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Graphs and recently hypergraphs have been known as an important tool for considering different properties of
quantum many-body systems. In this paper, we study a mapping between an important class of quantum systems,
namely quantum Calderbank-Shor-Steane (CSS) codes, and Ising-like systems by using hypergraphs. We show
that the Hamiltonian corresponding to a CSS code on a hypergraph H which is perturbed by a uniform magnetic
field is mapped to Hamiltonian of a Ising-like system on dual hypergraph H̃ in a transverse field. Interestingly, we
show that a strong regime of couplings in one of the systems is mapped to a weak regime of couplings in another
one. We also give some applications for such a mapping where we study robustness of different topological
CSS codes against a uniform magnetic field including Kitaev’s toric codes defined on graphs and color codes in
different dimensions. We show that a perturbed Kitaev’s toric code on an arbitrary graph is mapped to an Ising
model in a transverse field on the same graph and a perturbed color code on a D colex is mapped to a Ising-like
model on a D-simplicial lattice in a transverse field. In particular, we use these results to explicitly compare the
robustness of toric codes to uniform magnetic-field perturbations on different graphs. Interestingly, our results
show that the robustness of such topological codes defined on graphs decreases with increasing dimension.
Furthermore, we also use the duality mapping for some self-dual models where we exactly derive the point of
phase transition.
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I. INTRODUCTION

Graph theory has many applications in different fields of
physics where graphs are usually used for illustrating two-body
interactions [1]. Especially, in quantum information theory,
graphs have been used to characterize some specific entangled
states, namely graph states [2]. Graph states are a set of stabi-
lizer states which have especially been considered for quantum
error correction where information is encoded in such states
to be protected against decoherence [3]. Furthermore, recently
an interesting extension of graphs called hypergraphs [4] have
attracted much attention because of their ability for illustrating
many-body interactions in quantum many-body systems. For
example, it has been shown that quantum entangled states can
be encoded in the structure of a hypergraph [5]. In particular,
quantum hypergraph states have been introduced and many
applications have been considered [6]. Mapping quantum
states to a hypergraph helps one to use some relations in graph
theory to study different properties of quantum entangled states
[7–10].

On the other hand, since quantum entangled states can also
been considered as the ground state of a quantum many-body
system, most concepts in condensed-matter physics can also
be used for quantum states. Among such quantum systems,
quantum CSS codes introduced by Shor and co-workers
[11,12] have attracted much attention. In particular, quantum
Calderbank-Shor-Steane (CSS) codes with topological order
including Kitaev’s toric codes (TCs) and color codes (CCs)
play a key role because of natural robustness against local
perturbations [13,14]. Topological order is a new phase of
matter that cannot be characterized by symmetry breaking
theory [15]. Unlike the ordinary order, in a topological phase
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there is not a local order parameter and topological order
should be characterized by some topological properties [16–
18]. Especially, degeneracy of the ground state is a measure of
topological order that is related to topological structure of the
physical system. While complete characterization of topologi-
cal order is still an open problem, the power of quantum codes
with topological order for fault-tolerant quantum computation
has been a popular field of research in recent years [19–24].

Studying robustness of TCs and CCs against local pertur-
bations has been considered in many interesting recent works
where a quantum phase transition occurs from a topological
phase to a trivial phase. On the one hand different perturbations
like uniform magnetic field and Ising perturbation have been
studied [25–30] and on the other hand topological states with
three-level particles have been considered [31]. However, most
topological CSS codes considered in the above researches are
two-dimensional ones. Since it has been shown that topological
CSS codes in low dimensions do not have enough power
for self-correcting quantum memory [32], different properties
of topological codes in higher dimensions have found more
importance [33–36].

In this paper, we use the idea of mapping quantum many-
body systems to hypergraphs in order to consider a general
quantum CSS code in the presence of a uniform magnetic field.
To this end, we begin with giving a formalism for mapping
quantum CSS codes and Ising-like systems to hypergraphs
where we use an approach introduced in [37]. Then we
consider a Hamiltonian as a weighted sum of stabilizers from
the CSS code defined on a hypergraph H in the presence of
a uniform magnetic-field term. Next, we introduce a different
basis to rewrite the above Hamiltonian. We show that the above
Hamiltonian in this basis is equal to an Ising-like system
with many-body interactions in a transverse field on a dual
hypergraph H̃ . Interestingly, we show that such a mapping
is a strong-weak coupling duality where the original model
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in a strong-coupling regime is mapped to the new one in a
weak-coupling regime. In this way, we will give a duality
relation that relates the problem of robustness of a CSS code
on the H against a strong magnetic field to the problem of a
quantum phase transition in a Ising-like system in a transverse
weak field on the H̃ .

