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Nonreciprocal electromagnetic scattering from a periodically space-time modulated
slab and application to a quasisonic isolator
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Scattering of obliquely incident electromagnetic waves from periodically space-time modulated slabs is
investigated. It is shown that such structures operate as nonreciprocal harmonic generators and spatial-frequency
filters. For oblique incidences, low-frequency harmonics are filtered out in the form of surface waves, while
high-frequency harmonics are transmitted as space waves. In the quasisonic regime, where the velocity of the
space-time modulation is close to the velocity of the electromagnetic waves in the background medium, the
incident wave is strongly coupled to space-time harmonics in the forward direction, while in the backward
direction it exhibits low coupling to other harmonics. This nonreciprocity is leveraged for the realization of an
electromagnetic isolator in the quasisonic regime and is experimentally demonstrated at microwave frequencies.
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I. INTRODUCTION

Space-time varying media, materials whose constitutive
parameters are spatiotemporally modulated, were first studied
in the context of traveling-wave parametric amplifiers [1–9].
In contrast to moving media, where the velocity of the medium
is restricted to the speed of light, space-time modulated media
offer both subluminal and superluminal phase velocities. In
contrast to static periodic media such as photonic crystals,
periodic space-time media exhibit asymmetric, tilted disper-
sion [4,5]. Moreover, superluminal space-time media produce
electromagnetic band gaps that are oriented vertically, com-
pared to horizontal band gaps in conventional photonic crystals
and Bragg structures. These vertical band gaps describe
instabilities or unbounded growth [5]. Harmonic generation is
another feature of space-time media. In contrast to nonlinear
harmonics, space-time harmonics are not governed by the
classical Manley-Raw relations [5]. This result stems from
violation of energy conservation in space-time modulated
media, as energy is pumped into the system through the
modulation.

This topic has regained attention in past years due to
recently discovered exotic effects such as interband photonic
transitions mediated by space-time varying media [10] and
associated nonreciprocity [11,12], inverse Doppler effect in a
shockwave-induced photonic band-gap structure [13], nonre-
ciprocal space-time metasurfaces [14–16], and nonreciprocal
antenna systems [17–21]. Nonreciprocity based on space-time
modulation seems to offer a viable path towards integrated
nonreciprocal photonic and electromagnetic devices. This
technique addresses issues of conventional nonreciprocity
techniques, such as incompatibility with integrated circuit
technology in magnet-based nonreciprocity, signal power
restrictions in nonlinear-based nonreciprocity [22], and low-
power handling and frequency limitation in transistor-based
nonreciprocity [23,24].

Previous research on space-time media has been mostly
focused on propagation in infinite space-time media or normal
incidence on a semi-infinite space-time modulated region.
Oblique electromagnetic incidence on a space-time modulated
slab has unique features that have been unexplored. This
paper shows that such a structure operates as a nonreciprocal

harmonic generator and filter. It is demonstrated that a space-
time slab operates as a high-pass spatial-frequency filter. For
oblique incidence, low-frequency harmonics are filtered out in
the form of surface waves, while high-frequency harmonics are
transmitted as space waves. In the quasisonic regime, where the
velocity of the space-time modulation is close to the velocity
of the electromagnetic waves in the background medium, the
incident wave is strongly coupled to space-time harmonics
in the forward direction while in the backward direction it
exhibits low coupling to other harmonics. This nonreciprocity
is leveraged for the realization of an electromagnetic isolator
in the quasisonic regime and is experimentally demonstrated
at microwave frequencies.

The paper is organized as follows. Section II presents an
analytical solution for electromagnetic scattering from a space-
time slab. Section III derives analytical expressions describing
electromagnetic scattering from a sinusoidally modulated
space-time slab. Dispersion diagrams and isofrequency curves
are described in Sec. IV. Space-time transitions and their
nonreciprocal nature are highlighted in detail in Sec. IV.
Finally, Sec. V presents an electromagnetic isolator based
on nonreciprocal space-time transitions in a periodically
modulated slab.

II. GENERAL ANALYTICAL SOLUTION

The problem of interest is represented in Fig. 1. A plane
wave EI impinges in the forward (+z) direction or backward
(−z) direction under the angle θi on a periodically space-time
modulated slab of thickness L sandwiched between two semi-
infinite unmodulated media. Hereafter, the problem with the
incident wave propagating towards the +z direction, depicted
at the top of Fig. 1, will be called the forward problem, denoted
by the superscript “F,’ while the problem with the incident
wave propagating towards the −z direction, depicted at the
bottom of Fig. 1, will be called the backward problem, denoted
by the superscript “B.” Note that, as illustrated in Fig. 1, the
forward and backward problems both include forward and
backward waves. The slab assumes the unidirectional forward
relative permittivity

ε(z,t) = fper(βmz − ωmt), (1)
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FIG. 1. Electromagnetic scattering from a periodically space-
time modulated slab (region 2) sandwiched between two semi-infinite
unmodulated media (regions 1 and 3). Due to the unidirectionality of
the modulation, ε(z,t) = fper(βmz − ωmt), the system is nonrecipro-
cal, with different temporal and spatial frequencies scattered in the
two directions.

