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Noncommutative quantum mechanics and skew scattering in ferromagnetic metals
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The anomalous Hall effect is classified into two effects based on the mechanism. The first one is the intrinsic
Hall effect due to the Berry curvature in momentum space. This is a Hall effect that solely arises from the
band structure of solids. On the other hand, another contribution to the Hall effect, the so-called extrinsic
mechanism, comes from impurity scatterings such as skew scattering and side jump. These two mechanisms are
often discussed separately; the intrinsic Hall effect is related to the Berry curvature of the band while the skew
scattering is studied using the scattering theory approaches. However, we here show that, in an electronic system
with finite Berry curvature, the skew scattering by nonmagnetic impurities is described by the noncommutative
nature of the real-space coordinates due to the Berry curvature of the Block wave functions. The anomalous Hall
effect due to this skew scattering is estimated and compared with the intrinsic contribution.
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I. INTRODUCTION

The Berry phase connection

a(k) = i〈uk|∇k|uk〉
of the band structures in solids, which describes how the two
neighboring Bloch functions overlap in the crystal momentum
k space, plays important roles in a variety of phenomena [1–3].
(|uk〉 is the periodic part of the Bloch function with crystal
momentum k, and ∇k is the gradient operator with respect
to k.) This a(k) plays the role of the vector potential and
leads to the Berry curvature b(k) = ∇k × a(k) analogous to
the magnetic field. The Berry connection a(k) has the physical
meaning of the intracell coordinate, i.e., the real-space position
of the wave packet measured from the Wannier coordinate
reads [4–8]

r = i
∂

∂k
+ a(k). (1)

On the other hand, the Berry curvature b(k) gives a nonzero
commutation relation between the components of the real-
space coordinate r . For example,

[x,y] =
[
i

∂

∂kx

+ ax(k),i
∂

∂ky

+ ay(k)

]

= i

[
∂ay

∂kx

− ∂ax

∂ky

]
= ibz(k). (2)

Therefore, the wave packets made of the Bloch functions
are described by the noncommutative quantum mechanics
[9–15]. This fact leads to the so-called anomalous velocity
and also the intrinsic anomalous Hall effect (AHE) in metallic
ferromagnets [4,16–21]. Namely, the transverse anomalous
velocity to the external electric field is induced by the Berry
curvature b(k) [3,19], which is the dual to the Lorentz force due
to the magnetic field in real space. This intrinsic mechanism
due to the geometric nature of the Bloch wave functions is now
confirmed in many materials by the comparison between the
first-principles calculations and experiments [22–27].

Historically, however, the intrinsic mechanism of the AHE
was questioned for a long period, as the impurity scatterings
relax the momentum distribution to the steady state under the

external electric field. As impurity scatterings are inevitable
in solids and they seem to cancel the force acting on the
electrons, the anomalous velocity induced by the Berry
curvature was expected to vanish [28]; thus, there is no intrinsic
AHE. Therefore, the extrinsic mechanisms due to impurity
scattering were established earlier. Historically, Smit was the
first to propose the extrinsic mechanism of AHE by the skew
scattering [28,29], where the transition probability for the
scattering k → k′ is different from that of k′ → k, i.e., the
detailed balance condition is broken. Later, another extrinsic
mechanism called side jump was proposed [30], where a trans-
verse shift of the electron trajectory occurs at the scatterers. In
these mechanisms, the spin-orbit interaction (SOI) plays a key
role in the asymmetry of the scattering amplitude.

Usually, the intrinsic and extrinsic mechanisms of AHE
are discussed separately; the effect of impurities are often
considered to be irrelevant for the intrinsic Hall effect, while
the skew scattering is studied as a scattering problem and
the effect of the Berry phase is not (explicitly) considered.
Indeed, the two contributions are considered to be dominant
in different regimes of the longitudinal resistivity ρxx [31,32];
the intrinsic one is dominant in the region 1 < ρxx < 1 m� cm
while the skew scattering is dominant for ρxx < 1 μ� cm
[27,33,34]. The side jump mechanism is also effective, but
often smaller than these two. Technically, skew scattering
appears in the second Born approximation [29,35]; it appears
from the interference of the first-order and second-order
scattering processes.