As an important application of our mapping, we will be
able to consider robustness of topological CSS codes in high
dimensions [38–41]. We show that the problem of robustness
of TCs defined on an arbitrary graph in a uniform magnetic
field is mapped to a quantum phase transition in an Ising model
in a transverse field on the same graph. Furthermore, We also
give another example of our mapping for a CC on a D colex
which is mapped to an Ising-like model with (D + 1)-body
interaction on a D-simplicial lattice. Our explicit studies for
TCs on different graphs, where we use well-known results on
the transverse Ising models [42], show that robustness of TCs
defined on graphs against a uniform magnetic field decreases
in higher dimensions. Although such a result is derived for a
subclass of TCs with qubits living on edges of a graph, it can
lead to insights in application of topological codes for quantum
memory. Especially, it has been shown [34] that power of
topological codes for self-correcting quantum memory in
finite temperature increases in higher dimensions. Therefore,
according to our results, increasing dimension might not be
necessarily good for a topological memory where it improves
the self-correctness of the code in finite temperature but it
might reduce the robustness against local perturbation at zero
temperature.

Finally, similar to most duality relations, the above mapping
is useful for exactly determining the phase transition point
(robustness) of self-dual models. Corresponding to self-dual
hypergraphs, we introduce several self-dual models in different
dimensions where the phase transition occurs at critical
ratio ( h

J
)c = 1. Especially, the one-dimensional case is the

well-known model of the one-dimensional Ising model in a
transverse field.

The rest of the paper is as follows: In Sec. II we give a
brief review on the definition of hypergraphs and especially
of dual hypergraphs. Furthermore, we define an orthogonality
for hypergraphs. In Sec. III we give a formalism for mapping
an arbitrary quantum CSS state and also an Ising-like system
to hypergraphs. In Sec. IV, we give the main result of the
paper where we map the Hamiltonian of a quantum CSS state
in the presence of a uniform field on hypergraph H to the
Hamiltonian of an Ising-like model in a transverse field on dual
hypergraph H̃ . In Sec. V, we give some interesting applications
of our mapping for TCs defined on graphs and CCs defined on
color complexes in arbitrary dimensions and several self-dual
models.

II. HYPERGRAPHS AND THEIR DUAL

An ordinary graph G = (V,E) is defined by two sets of
vertices V and edges E where each edge connects two vertices
of the graph. A hypergraph H = (V,E), similar to a graph, is
also defined by two sets of vertices and edges. However, unlike
an ordinary graph, each edge of the hypergraph, which is called
hyperedge, can involve an arbitrary number of vertices. In
other words, if the degree of each hyperedge e is equal to the
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FIG. 1. (a) A simple example of a hypergraph where we denote
vertices by black circles. We use a red loop for an edge containing
only one vertex, a red link for edges containing two vertices, and
red closed curves for edges containing more than two vertices. (b)
Dual hypergraph where edges play the role of vertices, denoted
by red circles, and vertices play the role of edges, denoted by red
curves, of dual hypergraph. (c) Orthogonal hypergraph of the original
hypergraph.

number of vertices that are involved by e and is denoted by
|e|, the degree of edges of a hypergraph can be an arbitrary
number. As an example in Fig. 1(a), a hypergraph on five
vertices v1,v2,v3,v4,v5 has been shown where the edge of e1 =
{v1} is denoted by a loop, the edge of e2 = {v1,v2,v4,v5} is
denoted by a closed curve, and the edges of e3 = {v2,v3}, e4 =
{v3,v5} are denoted by links. In this figure, the degrees of edges
e1, e2, e3, e4 are equal to 1, 4, 2, 2, respectively.

For a hypergraph H = (V,E) where V = {v1,v2, . . . ,vK}
and E = {e1,e2, . . . ,eN }, there is a simple definition for a dual
hypergraph H̃ . In fact, the dual of a hypergraph H (V,E) is a
hypergraph H̃ = (Ṽ ,Ẽ) where Ṽ = {ṽ1,ṽ2, . . . ṽN } and Ẽ =
{ẽ1,ẽ2, . . . ,ẽK} where ẽi = {ṽm|vi ∈ eminH }. In other words,
vertices and edges of H are switched in the H̃ . For example,
see Fig. 1 for a hypergraph and its dual. A hypergraph is called
self-dual if it and its dual are the same [4]. It is clear that
for a self-dual hypergraph, it is necessary that the number of
vertices be the same as the number of hyperedges K = N .