where fper(.) is an arbitrary periodic function of the space-time
phase variable ξ = βmz − ωmt , with βm being the spatial mod-
ulation frequency and ωm the temporal modulation frequency.
Taking the time derivative of a constant phase point in (1)
yields dξ/dt = 0 = βmdz/dt − ωm:

vm = ωm

βm
. (2)

This velocity may be smaller or greater than the phase velocity
of the background medium, which we define here as the
velocity

vb = c√
εr

, (3)

where c = 1/
√

μ0ε0 is the speed of light in vacuum, and where
εr is the relative permittivity common to media 1 and 3 and to
the average permittivity of medium 2. The ratio between the
modulation and background phase velocities,

γ = vm

vb
, (4)

is called the space-time velocity ratio. The limit γ = 0
corresponds to a purely space-modulated medium, while
the limit γ = ∞ corresponds to a purely time-modulated
medium [25]. Moreover, γ = 1 corresponds to the space-time
modulated medium where the modulation propagates exactly
at the same velocity as a wave in the background medium.
We wish to calculate the fields scattered by the slab, namely,
the reflected fields EF,B

R , the fields in the modulated medium
EF,B;±

M , and the transmitted fields EF,B
T , in Fig. 1.

Since the slab medium permittivity is periodic in space, with
spatial frequency βm, and in time, with temporal frequency ωm,
it may be expanded in the space-time Fourier series

ε(z,t) =
∞∑

k=−∞
ε̃ke

−jk(βmz−ωmt), (5)

where ε̃k is the coefficient of the kth term and ε̃0 = εr.
Moreover, assuming TMy or Ey polarization, the electromag-
netic fields inside the slab may be represented in the double
space-time Bloch-Floquet form

EM(x,z,t) = E+
M(x,z,t) + E−

M(x,z,t) =
∞∑

n=−∞
(E+

n + E−
n ),

(6a)

where the superscripts F and B have been omitted for
notational simplicity and where the ± superscripts represent
±z-propagating wave components. In (6),

E+
n = ŷA+

n e−j (kxx+β+
0 z−ω0t)e−jn(βmz−ωmt), (6b)

E−
n = ŷA−

n e−j (kxx−β−
0 z−ω0t)e−jn(βmz−ωmt), (6c)

where β0 and ω0 are the spatial and temporal frequencies of
the fundamental temporal and spatial harmonics, respectively,
in the slab, and kx = k0 sin(θi) = (ω0/vb) sin(θi) is the x

component of the spatial frequency, k.
It is shown in Sec. 1 of [26] that the Bloch-Floquet solution

in (6) is valid everywhere except in the interval

γs,min =
√

εr

ε̃0 + εm
� γ �

√
εr

ε̃0 − εm
= γs,max, (7)

where ε̃0 is the average of ε(z,t), as seen in (5), and εm is the
maximal (symmetric) variation of ε(z,t) from ε̃0, and is called
the modulation depth. Upon multiplication by vb and usage of
(4) and (3), this interval may also be expressed in terms of the
modulation velocity as

vm,s,min = c√
ε̃0 + εm

� vm � c√
ε̃0 − εm

= vm,s,max, (8)

and is called the “sonic regime” [3], in analogy with a similar
interval first identified in acoustic space-time modulated
problems. It has been established that in the case of the
(nonperiodic) space-time slab ε(z,t) = rect(βmz − ωmt), the
sonic regime (8) supports both a spacelike reflected wave and
a timelike reflected wave, whereas only a spacelike reflected
wave exists when vm < vm,s,min and only a timelike reflected
wave exists when vm > vm,s,max [27]. The sonic interval thus
represents a regime requiring a special mathematical treatment
that has not yet been reported in the literature, to the best of
the authors’ knowledge. When the space-time modulation is
made periodic, as in (5), the same phenomenon occurs for
each interface, and therefore the interval (8) still corresponds
to the same sonic regime. In the middle of the sonic interval,
i.e., at γ = 1 or vm = vb, all the forward space-time harmonics
merge into a single dispersion curve, as will be explained later,
leading to a shock wave as in the phenomenon of sound barrier
breaking in acoustics.

To find the unknown coefficients β+
0 , β−

0 , A+
n , and A−

n in
(6), we shall first fix ω0, as the source frequency, and then
find the corresponding discrete β0 solutions, β0p, forming
the dispersion diagram of the slab. Next, we shall apply
the spatial boundary conditions at the edges of the slab,
i.e., at z = 0 and z = L, for all the (ω0,β0p) states in the
dispersion diagram, which will provide the unknown slab
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coefficients A+
n(p) and A−

n(p) in (6b) and (6c), respectively, and
the corresponding coefficients in the unmodulated regions, i.e.,
the fields everywhere.