In this paper, we study the scattering by an impurity
potential for the electronic states with finite Berry curvature
in terms of the noncommutative quantum mechanics. The
key observation is that the nonzero commutators between
the components of the real-space coordinates urge us to
introduce the new canonical coordinates, which satisfies the
usual commutation relations [see Eqs. (5) below]. This results
in an asymmetric scattering as we see in Eqs. (7) and (13),
which leads to the skew scattering. The results imply that the
skew scattering is a ubiquitous phenomenon that appears in a
system with finite Berry curvature.

The paper is organized as follows. In Sec. II, we introduce
the model we consider throughout this paper; a noninteracting
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electron system with nonmagnetic impurities without SOI. A
difference from the conventional scattering problem is that the
position operators do not commute with each other due to the
nonzero Berry curvature. Using this model, in Sec. III, we
discuss how the noncommutativity leads to skew scattering
using the second Born approximation. In Sec. IV, using the
scattering rate obtained in Sec. III, we present the explicit form
of the anomalous Hall conductivity using the semiclassical
Boltzmann theory. We also discuss the competition between
the AHE induced by skew scattering and that by the intrinsic
mechanism, which both arise from the Berry curvature.
SectionV is devoted to discussions and summary.

II. MODEL

In this paper, we consider a three-dimensional space
denoted by x = (x,y,z) = (x1,x2,x3) and its momenta p =
(px,py,pz) = (p1,p2,p3) with the following commutation
relations:

[x1,x2] = ib, (3a)

[xi,x3] = 0, (3b)

[xi,pj ] = iδij , (3c)

[pi,pj ] = 0, (3d)

where i,j = 1,2,3. In solids, the noncommutativity of the posi-
tion operators is a consequence of the Berry curvature [4–6]; it
is briefly explained in Eqs. (1) and (2) of Sec. I. Throughout this
paper, we put h̄ = 1. To study the effect of impurity scattering,
we here consider a single-particle Hamiltonian of a spinless
fermion with (nonmagnetic) impurities:

H = H0 + HV , (4a)

H0 = p2

2m
, (4b)

HV = V
∑

i

δ(x − xi), (4c)

where H0 is the Hamiltonian for the free electrons and HV is the
impurity Hamiltonian; V is the strength of potential induced
by a scatterer, δ(x) is the three-dimensional delta function, and
xi is the position of the impurity. The sum in the second term is
over all impurities indexed by i. Note that V has the dimension
of (energy) × (length)3; when we consider the case of impurity
atoms replacing the host atoms that form a crystal, V should
be replaced by va3, where v is the potential energy and a is
the lattice constant (hereafter, we take the unit a = 1). In the
discussion below, we treat HV as a perturbation and assume V

is the same for all impurities. However, the extension to a set of
impurities with different scattering strength is straightforward.

III. ASYMMETRIC SCATTERING RATE

We first investigate the scattering problem with one impu-
rity at the center, i.e., x0 = 0. We discuss that an asymmetric
scattering term arises from the noncommutativity of position
operators, which has the same form as the skew scattering. For
simplicity, we set b = (0,0,b) to be constant. The eigenstates
of single-particle Hamiltonians with the commutation relation

in Eq. (3) can be obtained by introducing an alternative set
of commutative “position” operators, X1 and X2, that gives
two sets of canonical coordinates and momenta, (X1,p1) and
(X2,p2) [14]:

X1 = x1 + b

2
p2, (5a)

X2 = x2 − b

2
p1, (5b)

X3 = x3. (5c)

Using Xi instead of xi in Eq. (3), we obtain three sets of
canonical coordinates and momenta:

[Xi,Xj ] = 0, (6a)

[Xi,pj ] = iδij , (6b)

[pi,pj ] = 0. (6c)

We, here, use this new coordinate to calculate the scattering
amplitude of the Hamiltonian in Eq. (4a). Using Xi , the
impurity Hamiltonian reads

〈k′|V δ(x)|k〉 = 〈k′|
(

V

(2π )3

∫
dq eiq·x

)
|k〉

= 〈k′|
(

V

(2π )3

∫
dq eiq·Xei b

2 ( p×q)3

)
|k〉

= ei b
2 (k×k′)3 , (7)

where (· · · )3 is the i = 3 component of the vector in the
round bracket. Here, we used the Baker-Campbell-Hausdorff
formula to factorize the exponential function.