It is also possible to introduce a binary vector representation
for hyperedges of a hypergraph. To this end, for a hypergraph
with K vertices v1,v2, . . . ,vk and N edges e1,e2, . . . ,eN ,
we relate a binary vector, which is called an edge vector,
to each hyperedge em. Such an edge vector will have K

components which are denoted by e
j
m and j = {1,2,3, . . . ,K}

where e
j
m = 1 if vj ∈ em and e

j
m = 0 otherwise. For example,

for the hypergraph in Fig. 1(a), binary vectors corresponding
to four edges are e1 = (1,0,0,0,0), e2 = (1,1,0,1,1), e3 =
(0,1,1,0,0), and e4 = (0,0,1,0,1). In this way, we will have N

binary vectors corresponding to N edges of the hypergraph.
Furthermore, in a binary representation, two edge vectors can
be added to achieve a new edge vector. If an edge vector related
to a hypergraph H is equal to a superposition of other edge
vectors of the H , it will be called dependent. We call a set
of all independent edges of a hypergraph an independent set
which is denoted by I. It is clear that |I| � |V | which means
that the number of independent edges is always lesser than the
number of vertices.

By binary vector representation of edges, for a hypergraph
H , one can define an orthogonal hypergraph H ∗. To this end,
two hyperedges e and e′ are called orthogonal if and only if
their corresponding binary vectors are orthogonal as e · e′ = 0.
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Now consider a hypergraph H = (V,E) with an independent
set I of edges. We define the orthogonal hypergraph H ∗ =
(V ∗,E∗) that has the same vertices of the H , V ∗ = V , but
it has K − |I| distinct edges that are orthogonal to all edges
of the H where |I| is the number of independent edges; see
Fig. 1(c).

We can also show that, for any hypergraph H , there is
certainly an orthogonal hypergraph H ∗. To this end, consider
a binary vector corresponding to an edge e∗ of the hypergraph
H ∗. Since the e∗ should be orthogonal to all edges of the H ,
it is necessary to have e∗em = 0 for m = 1,2, . . . N . Since
the number of independent edges is |I|, it is enough that the
above condition is held for |I| independent edges of the H .
Therefore, these conditions are equal to a set of |I| independent
equations on K binary variables and it is clear that there are
K − |I| independent answers for such a set of equations. These
K − |I| answers are the edges of hypergraph H ∗.

III. QUANTUM MANY-BODY SYSTEMS ON
HYPERGRAPHS: ISING-LIKE SYSTEMS AND QUANTUM

CSS CODES

For a physical system with two-body interactions, graphs
are a useful tool where each edge of the graph illustrates
a two-body interaction between physical variables living in
two end points of that edge. Ising models with two-body
interactions between Ising variables Si = ±1 are an important
example of the application of graphs. However, there are
also several important physical systems with many-body
interactions. For example, one can consider Ising-like systems
with many-body interactions between Ising variables. In order
to encode interaction patterns of such systems, hypergraphs
are a better candidate. Here, we relate a hyperedge to each
interaction term of such a model. In this way, corresponding to
a hypergraph H = (V,E) we define an Ising-like system with
the following Hamiltonian:

HI =
∑

e∈E

∏

v∈e

Xi, (1)

where qubits live in vertices of the H, X is a Pauli operator
with eigenvalues ±1, e ∈ E refers to all hyperedges of the H ,
and v ∈ e refers to all vertices belonging to the e.

Another example of a quantum many-body system, that we
consider in this paper, are quantum CSS codes. They are one of
the most popular codes in quantum error correction that have
been introduced by Shor and co-workers [11,12]. A quantum
CSS state on K qubits is a stabilizer state that is stabilized
by X-type and Z-type operators belonging to a Pauli group
on K qubits. Here we use hypergraphs to encode the structure
of such states. To this end, consider a hypergraph H = (V,E)
and suppose that all hyperedges of the H are independent and
therefore I = E where |V | = K, |E| = N , and K � N . We
insert K qubits in all vertices of the hypergraph. Then we
define a X-type operator corresponding to each independent
edge of the hypergraph. We denote such an operator by Ae

where, for each e ∈ I, it is defined in the following form:

Ae =
∏

i∈e

Xi, (2)

where i ∈ e refers to all vertices belonging to edge e.
Now, we define the following state as a quantum CSS state
corresponding to the H :

|CH 〉 = 1

2|I|/2

∏

e∈I
(1 + Ae)|0〉⊗N, (3)

where e ∈ I refers to all independent edges belonging to the
H and |0〉 is the positive eigenstate of the Pauli operator Z

where Z|0〉 = |0〉. In order to prove that the above state is a
CSS state, we should show that it is stabilized by Z-type and
X-type operators. By the fact that Ae(1 + Ae) = (1 + Ae), we
conclude that all Ae operators are stabilizers of the above
state. In this way, since the number of independent edges of
the hypergraph is equal to N , we have found N number of
stabilizers of the above state where all of them are X-type
operators.