The sourceless wave equation reads

∇2EM(x,z,t) − 1

c2

∂2[ε(z,t)EM(x,z,t)]

∂t2
= 0. (9)

Inserting (6) into the first term of (9), and (S10) in Sec. 2 of
[26] [product of (5) and (6)] into the second term of (9), and
next using (S12) yields the relation

A±
n

[
k2
x + (β0 ± nβm)2

[(ω0 + nωm)/c]2

]
−

∞∑
k=−∞

ε̃kA
±
n−k = 0. (10)

Equation (10) may be cast, after truncation to 2N + 1 terms,
to the matrix form

[K±] · [A±] = 0, (11)

where [K±] is the (2N + 1) × (2N + 1) matrix with elements

K±
nn =

[
k2
x + (β0 ± nβm)2

[(ω0 + nωm)/c]2

]
− ε0,

K±
nk = −ε̃n−k, for n �= k,

(12)

and [A±] is the (2N + 1) × 1 vector containing the A±
n

coefficients. The dispersion relation is then given by

det{[K±]} = 0, (13)

and the (2N + 1) forward and backward dispersion curves
β0p(ω0), whose number is here finite due to truncation but
theoretically infinite, are formed by solving this equation
separately for the ±z-propagating waves for a given set of
modulation parameters, ωm, βm, and ε̃k , and for values of ω0

swept across the temporal-frequency range of interest. Note
that each point (β0p,ω0) represents a mode of the medium,
itself constituted of an infinite number of oblique space-time
harmonics corresponding to modes at other frequencies, since
such a point is a solution to the complete wave equation by
virtue of (13).

Once the dispersion diagram has been constructed, i.e., once
the β±

0p states, solutions to (9), have been determined versus
ω0, the unknown field amplitudes A±

np in the slab are found
by solving (11) after determining the A±

0p terms satisfying
boundary conditions. These terms are derived in Sec. 3 of [26]
as

AF+
0p = E0k0[cos(θ+

i ) + cos(θ+
r0 )]

β+
0p + k0 cos(θ+

r0 ) − β−
0p−k0 cos(θ+

r0 )

e
j (β+

0p
+β

−
0p

)L

β+
0p−k0 cos(θ+

t0 )

β−
0p+k0 cos(θ+

t0 )

, (14a)

AF−
0p = AF+

0p e−j (β+
0p+β−

0p)L
β+

0p − k0 cos(θ+
t0 )

β−
0p + k0 cos(θ+

t0 )
, (14b)

for the forward problem, and

AB−
0p = E0k0[cos(θ−

i ) + cos(θ−
r0 )]ejk0 cos(θ−

i )L

β−
0p+k0 cos(θ−

r0 )

e
−jβ

−
0p

L
− β+

0p−k0 cos(θ−
r0 )

e
jβ

+
0p

L

β−
0p−k0 cos(θ−

t0 )

β+
0p+k0 cos(θ−

t0 )

, (15a)

AB+
0p = AB−

0p

β−
0p − k0 cos(θ−

t0 )

β+
0p + k0 cos(θ−

t0 )
, (15b)

for the backward problem, where k0 = ω0
√

εr/c is the spatial
frequency in the unmodulated media. As expected from the
unidirectionality of the perturbation [Eq. (1)], we have AF+

0p �=
AB−

0p and AF−
0p �= AB+

0p . It may be easily verified that in the
particular case where the temporal perturbation is switched
off (ωm = 0), so that β+

0,p = β−
0,p = β0,p, these inequalities

transform to equalities after compensating for the round-trip
phase shift −2β0,pL, as expected for the resulting reciprocal
system.

From this point, the scattered fields in the unmodulated
media, also derived in Sec. 3 of [26], are found as

EF
R = ŷ

∞∑
n=−∞

e−j [k0 sin(θi)x−k0n cos(θrn)z−(ω0+nωm)t]

·
[ ∞∑

p=−∞

(
AF+

np + AF−
np

) − E+
0 δn0

]
, (16a)

EF
T = ŷ

∞∑
n=−∞

e−j [k0 sin(θi)x+k0n cos(θtn)z−(ω0+nωm)t],

·
∞∑

p=−∞

(
AF+

np e−j (β0p+nβm)L + AF−
np ej (β0p−nβm)L

)
, (16b)

and

EB
R = ŷ

∞∑
n=−∞

e−j [k0 sin(θi)x+k0n cos(θrn)z−(ω0+nωm)t]

·
[ ∞∑

p=−∞

(
AB+

np e−j (β0p+nβm)L + AB−
np ej (β0p−nβm)L)

−E−
0 δn0e

jk0L

]
, (17a)

EB
T = ŷ

∞∑
n=−∞

(
AB+

np + AB−
np

)
·e−j [k0 sin(θi)x−k0n cos(θtn)z−(ω0+nωm)t], (17b)

where k0n = (ω0 + nωm/vb).
The scattering angles of the different space-time harmonics

in (16) for the forward problem are represented in Fig. 2. They
are obtained from the corresponding Helmholtz relations

[k0 sin(θi)]
2 + [k0n cos(θrn)]2 = k2

0n (18a)

and

[k0 sin(θi)]
2 + [k0n cos(θtn)]2 = k2

0n, (18b)

yielding

sin(θrn) = sin(θtn) = sin(θi)