To calculate the scattering rate Wk→k′ , we here use
the Born approximation [29,35]. Within the second Born
approximation, Wk→k′ reads

Wk→k′ = 2π |F (1)(k′,k) + F (2)(k′,k)|2δ(εk − εk′), (8)

where

F (1)(k′,k) = 〈k′|V δ(x)|k〉 = V

�
ei b

2 (k×k′)3 , (9)

and

F (2)(k′,k) = 〈k′|V δ(x)G(0,εk)V δ(x)|k〉

= −V 2m

�

eik| b
2 (k3−k′

3)|∣∣ b
2 (k3 − k′

3)
∣∣ , (10)

are the first and second Born terms, respectively. Here, |k〉
is the eigenstate for p, p|k〉 = k|k〉, εk = k2/2m is the
eigenenergy of |k〉 (k = |k| is the length of vector k), � is
the volume of the system, and G(x,ω) is the Green’s function
for H0:

G(x,ω) =
∫

dk′

(2π )3
G(k′,ω)eik′ ·r , (11)

where G(k′,ω) is the Fourier transform of G(x,ω):

G(k′,ω) = 1

ω − k′2
2m

+ iε


2

k′2 + 
2
. (12)
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In Eq. (12), 
 is the cutoff introduced to avoid the divergence
that appears in the integral for k′ in Eq. (11); we take the

 → ∞ limit at the end of the calculation of F (2) = (k′,k).
The result in Eq. (10) is after taking the 
 → ∞ limit; it turns
out F (2)(k′,k) converges to a finite value in the limit.

Using the F (1)(k′,k) and F (2)(k′,k), we calculate the asym-
metric part of the scattering rate W

(asym)
k→k′ . We find that the lead-

ing order of the asymmetric part is V 3; it arises from the prod-
ucts F (1)(k′,k)[F (2)(k′,k)]∗ + [F (1)(k′,k)]∗F (2)(k′,k). The
leading order of W

(asym)
k→k′ reads

W
(asym)
k→k′ = 1

2
(Wk→k′ − Wk′→k)

= − (2π )3

�

niV
3m

(2π )2

4wk′,k(b)

|b(k3 − k′
3)|δ(εk − εk′)

∼ − (2π )3

�

niV
3m

(2π )2
kb(k × k′)3δ(εk − εk′). (13)

Here,

wk′,k(b) = sin[(b/2)(k × k′)3] sin[(k/2)|b(k3 − k′
3)|], (14)

ni = Ni/� is the density of impurities, � is the volume, and Ni

is the number of impurities. In Eq. (13), we expanded wk′,k(b)
by k assuming k2

F b 
 1; it has the same k dependence as
that of skew scattering induced by an impurity with spin-orbit
interaction [27,29].

IV. ANOMALOUS HALL CONDUCTIVITY

In this section, we evaluate the Hall conductivity using the
Boltzmann transport theory [35,36]. Recently, this method has
been shown to be a useful approach for studying AHE that
can take into account the intrinsic and other impurity-induced
mechanisms [36–39]. For simplicity, however, we here focus
on the skew scattering term and calculate the explicit formula
for the anomalous Hall conductivity that arises from the
impurity scattering studied in Sec. III. In the leading order,
the contributions from other terms are given as a simple sum
of the different contributions such as side jump [37]. Therefore,
it should be straightforward to evaluate the Hall conductivity
in the presence of all different contributions.

The semiclassical Boltzmann equation reads

qvk · Ef ′
0(εk)

= −gk

τ
+ �

(2π )3

∫
dk′3W (asym)

k′→k gk′

= −gk

τ
+

∫
dθ ′ sin θ ′dφ′ ρ(εF )

4π
Ṽ (k) · k × k′

k2
gk′ , (15)

where q is the charge of the particle, E is the external dc
electric field, vk = ∇kεk is the velocity of the electron in
the k state, f ′

0(ε) = df0(ε)/dε with f0(ε) the Fermi-Dirac
distribution function, and ρ(εk) = mk/2π2 is the density of
states for H0 at energy εk. We here assumed the occupation of
electrons fk is close to f0(εk), i.e.,

fk = f0(εk) + gk,

where gk is the small deviation from f0(εk); the equation is
expanded to the linear order in gk. In addition, in the first line

in Eq. (15), we used the relaxation-time approximation for the
symmetric part of the scattering rate:

