part of the effective magnetic field. Numerical
calculation also verifies this conclusion. Indeed, in Fig. 3(a)
we plot Mz vs m1 for several sets of parameters (U,m0) with
fixed at = 1. For each curve, as m1 increases, Mz decreases,
from the saturation value +1 (when he < −4) to the saturation
value −1 (when he > 4). In particular, at he = 0,Mz vanishes
due to the electrons being equally distributed between the two
spin states. More importantly, it is shown that the existence of
ferromagnetic order will get enhanced when the interaction
increases. This is because the corresponding Hartree field
strengthens the effective magnetic field [26], leading to larger
|Mz|.

Furthermore, Mz is also dependent on the tilting parameter
at , as shown in the numerical results in Fig. 3(b) with fixed
m1 = −0.8. The behavior can be explained as follows. If at

is small, the allowed states are unaffected, just like in the
nontilting case. So Mz remains almost unchanged, and the
boundary is shown by the dotted line in Fig. 3(b). If at is large,
the allowed states are reduced, resulting in the decreasing of
|Mz|. When the tilting parameter becomes too large, at 
 t ,
the tilting term atsinkz will dominate in the MF Hamiltonian.
In this case, only the electronic states at the kz = 0, ± π plane
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in the BZ will make a contribution to Mz, at which the tilting
term vanishes. Thus Mz gradually reaches its saturation value
when at becomes large, as shown in Fig. 3(b).

The topological mass m1 controls the metal-insulator
topological transitions and can be regulated by external means
in experiment, for example, in the TI-NI heterostructure [4,13],
by tuning the thickness of each layer or the concentration
of magnetic impurities. For the study of topological phases
transitions, the meaningful range of m1 is of the same order
of magnitude as t . Therefore the argument of the validity of
mean-field theory is still applicable in the presence of m1 and,
for similar reasons, of tilting parameter at .

So far we have demonstrated that in the MF theory, the
renormalized topological mass due to the Hubbard interaction
shows complex behavior: it can be increased when the effective
magnetic field is negative or decreased when the effective
magnetic field is positive. This should be contrasted with the
effect of nonmagnetic disorder in inducing the topological
phase transitions in WSM, where in the framework of the Born
approximation, the renormalized topological mass is always
made to be decreasing [15,32].

In the following, we set the effective magnetic field
he > 0 and the resulting magnetization Mz < 0. Then the
topological mass m1 will be renormalized to its increased
value m′

1, which will be further enhanced by the Hubbard
interaction.

B. Phase diagrams

In Figs. 4(a) and 4(b), we plot the interaction-induced
phase diagrams of WSMs in parametric space (m1,U ) and
(at ,U ), respectively. In comparison with the noninteracting
phase diagram in Fig. 2, we see that the Hubbard interaction
can induce dramatic changes in the phase boundaries. This
is because, besides the topological mass renormalization, the
interaction also renormalizes the tilting factor γz and the Fermi
velocity vz in the z direction:

γ ′
z = at

∣∣∣m1 − U
2 Mz

t

∣∣∣, (17)

|v′
z| = t

√
1 −

(m1 − U
2 Mz

t

)2
. (18)

There are several features in the phase diagram in Fig. 4
that are worth pointing out. First, when m1 increases in
Fig. 4(a), the phase boundaries deviate to the lower U as Mz

decreases with m1, and when at increases in Fig. 4(b), the
phase boundaries deviate to higher U as Mz increases with at .
Second, the phases of NI, WSM1, and WSM2 are all unstable
with interaction. If the interaction is strong enough, they will
eventually be driven into the QAHI phase, in accordance with
the previous analysis. Third, when m1 < t , the system can be
driven into WSM2 by Hubbard interaction as long as the tilting
is nonvanishing, at �= 0.

For example, along arrow a in Fig. 4(a), when |m′
1| < t ,

the system initially lies in the NI phase. Upon increasing
U , the Weyl nodes move on the z axis, and correspondingly,
their tilting factor γ ′

z and Fermi velocity v′
z change. At

U = 0.53, the energy gap closes, and the system enters the
WSM2 phase as the Weyl cones are overtilted as γ ′

z > |v′
z|.

FIG. 4. Interaction-induced phase diagrams of WSM (a) in the
parametric space of (U,m1) with at = 1 and (b) in (U,at ) with m1 =
−0.8. The different phases are shown in different colors. Note the
linear phase boundaries in (a) and the nonlinear phase boundaries in
(b).