Since K � N , we should find K − N numbers of other
stabilizers in order to completely characterize the CSS state.
To this end consider the orthogonal hypergraph of the H that
is called H ∗. We define K − N number of Z-type operators
corresponding to each edge of the H ∗. We denote them by Be∗

and define them in the following form:

Be∗ =
∏

i∈e∗
Zi. (4)

As we showed in Sec. II, all edges of the H ∗ are orthogonal
to the edges of the H . It is clear that when two edges are
orthogonal to each other it is necessary that the number of
common vertices of those edges is an even number. By this
fact, it is simple to show that [Ae,Be∗ ] = 0. In this way, we
have found all K stabilizers corresponding to the state (3).
Since all these operators are X-type or Z-type operators, it is
concluded that the state (3) is a quantum CSS state.

It is also possible to represent the CSS state (3) by Z-type
operators Be∗ in the following form:

|CH 〉 =
∏

e∗∈E∗
(1 + Be∗ )|+〉⊗K, (5)

where |+〉 is the positive eigenstate of the Pauli operator X.
In this way, we can give a CSS state corresponding to each
hypergraph with independent edges. Finally, such a state is the
ground state of a Hamiltonian in the following form:

HC = −J
∑

e∈E

Ae − J
∑

e∗∈E∗
Be∗ . (6)

IV. MAPPING QUANTUM CSS CODES TO ISING-LIKE
SYSTEMS: A STRONG-WEAK COUPLING DUALITY

Duality in many-body systems is an interesting and well-
established problem that has attracted much attention during
past decades such as duality for generalized Ising models
[43] and recently duality in quantum models [44–46]. In this
section, we find a duality mapping from a quantum CSS code
in a uniform magnetic field to Ising-like systems in a transverse
field. To this end, we begin with studying a CSS code defined
on a hypergraph H in the presence of a uniform magnetic field.
We consider a Hamiltonian for a CSS code where the ground
state of that Hamiltonian is a stabilizer state of the quantum
CSS code. Then we add a magnetic term to this Hamiltonian
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in the following form:

H = −J
∑

e∈E

Ae − J
∑

e∗∈E∗
Be∗ −

∑

v∈V

hZv, (7)

where v ∈ V refers to vertices of the hypergraph. It is clear
that when h

J
is equal to zero the ground state of the model is

a quantum CSS state and when h
J

goes to infinity the ground
state will be a product state in the form of |00 . . . 0〉 where |0〉
is an eigenstate of Pauli operator Z. Now, we should study
the problem of a quantum phase transition that can happen
by tuning the magnetic field h when there are two different
phases in two limits h = 0 and h → ∞. We should emphasize
that, in view of the application in quantum information theory,
such a phase transition is also related to the robustness of a
quantum CSS code against a uniform magnetic field where
the phase-transition point is a measure of the robustness of
the CSS code. Here, we give a general mapping for the above
Hamiltonian to convert it to an Ising-like system in a switched
regime of couplings. To this end, we use a new basis for
rewriting the above Hamiltonian where we consider a new
basis in the following form:

∣∣Cr1,r2,...,rN

〉 =
∏

e∈E

(1 + (−1)reAe)|0〉⊗K, (8)

where re are binary numbers that are related to each edge of the
hypergraph and N is the number of edges of the hypergraph.
Since K � N it is clear that the above basis is not a complete
basis. In fact, For a complete basis we should also consider
Z-type operators Be∗ in the form of

∏
e∗∈E∗ [1 + (−1)re∗ Be∗ ].

However, since the magnetic terms in the original Hamiltonian
commute with operators Be∗ , we can stay in a subspace that
is stabilized by all operators Be∗ . In this way we consider the
bases (8) in such a subspace.

Finally, we are ready to rewrite the original Hamiltonian in
the new basis. To this end, we define vertices corresponding
to binary variables re related to each hyperedge of the H . In
the other words, these new vertices denoted by ṽ are vertices
of dual hypergraph H̃ . In this way, the bases defined in (8) are
equal to a computational basis on qubits which live in ṽ and
we call them dual qubits.