W
(sym)
k→k′ = 1

2 (Wk→k′ + Wk′→k),

that is, the scattering term that involves W
(sym)
k→k′ is replaced by

−gk/τ , where τ is the relaxation time.
For the integral in Eq. (15), we assumed the form

W
(asym)
k′→k = Ṽ (k) · k × k′

k2
, (16)

with Ṽ (k) = [Ṽ1(k),Ṽ2(k),Ṽ3(k)] being the function of k; this
is a generalization of the antisymmetric scattering term in
Eq. (13). The integral is written using the polar coordinate k′ =
(k′ cos θ ′ cos φ′,k′ cos θ ′ sin φ′,k′ sin θ ′); the radius is fixed to
k′ = k due to the energy conservation, i.e., the delta function
in Eq. (13).

Equation (15) is solved using a self-consistent approach.
For this, we introduce a new parameter

P(k) =
∫

dφ′dθ ′ sin θ ′k′gk′ . (17)

Using Eqs. (15) and (17), gk becomes

gk = −τqvk · Ef ′
0(εk) + τρ(k)Ṽ (k)

4πk2
· k × P(k). (18)

Substituting Eq. (18) into gk in the integrand of Eq. (17), the
solution for P(k) reads

P(k) = −τq
2πk2

m
f ′

0(εk)
E + τ

2 ρ(k)E × Ṽ (k)

1 + {
τ
2 ρ(k)Ṽ (k)

}2

∼ −τq
2πk2

m
f ′

0(εk)E. (19)

Here, we assumed Ṽ ⊥ E. In the second line, we expanded
the result to the leading order in τ . Therefore, to the leading
order in E and τ , Eq. (18) reads

gk = −τqf ′
0(εk)vk ·

(
E + τ

2
ρ(k)Ṽ (k) × E

)
. (20)

Hence, the contribution from impurity scattering to the
transverse conductivity reads

σxy = −nq2τ 2

2m
ρ(εF )Ṽ3(kF ), (21)

where kF is the Fermi velocity and εF is the Fermi energy. For
the W

(asym)
k′→k in Eq. (13), Ṽ (k) reads

Ṽ (k) = −2πniV
3mk3bx̂3, (22)

where x̂3 = (0,0,1) is the unit vector along the x3 axis.
Therefore, the transverse conductivity becomes

σxy = nq2τ 2ni

2π
V 3mk4

F b. (23)

Finally, we discuss the scaling relation of the skew
scattering induced Hall effect. When the major source of
scattering is the elastic scattering by the impurities, τ in
Eq. (21) is estimated to be 1/τ ∼ niV

2ρ(εF ). On the other
hand, from Eq. (13), we see that the leading order of Ṽ (k)
reads Ṽ (k) ∼ niV

3ρ(εF )bk2
F . Therefore, similar to the skew
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scattering by an impurity with SOI, the Hall conductivity is
σxy ∼ ρ(εF )V k2

F bσxx with σxx = nq2τ/m being the longitu-
dinal conductivity. Hence, the Hall angle for the AHE due to
skew scattering is estimated as σxy/σxx ∼ Vρ(εF )k2

F b. This
result indicates a relation between the longitudinal (ρxx) and
transverse (ρyx) resistivities ρyx ∝ ρxx with the fixed strength
of the impurity potential V .

In addition to the skew scattering we discussed here,
an electronic band with a finite net Berry curvature shows
intrinsic AHE [4,17,18]; the intrinsic Hall conductivity is
proportional to the number of carriers and Berry curvature,
σ (int)

xy ∼ nq2b. A key difference is that σ (int)
xy is insensitive

to the longitudinal conductivity while the anomalous Hall
conductivity by skew scattering is σ (sk)

xy ∝ σxx . Therefore, it
is expected that the skew scattering becomes the major cause
of Hall effect when the system is clean while the intrinsic Hall
effect dominates when σxx is small [27,31]. The crossover
occurs when σ (sk)

xy /σ (int)
xy ∼ εF /(niV ) ∼ 1; this indicates that

the crossover of AHE from intrinsic to skew scattering occurs
at σxx ∼ q2/(mV ). Therefore, the skew scattering is dominant
when V � εF while the intrinsic AHE is dominant if V � εF .