At U = 1.23, γ ′
z begins to become smaller than |v′

z|, and the
topological phase transition from WSM2 to WSM1 happens.
When γ ′

z > |v′
z| at U = 4.04, the Weyl cones are overtilted, and

the system enters the WSM2 phase again. Finally, at U = 4.6,
the Weyl cones will meet at kz = 0 and be annihilated. As a
result, the energy gap will be opened again, and the system is
driven to the QAHI phase.

We also investigate the effect of thermal fluctuations
caused by finite temperature on the phase diagram of WSMs.
In Fig. 5, for a cut at m1 = −1.2 in Fig. 4(a), along arrow
a, we plot the interaction-induced phase diagram of WSMs
at finite temperature in the parametric space of (U, lnβ)
with β = 1

kBT
. Figure 5 shows that when the temperature

is high (lnβ < 0), the thermal fluctuations will induce
the larger critical interaction strength to drive both the
metal-insulator and WSM1-WSM2 phase transitions. With a
further increase of temperature, the critical interactions tend to
diverge. When the temperature is low as lnβ > 1, the critical
interaction for the transitions almost remains unchanged.
To make a comparison to the archetypical Weyl material
TaAs [40], we take t = 0.2 eV and the lattice constant
a = 5 Å, which lead to a Fermi velocity of v = 1eVÅ

[11]. It can be estimated that lnβ = 1 corresponds to a
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FIG. 5. Interaction-induced phase diagram of WSM at finite
temperature, which is shown in the parametric space of (U, lnβ)
with β = 1

kBT
. The different phases are shown in different colors.

real temperature of about 854 K, which is much higher
than room temperature. Therefore in 3D TaAs, the thermal
fluctuations will be effectively frozen and have a negligible
effect on the Hubbard interaction-induced topological phased
transitions.

C. Antiferromagnetic order

Here we consider the magnetic property of the system,
which is induced by the combined effects of the effective
magnetic field he and the Hubbard interaction. On the one
hand, the same magnitude of he on all sites prefers the FM
order to minimize the energy of the system. On the other hand,
when the system is at half filling, the Hubbard interaction
tends to induce the antiferromagnetic (AFM) order. Therefore
the two mechanisms will compete with each other to determine
the ground state of the system.

To find the AFM order, the unit cell that includes only
one atom site needs to be enlarged to include more than one
atom site [41]. As schematically shown in Fig. 6(a) for the
lattice structure, the enlarged unit cell includes four atom sites,
A1, B1, A2, and B2, with the ansatz of AFM-xyz order in all
three directions. Such a unit cell encloses four atomic sites that
can, in principle, be inequivalent. The enlarged unit cell in a
cubic lattice structure may also be chosen in the x-y plane or
the z direction (see the Appendix), and the corresponding AFM
orders are termed AFM-xy and AFM-z. Within the mean-field
theory, we can calculate the magnetization on each site self-
consistently and then determine the phase transition.

In the basis of (ckA1↑,ckA1↓,ckB1↑,ckB1↓,ckB2↑,ckB2↓,ckA2↑,

ckA2↓)T , the 8 × 8 Hamiltonian of the system becomes

H (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

he 0 −eikx fk eikx gk e−ikz (pk + qk) 0 0 0

0 −he eikx g∗
k eikx fk 0 e−ikz (−pk + qk) 0 0

−e−ikx fk e−ikx gk he 0 0 0 e−ikz (pk + qk) 0

e−ikx g∗
k e−ikx fk 0 −he 0 0 0 e−ikz (−pk + qk)

eikz (pk + qk) 0 0 0 he 0 −eikx fk eikx gk

0 eikz (−pk + qk) 0 0 0 −he eikx g∗
k eikx fk

0 0 eikz (pk + qk) 0 −e−ikx fk e−ikx gk he 0

0 0 0 eikz (−pk + qk) e−ikx g∗
k e−ikx fk 0 −he

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

with the parameters taken as he = m1 + 2m0,fk =
m0(coskx + cosky),gk = t(sinkx − isinky),pk = tcoskz,qk =
atsinkz.

In Fig. 6(c), we plot the band structures of H (k) along
the high-symmetry lines Gb-Gb-Mb-Gb-Gb in the 3D BZ [see
Fig. 6(b)]. Figure 6(c) shows that changing the choice of the
unit cell will not change the band structures but will lead to
the appearance of the additional bands. In fact, the additional
bands of the four-site cell are just the folding of the bands of
the one-site cell, as the point Ra = (π,π,π ),Ma = (π,π,0) in
the BZ of the one-site cell becomes equivalent to �b = (0,0,0)
in the BZ of the two-site cell and Xa = (π,0,0) is equivalent
to Mb = (π,0,0). The density of states (DOS) per unit cell is
given as

ρ(E) = 1

N

∑
α,k

δ[E − Eα(k)], (20)

with N being the number of unit cells and Eα(k) being the
eigenenergy of H (k). In Fig. 6(d), the normalized DOSs are
shown, where the DOSs of the four-site cell are four times

those of the one-site cell, as there are four atom sites in the
enlarged unit cell. The above analysis demonstrates that the
enlarged unit cell constructed here is quite reliable and can be
used for further calculations.