Then, we consider the effect of each term of the origi-
nal Hamiltonian on the basis (8). Since the operators Be∗

commute with Ae, we will have Be∗ [1 + (−1)reAe] = [1 +
(−1)reAe]Be∗ . Then by the fact that Be∗ |00 . . . 0〉 = |00 . . . 0〉,
it is concluded that Be∗ |Cr1,r2,...,rN

〉 = |Cr1,r2,...,rN
〉. In the next

step, we consider the effect of operators Ae. Since A2
e =

1, we will have Ae[1 + (−1)reAe] = (−1)re [1 + (−1)reAe].
Therefore, the effect of Ae in the new basis is similar to Pauli
operator Z on dual qubits. In this way, we can rewrite the term
Ae in the original Hamiltonian with Ze in the new basis on
dual qubits.

The most interesting part of changing the basis is related to
magnetic terms in the original Hamiltonian. It is clear that Zv

does not commute with those operators Ae including vertex v.
Since, In the dual space, vertex v is a hyperedge of H̃ denoted
by ẽ and edge e is a vertex of H̃ denoted by ṽ, we can denote
operators Zv and Ae by Zẽ and Aṽ . In this way, we can say
that Zẽ does not commute with those operators Aṽ where ṽ

is a member of the hyperedge ẽ in the dual space. On the

other hand if operator Zẽ does not commute with an operator
Aṽ , we will have Zẽ[1 + (−1)rṽAṽ] = [1 + (−1)rṽ+1Aṽ]Zẽ. In
this way the effect of operator Zẽ leads to a rise the value of
rṽ for all Aṽ which does not commute with Zẽ. It is equal
to applying Pauli operators X on all dual qubits ṽ belonging
to the edge ẽ. Therefore the magnetic term of the original
Hamiltonian should be rewritten in the new basis in the form
of h

∑
ẽ

∏
ṽ∈ẽ Xṽ . In this way the original Hamiltonian in the

new basis will be in the following form:

H = −h
∑

ẽ

∏

ṽ∈ẽ

Xṽ − J
∑

ṽ

Zṽ − K. (9)

The first term in the above Hamiltonian is an Ising-like
system on the H̃ with many-body interactions corresponding
to each hyperedge of the H̃ and the second term is a transverse
field. An interesting point is that the role of the magnetic field
h and coupling constant J of the original Hamiltonian (7)
have been switched in the new Hamiltonian (9). In this way,
a regime of the strong magnetic field in the original model,
where the ratio h

J
is bigger than 1, is mapped to a regime of

weak magnetic field in the dual Hamiltonian where the ratio
J
h

is smaller than 1. For this reason, we call our mapping a
strong-weak coupling duality.

V. APPLICATIONS OF THE DUALITY MAPPING

In this section we give some applications for the above
mapping. Especially, we use the duality mapping for studying
the robustness of two important sets of CSS codes, namely
TCs and CCs. Finally, we introduce some self-dual models
where we exactly derive the phase-transition point.

A. Robustness of TCs against magnetic field

Here we consider TCs which are defined on graphs where
qubits live in the edges of the graph. We emphasize that while
TCs can generally be defined on lattices with qubits living on
higher dimensional cells, our results in this section are only
related to a subclass of TCs defined on graphs with edge qubits.
To this end, corresponding to a graph G, two sets of X-type
and Z-type stabilizer operators are defined, see Fig. 2 for two

pB

vA

pB

vA

(a) (b)

FIG. 2. Two sample graphs where TCs are defined. An X-type
stabilizer is defined corresponding to each vertex of the graph and
a Z-type stabilizer is defined corresponding to each plaquette of the
graph.
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FIG. 3. In a dual space we insert a red vertex corresponding to
each hyperedge of the H . Since each vertex of a hexagonal lattice is
a member of two neighboring hyperedges of the H , in the dual space
a hyperedge involves two vertices of the H̃ . Therefore, the H̃ is a
ordinary graph which is matched on the original graph.

sample graphs, in the following form:

Av =
∏

i∈v

Xi, Bp =
∏

i∈∂p

Zi, (10)

where Av corresponds to vertex v of the graph and i ∈ v

refers to all qubits incoming to vertex v. Furthermore, Bp

corresponds to plaquette p of the graph and i ∈ ∂p refers
to all qubits on boundary of plaquette p. By the fact that
Av(1 + Av) = (1 + Av) and [Bp,Av] = 0, it is simple to
check that the following state will be stabilized by the above
operators:

|K〉 =
∏

v∈I
(1 + Av)|00 . . . 0〉, (11)

where we ignore the normalization factor and I refers to an
independent set of X-type operators. It is well known that such
a state on a specific topological structure like a torus shows a
topological degeneracy.