In addition to the intrinsic contribution, the side-jump
mechanism also contributes to the AHE in magnetic metals
[30]. While the side-jump contribution is generally considered
to be smaller than the other two [27], it has been discussed that
the contribution can be large for the constant Berry curvature
case considered in this paper [37]. However, even for this case,
the magnitude of the side-jump effect is the same as that of
the intrinsic one. Therefore, the above argument should hold
even when there exists an observable contribution from the
side-jump mechanism.

V. DISCUSSION AND SUMMARY

To summarize, in this paper, we studied the anomalous
Hall effect from the viewpoint of noncommutative quantum
mechanics. In the presence of the Berry curvature b(k), we
find that a nonmagnetic impurity generally contributes to
the skew scattering regardless of the spin-orbit interaction.
Using a Boltzmann theory, we present the explicit form of
the anomalous Hall conductivity induced by this mechanism.
Analogous to the case of the skew scattering by impurities
with spin-orbit interaction, the skew scattering in the current

mechanism also results in a Hall conductivity that is linearly
proportional to the longitudinal conductivity.

We note that a similar idea on the skew scattering pro-
portional to Berry curvature was pointed out in Ref. [5].
This preceding paper, however, introduces the asymmetric
scattering as a phenomenological scattering term; in general,
the derivation of the asymmetric scattering term becomes
a complicated task due to the noncommutativity of the
position operators. In contrast, in this paper, we used a
method of noncommutative quantum mechanics and derived
the scattering term microscopically within the second Born
approximation.

The results indicate that the Berry curvature of the elec-
tronic bands is the sufficient condition for skew scattering
to occur. This shows that the skew scattering is a ubiquitous
phenomenon that appears in the materials with nonzero Berry
curvature. For instance, magnets with noncoplanar magnetic
orders show nontrivial electronic states with nonzero Berry
curvature [40–42]; such states are expected to appear in
frustrated magnets [41,43–45]. Our results indicate that the
anomalous Hall effect due to skew scattering by nonmagnetic
impurities also appears in these magnets as long as the Berry
curvature is there, although the spin-orbit interaction does not
appear in the electronic Hamiltonian.

Regarding the relation to anomalous Hall effect in collinear
ferromagnets, in these systems, the Berry curvature often arises
as a consequence of the spin-orbit interaction. Therefore,
our theory provides a different view on the skew scattering
induced by the host spin-orbit interaction. Remarkably, Smit
already discussed that the spin-orbit interaction at the impurity
potential is not required for the skew scattering [29]. Further
studies on such possibilities were explored in various systems
considering multiple bands and the scattering between them
[32,46–51]. Our paper, in contrast, considered a single band
model with Berry curvature, i.e., the multiple band effects are
taken into account as the Berry curvature.

ACKNOWLEDGMENTS

We thank K. Misaki for useful discussions. This paper was
supported by CREST, JST (Grant No. JPMJCR16F1), and
Japan Society for the Promotion of Science KAKENHI (Grants
No. JP26103006 and No. JP16H06717).

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[2] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
[3] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959

(2010).
[4] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954).
[5] E. Adams and E. Blount, J. Phys. Chem. Sol. 10, 286

(1959).
[6] E. I. Blount, in Solid State Physics, edited by F. Seitz and D.

Turnbull (Academic Press, New York, 1962).
[7] R. Resta, Ferroelectrics 136, 51 (1992).
[8] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651

(1993).

[9] G. V. Dunne, R. Jackiw, and C. A. Trugenberger, Phys. Rev. D
41, 661 (1990).

[10] J. Lukierski, P. C. Stichel, and W. J. Zakrzewski, Ann. Phys.
260, 224 (1997).

[11] D. Bigatti and L. Susskind, Phys. Rev. D 62, 066004 (2000).
[12] C. Duval and P. Horvathy, Phys. Lett. B 479, 284 (2000).
[13] J. Gamboa, M. Loewe, and J. C. Rojas, Phys. Rev. D 64, 067901

(2001).
[14] V. Nair and A. Polychronakos, Phys. Lett. B 505, 267 (2001).
[15] V. Nair, Phys. Lett. B 505, 249 (2001).
[16] E. M. Pugh and N. Rostoker, Rev. Mod. Phys. 25, 151 (1953).
[17] W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).
[18] J. M. Luttinger, Phys. Rev. 112, 739 (1958).