1 + nωm/ω0
, (18c)

where θrn and θtn are the reflection and transmission angles
of the nth space-time harmonic. Equation (18c) describes the
space-time spectral decomposition of the scattered wave. The
reflection and transmission angles for a given harmonic n are
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FIG. 2. Scattered space-time harmonics (shown here for the
forward problem).

equal due to phase matching, i.e., due to the unique tangential
wave number, kx = k0 sin(θi), in all the regions [Eqs. (18a) and
(18b)]. The harmonics in the n interval [ω0(sin θi − 1)/ωm, +
∞[ are scattered (reflected and transmitted) at angles ranging
from π/2 to 0 through θi for n = 0. The harmonics outside
of this interval correspond to imaginary k±

znp and are hence
not scattered. Rather, they travel as surface waves along the
boundary. In the modulated medium, the scattering angles are
found from the dispersion relation as

tan(θ±
np) = kx

k±
znp

= k0 sin(θi)

β±
0p ± nβm

. (19)

Wave scattering in general periodic space-time modulated
media share some similarities with stimulated Brillouin scat-
tering, a nonlinear process whereby light interacts coherently
with externally applied acoustic variations in a medium and
energy can be transferred back and forth between them [28,29].
As a result of the interaction, frequency and wave number of a
fraction of the transmitted light wave changes, in the same way
as if it were diffracted by an oscillating and moving grating.
The phenomenon behind the stimulated Brillouin scattering is
electrostriction, where frequency and momentum of a photon
will change through a scattering process that releases a phonon
[30,31]. Electrostriction may be represented as the tendency of
materials to become compressed in the presence of an electric
field.

III. SINUSOIDALLY MODULATED SLAB

We next consider a sinusoidal forward space-time permit-
tivity as a particular case of the general periodic permittivity
in (1), namely,

ε(z,t) = εr + εm cos(βmz − ωmt). (20)

Such a permittivity has been used in [1] for the realization of
a traveling-wave parametric amplifier. For the computation of
the solution derived in Sec. II, we write the expression (20) in
terms of its space-time Fourier components, i.e.,

ε(z,t) = ε̃−1e
−j (βmz−ωmt) + ε̃0 + ε̃+1e

+j (βmz−ωmt), (21a)

with

ε̃−1 = ε̃+1 = εm/2 and ε̃0 = εr. (21b)

Inserting (21) into (10) and subsequently following [21],
we find the analytic expressions

A±
np = A±

n+1,p

1

−K±
np + 1

K±
n−1,p+ 1

−K
±
n−2,p

+ 1
K

±
n−3,p

+···

(22)

for n < 0, and

A±
np = A±

n−1,p

1

−K±
np + 1

K±
n+1,p+ 1

−K
±
n+2,p

+ 1
K

±
n+3,p

+···

(23)

for n > 0, where

K±
np = 2εr

εm

[
1 −

(
k2
x + (β±

0 ± nβm)2

[(ω0 + nωm)/vb]2

)
δnn

]
. (24)

The sonic interval associated with the sinusoidal permittivity
in (20) is obtained by inserting ε̃0 into (7) as

γs,min = 1√
1 + εm/εr

� γ � 1√
1 − εm/εr

= γs,max, (25)

where it is understood that |εm cos(βmz − ωmt)| � εm. Fol-
lowing again [21], we also find the following analytic form for
the dispersion relation of the slab:

1

−K±
p,−1 + 1

K±
p,−2+ 1

−K
±
p,−3+ 1

K
±
p,−4+···

+ K±
0p

+ 1

−K±
p,1 + 1

K±
p,2+ 1

−K
±
p,3+ 1

K
±
p,4+···

= 0. (26)

This equation, which uses the K±
np’s in (24), provides, for a

given set of modulation parameters (εm, εr, ωm, βm, γ ) and
variable ω0, the periodic dispersion diagram (β0p’s) of the
system.

Finally, the local space-time phase velocity and character-
istic impedance read

v(z,t) = c√
ε(z,t)

= c√
εr + εm cos(βmz − ωmt)

(27a)

and

Z0(z,t) =
√

μ

ε(z,t)
=

√
μ0

ε0[εr + εm cos(βmz − ωmt)]
,

(27b)

respectively. Equations (27) indicate that the scattering angles
and matching level both vary in space and time when εm �= 0.

IV. QUASISONIC NONRECIPROCITY

A. Dispersion and isofrequency diagrams of the unbounded
modulated slab medium

In order to gain deeper insight into the wave-propagation
phenomenology within the space-time modulated slab
medium, we next study the dispersion and isofrequency
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FIG. 3. Illustration of the three-dimensional dispersion for the
unbounded sinusoidally space-time modulated permittivity (20). A
vertical cut at kx = 0 produces the dispersion diagrams (ω0,β0). A
horizontal cut at the excitation frequency ω0 produces isofrequency
diagrams (β0,kx). Note that the ω0, β0, and kx axes are mutually
orthogonal.

diagrams of the corresponding unbounded medium. Both are
generally computed using (13) with (12) and (21).