Now, let us consider such a model in the presence of
a uniform magnetic field. Since a TC is a CSS state, we
should be able to use the dual mapping that we introduced
in the previous section. To this end, we should give a
hypergraph representation for TCs. Therefore, we define a
hypergraph H with vertices corresponding to qubits of TCs
and edges corresponding to X-type operators Av . In this way,
corresponding to each vertex v of the G, there is a hyperedge
of the H which involves all qubits belonging to the v; see
Fig. 3.

In the next step, according to the dual mapping, the TC
on the hypergraph H , corresponding to the initial graph G,
in a uniform magnetic field is mapped to an Ising-like system
on dual hypergraph H̃ in a transverse field. Therefore, we
should find the H̃ for the TC. To this end, we should find all
hyperedges of the H of which a vertex of the H is a member.
Since each qubit of the TC lives in an edge of the original graph
G, it is just included by two vertex operators corresponding
to two neighboring vertices of the G; see Fig. 3. Therefore,
it is concluded that each vertex of the H is a member of two
neighboring hyperedges of the H . In a dual space, it means that
each edge of the H̃ involves two vertices of the H̃ . Therefore,
it is enough to insert a vertex of the H̃ called ṽ in each vertex
of the G and then each edge of the H̃ involves two neighboring
vertices on the G; see Fig. 3. It means that dual hypergraph
H̃ is an ordinary graph that is exactly matched on graph G.
A spin model corresponding to such a hypergraph is the Ising
model in a transverse field; see also Fig. 4 for a 3D example.

1A 2A
1v

~

1e~

1v
~

2v

(a) (b)

FIG. 4. Similar to the two-dimensional (2D) model in Fig. 3. In
a dual space we insert a red vertex corresponding to each hyperedge
of the H . Since each vertex of a 3D lattice is a member of two
neighboring hyperedges of the H , in the dual space a hyperedge
involves two vertices of the H̃ . Therefore, the H̃ is an ordinary graph
which is matched on the original 3D rectangular lattice.

Finally we conclude that a TC on an arbitrary graph in a
magnetic field is equal to the Ising model on the same graph in
a transverse field. An interesting point is that the Ising model in
a transverse field is a well-known model that has been studied
in statistical physics. Importantly, according to our mapping,
the point of the phase transition of the Ising model on different
lattices will determine the robustness of the TC on the same
graph against the magnetic field. We should also be careful that
while the robustness of the TC is determined by the ratio h

J
, the

quantum phase-transition point of the Ising model in accord
with the relation (9) is determined by J

h
. In other words, in the

corresponding Ising model J is the power of the transverse
magnetic field. By this point and well-known results derived
in [42], we provide Table I for robustness of TCs on different
lattices against a uniform magnetic field.

We should emphasize an important result according to our
mapping. It is well known that the phase-transition point of
the transverse Ising model increases in higher dimensions and
it means that the ratio J

h
increases in higher dimensions. Since

the robustness of TCs is determined by the ratio h
J

, we conclude
that the robustness of TCs, defined on a graph with qubits living
on edges, against a uniform magnetic field decreases in higher
dimensions. We believe that it is an important result because,
according to recent researches, the power of topological
codes for a self-correcting quantum memory increases in
higher dimensions. Although it is clear that the measure of
self-correctness of a topological code in finite temperature
is different with the measure of the robustness at zero
temperature, our result proposes that increasing dimension

TABLE I. The robustness of TCs on different lattices against a
uniform magnetic field.

TC on different lattices Robustness against a magnetic field

On a honeycomb lattice
(

h

J

)
c
≈ 0.469

On a kagome lattice
(

h

J

)
c
≈ 0.339

On a triangular lattice
(

h

J

)
c
≈ 0.209

On a square lattice
(

h

J

)
c
≈ 0.328

On a cubic lattice
(

h

J

)
c
≈ 0.194
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(a) (b)

FIG. 5. Two sample lattices where a color code can be defined.
On the left hand is a two-colex (three-colorable hexagonal lattice)
and on the right hand is a three-colex with four-colorable cells.

might not be necessarily a good strategy for improving a
topological code. In other words, by increasing dimension,
on the one hand the power of self-correctness increases and on
the other hand the robustness decreases. Therefore there might
be an optimum dimension for an efficient topological memory.