165202-4

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1103/PhysRev.95.1154
https://doi.org/10.1016/0022-3697(59)90004-6
https://doi.org/10.1016/0022-3697(59)90004-6
https://doi.org/10.1016/0022-3697(59)90004-6
https://doi.org/10.1016/0022-3697(59)90004-6
https://doi.org/10.1080/00150199208016065
https://doi.org/10.1080/00150199208016065
https://doi.org/10.1080/00150199208016065
https://doi.org/10.1080/00150199208016065
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevD.41.661
https://doi.org/10.1103/PhysRevD.41.661
https://doi.org/10.1103/PhysRevD.41.661
https://doi.org/10.1103/PhysRevD.41.661
https://doi.org/10.1006/aphy.1997.5729
https://doi.org/10.1006/aphy.1997.5729
https://doi.org/10.1006/aphy.1997.5729
https://doi.org/10.1006/aphy.1997.5729
https://doi.org/10.1103/PhysRevD.62.066004
https://doi.org/10.1103/PhysRevD.62.066004
https://doi.org/10.1103/PhysRevD.62.066004
https://doi.org/10.1103/PhysRevD.62.066004
https://doi.org/10.1016/S0370-2693(00)00341-5
https://doi.org/10.1016/S0370-2693(00)00341-5
https://doi.org/10.1016/S0370-2693(00)00341-5
https://doi.org/10.1016/S0370-2693(00)00341-5
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1103/PhysRevD.64.067901
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1016/S0370-2693(01)00339-2
https://doi.org/10.1016/S0370-2693(01)00338-0
https://doi.org/10.1016/S0370-2693(01)00338-0
https://doi.org/10.1016/S0370-2693(01)00338-0
https://doi.org/10.1016/S0370-2693(01)00338-0
https://doi.org/10.1103/RevModPhys.25.151
https://doi.org/10.1103/RevModPhys.25.151
https://doi.org/10.1103/RevModPhys.25.151
https://doi.org/10.1103/RevModPhys.25.151
https://doi.org/10.1103/PhysRev.108.590
https://doi.org/10.1103/PhysRev.108.590
https://doi.org/10.1103/PhysRev.108.590
https://doi.org/10.1103/PhysRev.108.590
https://doi.org/10.1103/PhysRev.112.739
https://doi.org/10.1103/PhysRev.112.739
https://doi.org/10.1103/PhysRev.112.739
https://doi.org/10.1103/PhysRev.112.739


NONCOMMUTATIVE QUANTUM MECHANICS AND SKEW . . . PHYSICAL REVIEW B 96, 165202 (2017)

[19] G. Sundaram and Q. Niu, Phys. Rev. B 59, 14915 (1999).
[20] T. Jungwirth, Q. Niu, and A. H. MacDonald, Phys. Rev. Lett.

88, 207208 (2002).
[21] M. Onoda and N. Nagaosa, J. Phys. Soc. Jpn. 71, 19 (2002).
[22] T. Miyasato, N. Abe, T. Fujii, A. Asamitsu, S. Onoda, Y. Onose,

N. Nagaosa, and Y. Tokura, Phys. Rev. Lett. 99, 086602 (2007).
[23] Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu,

T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K.
Terakura, Science 302, 92 (2003).

[24] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth,
D.-s. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204
(2004).

[25] X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Phys. Rev. B
74, 195118 (2006).

[26] X. Wang, D. Vanderbilt, J. R. Yates, and I. Souza, Phys. Rev. B
76, 195109 (2007).

[27] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.
Ong, Rev. Mod. Phys. 82, 1539 (2010).

[28] J. Smit, Physica 21, 877 (1955).
[29] J. Smit, Physica 24, 39 (1958).
[30] L. Berger, Phys. Rev. B 2, 4559 (1970).
[31] S. Onoda, N. Sugimoto, and N. Nagaosa, Phys. Rev. B 77,

165103 (2008).
[32] A. A. Kovalev, Y. Tserkovnyak, K. Výborný, and J. Sinova,

Phys. Rev. B 79, 195129 (2009).
[33] A. K. Majumdar and L. Berger, Phys. Rev. B 7, 4203 (1973).
[34] Y. Shiomi, Y. Onose, and Y. Tokura, Phys. Rev. B 79, 100404

(2009).
[35] P. Leroux-Hugon and A. Ghazali, J. Phys. C 5, 1072 (1972).