In the limiting case of a vanishingly small (but nonzero)
modulation depth, εm → 0, the aforementioned equations lead
to the closed-form dispersion relation

k2
x + (β±

0 ± nβm)2 =
(

ω0 + nωm

vb

)2

. (28)

Using (2) and (4), this relation may be more conveniently
rewritten as(

kx

βm

)2

+
(

β±
0

βm
± n

)2

= γ 2

(
ω0

ωm
+ n

)2

, (29)

which represents an infinite periodic set of double cones with
apexes at kx = 0 and β0 = ±nβm and slope vm, as illustrated
in Fig. 3. A vertical cross section of this three-dimensional
(3D) diagram at kx = 0 produces an infinite periodic set of
straight lines in the β0/βm − ω0/ωm plane, and a horizontal
cut produces an infinite periodic set of circles centered at
(β±

0 /βm,kx/βm) = (∓n,0) with radius γ (ω0/ωm + n) in the
β0/βm − kx/βm plane, as depicted in Fig. 3.

We shall now consider the dispersion diagrams plotted
in Fig. 4 for the case of normal incidence, and therefore
normal propagation everywhere, i.e., kx = 0, for different sets
of parameters. Figure 4(a) plots the dispersion diagram for
a vanishingly small modulation depth, i.e., εm → 0, and for
γ = 0.3. In such a case, Eq. (29) reduces to the very simple
dispersion relation

β±
0

βm
= γ

ω0

ωm
+ n(γ ∓ 1). (30)

This diagram consists of the infinite periodic set of β0/βm −
ω0/ωm straight curves, labeled by n. To any frequency ω0

corresponds an infinite number of modes, labeled by p,
each of which consisting in the infinite number of forward
and backward space-time harmonics (β±

0p + nβm,ω0 + nωm)
located on the corresponding oblique curve with slope vm.
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FIG. 4. Normal-incidence (kx = 0) dispersion diagrams for the
sinusoidally space-time modulated (unbounded) slab medium with
the permittivity (20) computed using (13) with (12) and (21).
(a) Space-time modulated medium with vanishingly small modulation
depth, i.e., εm → 0 and for γ = 0.3 [Eq. (29)]. (b) Same as (a) except
for the greater modulation depth εm = 0.22εr. (c) Same as (b) except
for the subsonic (γ < γs,min) and quasisonic (γ ≈ γs,min) space-time
modulation ratio γ = 0.85 (γs,min = 0.905).

Note that, as pointed out in Sec. II, any (oblique) space-time
harmonic point may be seen as corresponding to a different
mode, excited at a different frequency, or, equivalently, that any
mode excited at ω0 may be seen as corresponding to an oblique
space-time harmonic of another mode, with different excitation
frequency. Given the vanishingly small periodic perturbation
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(εm → 0), the medium is here quasihomogeneous, with most
of the energy residing in the n = 0 forward and backward
space-time harmonics, which would in fact represent the
only remaining curves for exactly εm = 0 (homogeneous
nonperiodic medium).

We note in Fig. 4(a) that when the velocity ratio is
nonzero (here γ = 0.3), the distances between the forward
and backward space-time harmonics, �β± = β±

n+1 − β±
n , are

different. Specifically, as γ increases, �β+ decreases and
�β− increases. This may be explained as follows, consid-
ering the horizontal cut ω0 = 0, where �β represents the
spatial-frequency period or Brillouin zone edge. In the static
case, vm = 0 (not shown in Fig. 4), we have �β± = �β =
2π/pstat, where pstat is the static period seen by both the
forward and backward waves. As vm > 0 (all of Fig. 4), the
forward and backward waves see the velocities, v± = vb ∓ vm,
respectively, relative to the modulating wave, with limits
v+(vm = vb) = 0 and v−(vm = vb) = 2vb. The corresponding
relative periods, satisfying the conditions p±

mov(vm = 0) =
pstat, p+

mov(vm = vb) = ∞ (synchronization with modulation
and hence no period seen, i.e., infinite period) and p−

mov(vm =
vb) = pstat/2 (due to opposite propagation at same velocity
as modulation), are found as p±

mov = pstatvb/(vb ∓ vm). Thus,
�β±

mov = 2π/p±
mov = (2π/pstat)(vb ∓ vm)/vb or �β±

mov/βm =
1 ∓ γ , indicating that distances between the forward and
between the backward space-time harmonics decrease and in-
crease, respectively, tending to the limits �β+

mov(γ = 1)/βm =
0 and �β−

mov(γ = 1)/βm = 2. This result, deduced from a
physical argument, is in agreement with the mathematical
result of (30), evaluating β±

0,n+1/βm − β±
0,n/βm at ω0 = 0.

Figure 4(b) plots the dispersion diagram for the greater
modulation depth εm = 0.22εr. In this case, the periodic per-
turbation is much more pronounced. Therefore, a substantial
number of space-time harmonics contribute to the fields and
the interferences between these harmonics are sufficiently
strong to open up stop bands. These stop bands are naturally
oblique, again with slope vm, as they have to occur at the
space-time synchronization points, i.e., at the intersections of
the space-time harmonics, which lie on oblique lines according
to Fig. 4(a).