B. Robustness of CC against magnetic field

As another example of the dual mapping, here we consider
the robustness of CC against a uniform magnetic field. CCs
are defined on D colexes that are color complexes on D-
dimensional manifold where cells of the lattice can be colored
by D + 1 distinct colors [38]. In Fig. 5, we show two examples
of colexes in two and three dimensions. A CC on a D colex
is defined by two sets of X-type and Z-type stabilizers in the
following form:

Ac =
∏

i∈C

Xi, Bc′ =
∏

i∈C ′
Zi, (12)

where C and C ′ are cells of the colex so that [Ac,Bc′] = 0.
For example, for a two-colex (a hexagonal lattice) the above
operators are defined corresponding to each plaquette of the
lattice. On the other hand, for a three-colex X-type operators
are defined corresponding to each three-dimensional cell of
the lattice and Z-type operators are defined corresponding to
each plaquette of the lattice.

In order to consider the CC in a uniform magnetic field,
we should represent the CC as a CSS code on a hypergraph.
We explain this idea with two simple examples and then we
extend it to more general cases. Therefore, consider a CC on
a two-colex like a hexagonal lattice. The CC corresponding to
this lattice is in the following form:

|CC2〉 =
∏

p

(1 + Ap)|00 . . . 0〉. (13)

Now we define a hypergraph H corresponding to this state
where each qubit will be a vertex of the hypergraph and each
plaquette of the two-colex corresponds to a hyperedge of the
H which involves all qubits belonging to that plaquette. Then
we should find the dual of such a hypergraph. As it is shown
in Fig. 6, since each vertex v of the H is a member of three
neighboring hyperedges, in the dual space each edge ẽ should
involve three vertices. Therefore, the dual hypergraph will be
a triangular lattice where triangles correspond to hyperedges
of the H̃ ; see Fig. 7. According to the dual mapping, the spin

2A
3A

1A
1v

~

1e
~

1v

~

2v

~

3v

FIG. 6. In a dual space we insert a red vertex corresponding to
each hyperedge of the H . Since each vertex of the hexagonal lattice
is a member of three plaquettes or three hyperedges of the H , in a
dual space each hyperedge involves three vertices of the H̃ denoted
by a triangle.

model corresponding to the H̃ is an Ising-like model with
three-body interactions in a transverse field. Then consider a
CC on a three-colex. Since in this case X-type operators are
related to cells of the three-colex, a hypergraph H should be
defined with hyperedges corresponding to the cells. The next
step is to find the dual of such a hypergraph. As it is shown
in Fig. 8, since each vertex is a member of four hyperedges of
the H , in the dual space each hyperedge would involve four
vertices. In this way, the H̃ is related to a tetrahedron lattice
where each tetrahedron corresponds to a hyperedge of the H̃

which involves four vertices belonging to that tetrahedron.
According to the dual mapping, the spin model corresponding
to the H̃ will be an Ising-like model on a tetrahedron lattice
with four-body interactions corresponding to each tetrahedron
and in the presence of a transverse field. Extension of the
above idea to CCs in higher dimensions is straightforward.
In fact, it has been shown that the dual of a D colex is
a D-simplicial lattice with (D + 1)-colorable vertices [39].
Therefore, According to the dual mapping, a CC on a D

colex in magnetic field is mapped to an Ising-like model
with (D + 1)-body interactions corresponding to each cell of
a D-simplicial lattice in the presence of a transverse field.
Unfortunately, such spin systems on simplicial lattices are very
abstract and they have been studied only for some specific
two-dimensional examples [47]. Therefore, unlike TCs, we
will not be able to compare the robustness of CCs on different
lattices.

(a) (b)

FIG. 7. By applying a transformation similar to Fig. 6 for all
vertices, we will have a triangular lattice in the dual space with a
new Hamiltonian with three-body interactions corresponding to each
triangle of the lattice.
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1v

1A

2A

3A4A

~

1e
~

1v

~

2v

~

3v
~

4v

FIG. 8. In a dual space we insert a red vertex corresponding to
each hyperedge of the H . Since each vertex of a three-colex is a
member of four cells of the lattice or four hyperedges of the H , in
a dual space each hyperedge involves four vertices of the H̃ where
we will have a tetrahedron lattice with a Hamiltonian with four-body
interactions corresponding to tetrahedrons.

C. Self-dual models

As we mentioned in Sec. II, a hypergraph will be called
self-dual if it is the same as its dual. On the other hand,
according to our duality mapping, for a Hamiltonian on a
self-dual hypergraph, the dual Hamiltonian will be the same
as the original Hamiltonian where the coupling J and magnetic
field h has been exchanged. In this way, it is clear that such a
model will have a phase transition at h

J
= 1 if there are two

different phases in two limits h, or J goes to zero. In the
remainder of this subsection we give some examples of such
models.