In Fig. 7, for strong Hubbard interaction, we plot the
interaction-induced magnetic phase diagram with the same
parameters as in Fig. 4. Figure 7 shows that due to the compe-
tition between he and Hubbard U , when U is below the critical
interaction Uc, the FM order dominates, the magnetization
MA1z = MA2z = MB1z = MB2z ∼ −1, and the system lies
in the QAHI phase. When U > Uc, the AFM order dominates,
and MA1z = MA2z = −MB1z = −MB2z ∼= 1. In Fig. 7(a),
the phase boundary increases with m1, while in Fig. 7(b), the
phase boundary is less affected by the tilting parameter at . In
both Figs. 7(a) and 7(b), a direct transition from FM order to
AFM-xyz order can be seen, with the ordering vector of the
spin-density wave (SDW) being Q1 = (π,π,π ). It should be
noted that the red solid (blue dotted) lines in both figures denote
the separations between the QAHI and AFM-xy (AFM-z)
phases. However, when comparing the total energies of the
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FIG. 6. (a) Schematic plot of the lattice structure in 3D space.
The yellow cell represents nearest-neighbor four-site cells in the
(b1,b2,b3) basis. (b) The first BZ for the one- (four-) site cell is
shown by the black (green) lines. (c) and (d) Band structures and
DOS per unit cell obtained from the tight-binding model, where (c) is
calculated along the high-symmetry lines in the BZ, as shown by the
purple lines in (b). The other parameters are set as at = 1, m0 = 2,
and m1 = 0.5.

ground states, the AFM-xyz order has lower energy than the
other two orders, so the AFM-xyz order is more energetically
favorable and easier to form in this 3D WSM system.

The appearance of AFM order is supported by previous
studies of WSMs [42,43], where the AFM order also exists
when U is strong. The conclusion of the SDW is in accordance
with Ref. [42] using the variational cluster approach but
is different from Ref. [43] with the renormalization-group
analysis, where the ordering vector of the SDW is predicted to
be equal to the momentum-space separation of the Weyl points.
So further theoretical and experimental studies to verify the
SDW are needed.

D. Model of two pairs of Weyl nodes

In this section, we study another WSM model where the
inversion symmetry is broken but the TRS is preserved [16,33]:

H ′
0 = t(coskxσx + sinkyσy) + (m1 + tcoskz)σz

+m0(2 − sin2kx − cosky)σz − μσ0, (21)

with the time-reversal operator T = K and K being the
complex-conjugation operator. The peculiarity of this model
is that when |m1| < t , it hosts two pairs of Weyl nodes located
at E = 0 and K = (±π

2 ,0, ± Q), where Q = arccos(−m1
t

).
Since the TRS is preserved, the Hall conductance vanishes. So
when |m1| > t , the system is not in the QAHI phase but lies
in the NI phase, which is different from the model in Eq. (1).

When both the tilt and Hubbard interaction are included, the
system becomes H = H ′

0 + Ht + Hu. We focus on the small-

FIG. 7. Interaction-induced phase diagrams in WSM at the
large-U limit. The red solid (blue dotted) lines in both plots are
the separations between the QAHI and AFM-xy (AFM-z) phase,
but actually, these phases cannot exist in the system due to their
higher ground-state energies compared with AFM-xyz order. The
parameters are the same as in Fig. 4.

U case. The analysis and calculations show results for the MF
parameters similar to those in model (1). Specifically, we find
M− = 0 andMz < 0 for the positive effective magnetic field.
For M− in Eq. (14), we have, for this model, Bk = t(coskx −
isinky) with the property B(kx + π,ky + π ) = −B(kx,ky).
ThereforeM− vanishes as well when summing the momentum
k over the BZ. Qualitatively, however, numerical calculations
(not shown) tell us that the same magnitude of interaction U

leads to smaller magnetizationMz in this model, leading to the
phase boundaries deviating to the larger Hubbard interactions.
This can be attributed to the enhancement of the itinerancy
of electrons in the model of two-pair Weyl nodes, where, be-
sides the nearest-neighbor hoppings, the next-nearest-neighbor
hoppings also occur in the x direction. Therefore the density
difference between two spins weakens. To compensate this, a
larger Hubbard interaction is needed to induce the topological
phase transitions. In this sense, we suggest that the Hubbard-
interaction-induced mass renormalization and WSM1-WSM2
topological phase transitions have certain universality for the
titled Weyl fermion systems.