Figure 4(c) plots the dispersion diagram for the greater
space-time modulation ratio γ = 0.85, which is subsonic
(γ < 1) and quasisonic (γ ≈ γs,min) given γs,min = 0.905.
What is observed corresponds to the expectation from the
above explanation and related formula �β±

mov/βm = 1 ∓ γ .
The forward space-time harmonics get closer to each other
(they would in fact completely fill up the diagram in the
limit γ → 1) and eventually collapse into a single curve
at γ = 1 since �β+

mov(γ = 1)/βm = 0, producing the shock
wave mentioned in Sec. II. On the other hand, the backward
space-time harmonics tend to be separated by the distance
�β−

mov(γ = 1)/βm = 2. In this quasisonic regime, the closest
space-time harmonics strongly couple to each other at a
given frequency ω0 because they possess very close phase
velocities and are hence essentially phase matched to each
other. Therefore, this is a regime of particular interest, as
will be seen in the application of Sec. V. As mentioned
in Sec. II, the analytical results presented in this paper are
restricted to the subsonic regime, but the quasisonic condition
γ ≈ γs,min allows one to reap the essential benefits of the

FIG. 5. Isofrequency diagrams for the unbounded sinusoidally
space-time modulated medium (20), computed using (13) with (12)
and (21). (a) Purely space-modulated medium, i.e., ωm = γ → 0
(but finite γω0/ωm = 0.6). (b) Space-time modulated medium with
vanishingly small modulation depth, i.e., εm → 0, and for ω0 =
1.5ωm and γ = 0.15. (c) Same as (b) except for the greater space-time
modulation ratio γ = 0.3. (d) Same as (c) except for the space-time
modulation depth εm = 0.22εr. (e) Same as (d) but in the quasisonic
regime with γ = 0.85 (γs,min = 0.905).

physics occurring in the sonic regime, as will be seen in
Sec. V.

We shall now consider the isofrequency diagrams plotted
in Fig. 5 for different sets of parameters. These diagrams
may be easiest understood using the 3D perspective in Fig. 3.
Figure 5(a) plots the isofrequency curves for a purely space-
modulated medium, where ωm = γ → 0, with vanishingly
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small modulation depth, i.e., εm → 0 and εm = 0.2. In the
former case (εm → 0), the curves are the circles given by (29),
corresponding to the infinite number of space harmonics n

and reducing to the center circle, k2
x + β2

0 = k2 − k2
0/εr, in

the trivial limiting case of a perfectly homogenous medium
(εm = 0). In the latter case (εm = 0.2), Eq. (29) is not valid
anymore and one must resort to the general relation (13). Here,
spatial (kx − β) stop bands open up at the intersection points
for εm = 0, due to space harmonic coupling. Note that in such
a purely spatially modulated medium, the space harmonics are
simply related by β±

0,n = β±
0,0 + nβm, where, for a given kx ,

all the spatial harmonics propagate, attenuate (near stop band
edges, when εm > 0), or get cut off.

Figure 5(b) plots the isofrequency diagram for a space-time
modulated medium, where βm,ωm > 0, still with vanishingly
small modulation depth, i.e., εm → 0, and ω0 = 1.5ωm, γ =
0.15. The isofrequency circles have now different radii,
corresponding to γ (ω0/ωm + n) [Eq. (29)], with envelope
slope of −γ . This is because, in contrast to the purely spatial
medium in Fig. 5(a), the space-time medium supports, for a
fixed incidence angle (i.e., fixed kx), an infinite number of
modes (labeled by p), each of them composed of an infinite
number of forward and backward space-time harmonics
(β±

0p + nβm,ω0 + nωm), as previously explained. The medium
operates as a spatial (β) high-pass filter, some modes above
the cutoff propagating and those below the cutoff, as shown in
Fig. 2 and related explanation.

Figure 5(c) shows the same diagram as Fig. 5(b) for the
larger space-time modulation ratio γ = 0.3. As γ increases,
the isofrequency circles in the forward region, β0 > 0, get
smaller and appear farther apart. In contrast, those in the
backward region, β0 < 0, get bigger and eventually intersect.
This behavior can be intuitively understood from the 3D
dispersion curves in Fig. 3.

Figure 5(d) shows isofrequency curves for the stronger
modulation depth εm = 0.22εr. As the modulation depth is
increased, forward and backward waves at the intersections
of the isofrequency circles couple more strongly and a visible
band stop appears in the isofrequency diagram. In the limit of
vanishingly small modulation depth, these band stops become
vanishingly narrow. Depending on the incidence frequency
and angle, some modes propagate and some are cut off. For
instance, for θi = 44◦, mode p = −1 is evanescent, while
modes p = 0 and p = +2 represent forward-propagating
waves.

Finally, Fig. 5(e) plots the isofrequency diagram in the
quasisonic regime. The forward waves are synchronized and
exhibit similar group and phase velocities, leading to strong
interaction and coupling, while backward waves are more
distant and therefore interact relatively weakly.

B. Nonreciprocal scattering from the slab

This section studies the nonreciprocity of the space-time
modulated system in Fig. 1. The structure is analyzed with
the analytical technique presented in Sec. III and verified
using full-wave finite difference frequency domain (FDTD)
simulations.