The first example is a one-dimensional model. To this end
consider a one-dimensional lattice with qubits which live in
edges of the lattice. Corresponding to each vertex of the lattice
we define a X-type operator in the form of Av = XlXr where
l and r denote qubits in the left hand and right hand of
each vertex. In order to define a hypergraph corresponding
to such model it is enough to relate a hyperedge to each
X-type stabilizer. In Fig. 9 we show such a hypergraph.
The number of vertices and hyperedges for this hypergraph
are the same and since each vertex is a member of two
neighboring hyperedges, it is simple to check that such a
hypergraph is self-dual; see Fig. 9. In this way, according to the

(a)

(c)

(b)

lX rX

FIG. 9. (a) A one-dimensional lattice where qubits live in edges
of the lattice and an X-type stabilizer is defined corresponding to each
vertex. (b) A hypergraph representation for the above model where
corresponding to each stabilizer we have defined a hyperedge denoted
by red color. (c) In a dual space we insert a red vertex corresponding
to each hyperedge of the H . Since each vertex of the H is a member
of two hyperedges, in the dual space each hyperedge also involves
two vertices of the H̃ . Therefore, the H̃ will be the same as the H .

(c)(b)(a)

1X

4X3X

2X

FIG. 10. (a) A two-dimensional square lattice where qubits live in
vertices of the lattice and an X-type stabilizer is defined corresponding
to each plaquette. (b) A hypergraph representation for the above
model where corresponding to each stabilizer we have defined a
hyperedge denoted by red curves. (c) In a dual space we insert a red
vertex corresponding to each hyperedge of the H . Since each vertex
of the H is a member of four hyperedges, in the dual space each
hyperedge also involves four vertices of the H̃ . Therefore, H̃ is the
same as H .

duality mapping, a Hamiltonian corresponding to the above
X-type stabilizers in a uniform magnetic field is self-dual
and the phase-transition point will be at h

J
= 1. Such a

Hamiltonian is a one-dimensional Ising model in a transverse
field and the above phase-transition point is a well-known
result.

Another example of a self-dual model can be defined on a
two-dimensional square lattice where qubits live in vertices.
Corresponding to each plaquette of the lattice we define a X-
type stabilizer in the form of Ap = X1X2X3X4 where 1, 2, 3,
4 denote qubits on four vertices belonging to each plaquette. In
Fig. 10, we show a hypergraph representation for such a model.
In a square lattice the number of vertices and plaquettes are the
same and since each vertex is a member of four hyperedges of
the hypergraph, it is simple to check that such a hypergraph
is self-dual. In this way the phase-transition point of such a
model in a transverse field will be at h

J
= 1.

An extension of the above two examples to higher dimen-
sions is straightforward. In three dimensions, it is enough to
define X-type stabilizers corresponding to each cubic cell of
the lattice and it will be clear that the corresponding hypergraph
will be self-dual. Generally in D dimensions we can define a
rectangular lattice and corresponding to each D-dimensional
unit cell we should define an X-type stabilizer. Such a model
in a transverse field is also self-dual with a phase-transition
point at h

J
= 1.

VI. DISCUSSION

Mapping quantum many-body systems to hypergraphs is
an interesting idea which should be followed in the future.
In this paper, we used such an idea for studying quantum
CSS codes in a uniform magnetic field at zero temperature.
Especially, we derived a strong-weak coupling duality that
is specifically interesting in the view of theoretical physics
where quantum phase transitions for two different quantum
many-body systems are mapped to each other in two switched
regimes of couplings. Especially, we used such a mapping
for considering one of the important problems in quantum
information theory, namely the robust quantum memory. By
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studying the robustness of TCs on different graphs, we showed
that the robustness of TCs defined on graphs decreases in
higher dimensions. On the other hand, it has already been
well known that the power of self-correctness of a topological
code in finite temperature increases in higher dimensions. We
should emphasize that we achieved such a result just for a
subclass of TCs defined on graphs, with qubits living on edges,
which are not useful as self-correcting quantum memories in

any dimension due to their stringlike excitations. Therefore,
it will be interesting if one studies other topological codes in
this direction. In other words, our results propose that there
might be an optimum dimension where we might have an
efficient quantum memory for a more general topological code.
Furthermore, we used self-duality of hypergraphs to introduce
several self-dual models where we exactly found the phase-
transition point.
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