V. DISCUSSIONS AND SUMMARY

In conclusion, we have studied the effect of on-site Hubbard
interaction on the phase diagrams of WSM with a nonzero
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tilt. Within the MF theory, we self-consistently solve the MF
parameters from the minimum model. We find that the resultant
renormalized topological mass can effectively change the
Fermi velocity and the tilting of the Weyl cone. As a result, the
phase boundaries of both the metal-insulator phase transitions
and WSM1-WSM2 phase transitions are renormalized. We
have checked that when the tilting term takes higher-order
harmonics [44,45], similar results can also be obtained. We
have also analyzed the possible appearance of AFM orders
at the large-U limit with the enlarged unit cell. We hope
the results can be validated in the known WSM materials
[16–21], where the different phases can be characterized by
their transport signatures, and in the cold-atom optical lattice
experiment as well [44].

We believe that the results of MF theory are qualitatively
correct as the proper variations of the parameters with the
interaction can be captured [26]. Thus the MF theory provides
an intuitive understanding of the competition between the
interaction and topology and can serve as a starting point
for future studies. To go beyond this and study the quantum
fluctuations around the critical points, it would be interesting
to use techniques such as the renormalization-group and the
quantum Monte Carlo methods to investigate such problems.
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APPENDIX

From symmetry considerations, one would presumably
assume that the energetically favorable AFM order would be
either along the z direction or in the xy plane. However, our
numerical calculation in the main text (Sec. IV C) shows that
the stable AFM order is xyz order. To verify this result, in this
appendix, we perform more calculations by choosing two other
kinds of enlarged unit cells to explicitly enforce the AFM-xy

order and AFM-z order, respectively. Our calculation shows
that, indeed, these two AFM orders are both energetically
unfavorable compared to AFM-xyz order.

1. Enlarged unit cell

Besides the enlarged unit cell chosen in all three directions
discussed in the main text, we can also choose the enlarged unit
cell in the x-y plane or in the z-direction, and the corresponding
AFM orders are termed AFM-xy and AFM-z.

First, we consider the enlarged unit cell in the x-y plane. As
shown in Fig. 8(a) for the lattice structure in the x-y plane, the
primitive one-site cell is spanned by the two vectors a1,2, while
the enlarged two-site unit cell is spanned by two vectors b1,2

FIG. 8. (a) Schematic plot of the lattice structure in the x-y plane
including one-site and two-site cells. The four yellow cells represent
nearest-neighbor cells in the (b1,b2) basis. (b) The first kx-ky BZ is
plotted for the one- (two-) site cell in the solid black (dotted green)
square. (c) and (d) Band structures and DOS per unit cell obtained
from the tight-binding model, where (c) is calculated with kz = 3 and
along the high-symmetry lines in the BZ, as shown by the purple lines
in (b). The other parameters are set as at = 1, m0 = 2, and m1 = 0.5.

and has double area. In the basis of (ckA↑,ckA↓,ckB↑,ckB↓)T ,
the 4 × 4 Hamiltonian becomes

H (k) =

⎛
⎜⎜⎜⎝

dk + qk 0 −eikx fk eikx gk

0 −dk + qk eikx g∗
k eikx fk

−e−ikx fk e−ikx gk dk + qk 0

e−ikx g∗
k e−ikx fk 0 −dk + qk

⎞
⎟⎟⎟⎠,

(A1)

with parameters being the same as in Eq. (19) and dk = he +
pk. After diagonalizing H (k), the energies are obtained as
Eα±(k) = qk ±

√
|gk|2 + (dk + αfk)2, with α = ±1.

In Fig. 8(c), we plot the band structures along the
high-symmetry lines �b-Mb-�b-Xb-�b in the kx-ky BZ [see
Fig. 8(b)]. Figure 8(c) shows that changing the choice of the
unit cell will not change the band structures, as the additional
bands of the two-site cell are just the folding of the bands of
the one-site cell. This is because the point Ma = (π,π ) in the
BZ of the one-site cell becomes equivalent to �b = (0,0) in
the BZ of the two-site cell. In Fig. 8(d), the normalized DOSs
are shown, where the DOSs of two-site cell are double those
of the one-site cell, as there are two atom sites per unit cell in
the case of two-site cell.