First consider the forward problem in Fig. 1. A wave is
normally incident on the slab with sinusoidal permittivity
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FIG. 6. Analytical [Eqs. (16b) and (17b)] and numerical (FDTD)
results for the forward and backward problems in the quasisonic
regime with parameters εm = 0.3εr, ω0 = 2π × 1.5 GHz, ωm =
2π × 0.2 GHz, L = 3λ0 and γ = 0.85. (a, b) FDTD wave forms
showing the electric field amplitude for the forward and backward
problems, respectively. (c, d) Temporal-frequency spectrum of the
transmitted field for the forward and backward problems, respectively.

(20) and operated in the quasisonic regime with velocity
ratio γ = 0.85 (γs,min = 0.867). Figure 6(a) shows the FDTD
response for the amplitude of the electric field. The wave
strongly interacts with the medium as it passes through the slab
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FIG. 7. Temporal-frequency spectrum of the reflected field from
a space-time modulated slab with the same parameters as in Fig. 6:
(a) forward problem EF

R and (b) backward problem EB
R .

and generates all the space-time harmonics. The corresponding
temporal-frequency spectrum for the transmitted wave is
plotted in Fig. 6(c). The incident power at ω0 is effectively
converted in the space-time harmonics ω0 ± nωm, n � 1,
yielding a transmitted wave carrying weak power at the
incident frequency ω0.

Next, consider the backward problem. Figure 6(b) shows
the FDTD response for the amplitude of the electric field. The
wave weakly interacts with the medium as it passes through
the slab and remains almost unaltered. The corresponding
temporal-frequency spectrum, plotted in Fig. 6(c), confirms
this fact. The two weak harmonics at ω0 + ωm and ω0 − ωm are
due to local impedance mismatch [Eq. (27b)] in the medium.

The space-time medium affects forward and backward
waves differently, producing strong harmonics in the forward
problem and almost no harmonics in the backward problem.
This nonreciprocity is exploited in Sec. V for the realization
of a quasisonic isolator. It should be noted that both in the
forward and backward problems the incident wave couples to
an infinite number of space-time harmonics. However, in the
backward problem this coupling is extremely weak.

Figures 7(a) and 7(b) plot temporal-frequency spectrum of
the reflected wave, for the same parameters as in Fig. 6, for
forward and backward excitations, respectively. In both cases
the structure is well matched and reflects weakly. The reflection
level is directly proportional to the modulation depth.

C. Effect of the velocity ratio

This section investigates the effect of the velocity ratio on
the power conversion efficiency of the space-time modulated
slab, i.e., the amount of power that is transmitted to desired
space-time harmonics ω0 ± nωm, n � 1. Figure 8 shows the
distribution of the transmitted power in different harmonics
versus the velocity ratio γ . The highlighted region represents
the sonic regime. In the subsonic regime, where γ → 0,
little energy is transferred to harmonics. As γ approaches
the sonic regime, power conversion efficiency is increased.
In the quasisonic and sonic regimes most of the power is
transferred to other harmonics with only a small amount of
power remaining in the fundamental (n = 0).

In the quasisonic and sonic regimes, the total wave power
grows quasiexponentially as the wave propagates along the
space-time modulated section. Figure 9 compares the wave
amplitudes in subsonic and quasisonic regimes for γ = 0.3
and γ = 0.85, respectively, versus the position. In the subsonic
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FIG. 8. FDTD (Finite Difference Time Domain) transmitted field
versus velocity ratio (γ ) showing the harmonics distribution for a
space-time slab with parameters εm = 0.22εr (γs,min = 0.905), ωm =
2π × 0.2 GHz, ω0 = 2π × 1.5 GHz, and L = 3.5λ0.

regime the wave and the modulation are not synchronized and
there is only weak coupling between the two. As a result the
wave magnitude is almost flat. In contrast, in the quasisonic
and sonic regimes the wave and modulation velocities are
synchronized. Consequently, the two are strongly coupled
and the wave amplitude grows quasiexponentially along the
space-time modulated slab. This observation is not at odds
with power conservation, as energy is pumped into the system
through space-time modulation. However, this exponential
growth cannot be efficiently used for wave amplification, since
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FIG. 9. FDTD comparison of the rate of power growth (forward
problem) in subsonic and quasisonic regimes for (a) the subsonic
space-time velocity ratio γ = 0.3 and (b) the quasisonic space-time
velocity ratio γ = 0.85 (γs,min = 0.905), where εm = 0.22εr, ωm =
2π × 0.2 GHz, ω0 = 2π × 1.5 GHz, and L = 15λ0.
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FIG. 10. Magnitude of different harmonics versus the length of
the space-time slab (FDTD). The slab operates in the middle of the
sonic regime with parameters εm = 0.22εr, ωm = 2π × 0.2 GHz, and
ω0 = 2π × 1.5 GHz.

power is distributed among infinite space-time harmonics, as
seen in the temporal-frequency spectrum in Fig. 9(b).