[36] N. A. Sinitsyn, J. Phys.: Condens. Matter 20, 023201 (2008).
[37] N. A. Sinitsyn, Q. Niu, J. Sinova, and K. Nomura, Phys. Rev. B

72, 045346 (2005).
[38] N. A. Sinitsyn, Q. Niu, and A. H. MacDonald, Phys. Rev. B 73,

075318 (2006).
[39] N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev,

and J. Sinova, Phys. Rev. B 75, 045315 (2007).
[40] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,

R6065 (2000).
[41] I. Martin and C. D. Batista, Phys. Rev. Lett. 101, 156402 (2008).
[42] K. Hamamoto, M. Ezawa, and N. Nagaosa, Phys. Rev. B 92,

115417 (2015).
[43] Y. Taguchi, Y. Oohara, H. Yoshizawa, N. Nagaosa, and Y.

Tokura, Science 291, 2573 (2001).
[44] R. Shindou and N. Nagaosa, Phys. Rev. Lett. 87, 116801 (2001).
[45] A. O. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015).
[46] K. Yamada, H. Kontani, H. Kohno, and S. Inagaki, Prog. Theor.

Phys. 89, 1155 (1993).
[47] H. Kontani and K. Yamada, J. Phys. Soc. Jpn. 63, 2627 (1994).
[48] M. Borunda, T. S. Nunner, T. Lück, N. A. Sinitsyn, C. Timm,

J. Wunderlich, T. Jungwirth, A. H. MacDonald, and J. Sinova,
Phys. Rev. Lett. 99, 066604 (2007).

[49] M. Gradhand, D. V. Fedorov, P. Zahn, and I. Mertig, Phys. Rev.
Lett. 104, 186403 (2010).

[50] D. V. Fedorov, C. Herschbach, A. Johansson, S. Ostanin, I.
Mertig, M. Gradhand, K. Chadova, D. Ködderitzsch, and H.
Ebert, Phys. Rev. B 88, 085116 (2013).

[51] D. Ködderitzsch, K. Chadova, and H. Ebert, Phys. Rev. B 92,
184415 (2015).