We can also choose the enlarged unit cell in the z direction,
as plotted in Fig. 9(a) for the lattice structure, where the vectors
a3 of the one-site cell and b3 of the two-site cell are shown. In
k space, the 4 × 4 Hamiltonian is written as

H (k) =

⎛
⎜⎜⎜⎝

he − fk gk e−ikz (pk + qk) 0

g∗
k −(he − fk) 0 e−ikz (−pk + qk)

eikz (pk + qk) 0 he − fk gk

0 eikz (−pk + qk) g∗
k −(he − fk)

⎞
⎟⎟⎟⎠, (A2)
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FIG. 9. (a) Schematic plot of the lattice structure in the 3D space,
including one-site and two-site cells in the z direction. The yellow
cells represent nearest-neighbor cells. (b) The first ky-kz BZ is plotted
for the one- (two-) site unit cell in the solid black (dotted green)
square. (c) and (d) Band structures and DOS per unit cell obtained
from the tight-binding model, where (c) is calculated when kx = 0
and along the high-symmetry lines in the BZ, as shown by the purple
lines in (b). The other parameters are the same as in Fig. 7.

with the parameters being the same as in Eq. (19).
The energies can be solved directly as Eα±(k) = αqk ±√

(he − fk + αpk)2 + |gk|2, with α = ±.
In Fig. 9(c), we plot the band structures along the

high-symmetry lines �b-Xb-Mb-Xb-�b in the ky-kz BZ [see
Fig. 9(b)]. The enlarged unit cell does not change the band
structures, and the additional bands are just the folding of the
bands of the one-site cell. It should be noted that the folded
BZ is different from the previous one as the enlarged unit cells
are in different directions. In this case, point Ma = (π,π ) in
the BZ of the one-site cell becomes equivalent to Xb = (π,0)
in the BZ of the two-site cell. In Fig. 9(d), the DOS per unit
cell is plotted, where the enlarged unit cell also has twice the
DOS of the one-site cell.

These analyses demonstrate that the enlarged unit cells con-
structed by different choices are quite reliable and reasonable.

2. Mean-field theory

Within the mean-field approximation, the Hubbard inter-
action for the enlarged unit cell in the momentum space is
given as

HU = U
∑
k,α

[〈nα↓〉nkα↑ + 〈nα↑〉nkα↓ − 〈nα↑〉〈nα↓〉], (A3)

in which the index α = A,B for AFM-xy and AFM-z and α =
A1,B1,A2,B2 for AFM-xyz. Here we have kept the constant
term, which does not depend on the creation or annihilation
operators and depends only on their average values. This term

FIG. 10. Plot of the magnetization Mαz vs the Hubbard inter-
action U for the enlarged unit cell in (a) the x-y plane, (b) the z

direction, and (c) all three directions. The parameters are chosen as
m0 = 2, m1 = −1.2, and at = 1. (d) The total energy of the ground
state E/Ne for different AFM orders.

must be included in calculating the total energy of the system
to help judge the ground state. We can define the mean-field
parameters of the charge density and magnetization on site
α as [27] ρα = 〈nα↑〉 + 〈nα↑〉, Mαz = 〈nα↑〉 − 〈nα↓〉. When
the system is at half filling as we have chosen before, the
charge densities on each atom site are naturally ρα = 1. Mαz

on each site α can be calculated by the self-consistent iterative
algorithm. We have carefully checked the results for different
sizes of the cubic system, L = 10,20,30, which exhibit good
convergence.

In Figs. 10(a)–10(c), like along the arrow in Fig. 4(a),
we plot the magnetization Mαz vs the Hubbard interaction
U for different AFM orders. It can be clearly seen that as
the interaction is strong enough, the magnetization on each
site can reach its saturation value of −1. In Fig. 10(a),
when the Hubbard interaction is below the critical interaction
U < Uc = 11.82, the FM order dominates as Mαz ∼ −1, and
when U > Uc, the AFM order appears as MA1z = MA2z =
−MB1z = −MB2z ∼ 1. Figure 10(a) shows that during the
phase transition, the magnetization MB1z and MB2z remains
almost unchanged, while MA1z and MA2z show an abrupt
change, pointing to a first-order phase transition. However,
in Figs. 10(b) and 10(c), the critical Uc for the appearance
of AFM-xy and AFM-z are 14.31 and 17.75, respectively. In
Fig. 10(d), we plot the total energy of different AFM ground
states, where we have used E/Ne, with Ne being the electron
number instead of E to avoid the effect of the unit-cell size.
Figure 10(d) shows clearly that the AFM-xyz order has lower
energy than the other two orders and therefore is energetically
more favorable.
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