D. Effect of the length

Figure 10 plots the magnitude of first harmonics with
respect to the length of the space-time modulated slab. The
structure operates in the middle of the sonic regime, i.e., γ = 1.
As the length of the slab is increased, the input power is more
efficiently coupled to the space-time harmonics ω0 ± nωm,
n � 1. The incident wave gradually couples its energy to
these harmonics as it propagates along the slab. Therefore, a
longer slab exhibits more efficient power conversion. However,
this effect saturates at some point, as the power in these
higher-order modes couples back and transfers its energy
back to the fundamental mode. Therefore, power conversion
efficiency shows a quasiperiodic behavior with respect to the
length of the slab.
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FIG. 11. A space-time modulated slab operated in the quasisonic
or sonic regime. In the forward direction the incident energy is
transferred in cascade to space-time harmonics. In the backward
direction the wave passes through with little interaction.
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FIG. 12. Quasisonic isolator. The quasisonic or sonic space-time
modulated slab in Fig. 11 is connected to a bandpass filter. (a) In
the forward direction, the incident power is converted to higher-order
harmonics and eliminated by the filter (bandpass filter, BPF). (b) In
the backward direction, the wave passes through the system.

V. QUASISONIC ISOLATOR

This section exploits the strong nonreciprocity of the
quasisonic and sonic regimes for the realization of an electro-
magnetic isolator. The principle of operation of the proposed
isolator is illustrated in Figs. 11 and 12. A space-time slab
is operated in the quasisonic or sonic regime. The length and
modulation ratio are adjusted such that in the forward direction
the incident power is efficiently converted to higher-order
space-time harmonics ω0 ± ωm, n � 1, and little energy is
transmitted at the fundamental frequency ω0. In contrast, in
the backward direction the space-time slab interacts weakly
with the incident wave and therefore the incident wave passes
through almost unaltered. If the transmitted wave is passed
through a bandpass filter with bandpass frequency ω0, as in
Fig. 12, in the forward direction most of the power is in
the stop band and is therefore dissipated or reflected by the
filter. However, in the backward direction most of the power

varactors

0BPF at ω

RF bias

Port 1

Port 2

Matched
loadGrounding wall

FIG. 13. Photograph of the fabricated isolator, employing
SMV1247 varactors manufactured by Skyworks Solutions with
capacitance ratio Cmax/Cmin = 10. The specifications of the structure
are L = 11.7 cm, RT6010 substrate with permittivity 10.2, thickness
h = 100 mil, and tan δ = 0.0023.
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FIG. 14. Experimental results for the isolator in Figs. 12 and 13
with εm = 0.22εr, ω0 = 2π × 1.5 GHz, ωm = 2π × 0.2 GHz, L =
3.5λ0, and γ → 1: (a) forward problem and (b) backward problem.

is at fundamental frequency ω0 and passes through. Thus, the
structure operates as an isolator.

We realized the space-time modulated slab with permittivity
(20) using a microstrip transmission line loaded with an
an array of subwavelength-spaced varactors. The fabricated
prototype is shown in Fig. 13. The varactors are reversed biased
by a dc voltage and are spatiotemporally modulated by an rf
bias, realizing the space-time varying capacitance C(z,t) =
Cav + Cm cos(βmz − ωmt). This circuit emulates a medium
with effective permittivity ε(z,t) = εav + εm cos(βmz − ωmt),
with εav = εef + εav,var, where εef is the effective permittivity
of the microstrip line and εav,var is the average permittivity
introduced by the varactors. The modulation depth is
controlled through the amplitude of the rf bias.

Figures 14(a) and 15 show the measurement results. The
space-time varying microstrip circuit was connected to a
bandpass filter, and forward and backward transmission and
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FIG. 15. Measured reflections from the isolator slab in Figs. 12
and 13, with the same parameters as in Fig. 14: (a) forward problem
and (b) backward problem.

reflection coefficients were measured. In the forward direction,
corresponding to Fig. 14(a), the transmission level is less than
−20 dB at the fundamental harmonic and less than −30 dB in
other space-time harmonics. Figure 15(a) shows that the power
injected into the higher-order harmonics ω0 ± nωm is reflected
by the bandpass filter. In the backward direction, shown in
Fig. 14(b), the incident wave is almost fully transmitted at
the fundamental frequency, with less than −30 dB reflection.
Thus, the structure realizes an isolator with more than 20 dB
isolation.

VI. CONCLUSION

We studied the scattering of obliquely incident electromag-
netic waves from periodically space-time modulated slabs. It
is shown that such a structure operates as a nonreciprocal
harmonic generator. We showed that the structure operates as
a high-pass filter in oblique incidence, where low-frequency
harmonics are filtered out in the form of surface waves,
while high-frequency harmonics are scattered as space waves.
In the quasisonic regime, where the velocity of space-time
modulation is close to the velocity of the electromagnetic
waves in the background medium, the incident wave is
strongly coupled to space-time harmonics in the forward
direction while in the backward direction it exhibits low
coupling to other harmonics. This nonreciprocity has been
leveraged for realization of an electromagnetic isolator in
the quasisonic regime. The space-time varying medium was
realized at microwave frequencies using a microstrip line
loaded with subwavelength-spaced varactors, and its operation
as a quasisonic isolator was experimentally demonstrated.
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