165202-5

https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevB.59.14915
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1103/PhysRevLett.88.207208
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1143/JPSJ.71.19
https://doi.org/10.1103/PhysRevLett.99.086602
https://doi.org/10.1103/PhysRevLett.99.086602
https://doi.org/10.1103/PhysRevLett.99.086602
https://doi.org/10.1103/PhysRevLett.99.086602
https://doi.org/10.1126/science.1089408
https://doi.org/10.1126/science.1089408
https://doi.org/10.1126/science.1089408
https://doi.org/10.1126/science.1089408
https://doi.org/10.1103/PhysRevLett.92.037204
https://doi.org/10.1103/PhysRevLett.92.037204
https://doi.org/10.1103/PhysRevLett.92.037204
https://doi.org/10.1103/PhysRevLett.92.037204
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.74.195118
https://doi.org/10.1103/PhysRevB.76.195109
https://doi.org/10.1103/PhysRevB.76.195109
https://doi.org/10.1103/PhysRevB.76.195109
https://doi.org/10.1103/PhysRevB.76.195109
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1016/S0031-8914(55)92596-9
https://doi.org/10.1016/S0031-8914(55)92596-9
https://doi.org/10.1016/S0031-8914(55)92596-9
https://doi.org/10.1016/S0031-8914(55)92596-9
https://doi.org/10.1016/S0031-8914(58)93541-9
https://doi.org/10.1016/S0031-8914(58)93541-9
https://doi.org/10.1016/S0031-8914(58)93541-9
https://doi.org/10.1016/S0031-8914(58)93541-9
https://doi.org/10.1103/PhysRevB.2.4559
https://doi.org/10.1103/PhysRevB.2.4559
https://doi.org/10.1103/PhysRevB.2.4559
https://doi.org/10.1103/PhysRevB.2.4559
https://doi.org/10.1103/PhysRevB.77.165103
https://doi.org/10.1103/PhysRevB.77.165103
https://doi.org/10.1103/PhysRevB.77.165103
https://doi.org/10.1103/PhysRevB.77.165103
https://doi.org/10.1103/PhysRevB.79.195129
https://doi.org/10.1103/PhysRevB.79.195129
https://doi.org/10.1103/PhysRevB.79.195129
https://doi.org/10.1103/PhysRevB.79.195129
https://doi.org/10.1103/PhysRevB.7.4203
https://doi.org/10.1103/PhysRevB.7.4203
https://doi.org/10.1103/PhysRevB.7.4203
https://doi.org/10.1103/PhysRevB.7.4203
https://doi.org/10.1103/PhysRevB.79.100404
https://doi.org/10.1103/PhysRevB.79.100404
https://doi.org/10.1103/PhysRevB.79.100404
https://doi.org/10.1103/PhysRevB.79.100404
https://doi.org/10.1088/0022-3719/5/10/012
https://doi.org/10.1088/0022-3719/5/10/012
https://doi.org/10.1088/0022-3719/5/10/012
https://doi.org/10.1088/0022-3719/5/10/012
https://doi.org/10.1088/0953-8984/20/02/023201
https://doi.org/10.1088/0953-8984/20/02/023201
https://doi.org/10.1088/0953-8984/20/02/023201
https://doi.org/10.1088/0953-8984/20/02/023201
https://doi.org/10.1103/PhysRevB.72.045346
https://doi.org/10.1103/PhysRevB.72.045346
https://doi.org/10.1103/PhysRevB.72.045346
https://doi.org/10.1103/PhysRevB.72.045346
https://doi.org/10.1103/PhysRevB.73.075318
https://doi.org/10.1103/PhysRevB.73.075318
https://doi.org/10.1103/PhysRevB.73.075318
https://doi.org/10.1103/PhysRevB.73.075318
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.75.045315
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevB.62.R6065
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1103/PhysRevLett.101.156402
https://doi.org/10.1103/PhysRevB.92.115417
https://doi.org/10.1103/PhysRevB.92.115417
https://doi.org/10.1103/PhysRevB.92.115417
https://doi.org/10.1103/PhysRevB.92.115417
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1126/science.1058161
https://doi.org/10.1103/PhysRevLett.87.116801
https://doi.org/10.1103/PhysRevLett.87.116801
https://doi.org/10.1103/PhysRevLett.87.116801
https://doi.org/10.1103/PhysRevLett.87.116801
https://doi.org/10.1038/ncomms9275
https://doi.org/10.1038/ncomms9275
https://doi.org/10.1038/ncomms9275
https://doi.org/10.1038/ncomms9275
https://doi.org/10.1143/ptp/89.6.1155
https://doi.org/10.1143/ptp/89.6.1155
https://doi.org/10.1143/ptp/89.6.1155
https://doi.org/10.1143/ptp/89.6.1155
https://doi.org/10.1143/JPSJ.63.2627
https://doi.org/10.1143/JPSJ.63.2627
https://doi.org/10.1143/JPSJ.63.2627
https://doi.org/10.1143/JPSJ.63.2627
https://doi.org/10.1103/PhysRevLett.99.066604
https://doi.org/10.1103/PhysRevLett.99.066604
https://doi.org/10.1103/PhysRevLett.99.066604
https://doi.org/10.1103/PhysRevLett.99.066604
https://doi.org/10.1103/PhysRevLett.104.186403
https://doi.org/10.1103/PhysRevLett.104.186403
https://doi.org/10.1103/PhysRevLett.104.186403
https://doi.org/10.1103/PhysRevLett.104.186403
https://doi.org/10.1103/PhysRevB.88.085116
https://doi.org/10.1103/PhysRevB.88.085116
https://doi.org/10.1103/PhysRevB.88.085116
https://doi.org/10.1103/PhysRevB.88.085116
https://doi.org/10.1103/PhysRevB.92.184415
https://doi.org/10.1103/PhysRevB.92.184415
https://doi.org/10.1103/PhysRevB.92.184415
https://doi.org/10.1103/PhysRevB.92.184415



