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We use Schwinger-boson mean-field theory (SBMFT) to study the ground state of the spin-S triangular-lattice
Heisenberg model with nearest (J1) and next-nearest (J2) neighbor antiferromagnetic interactions. Previous work
on the S = 1/2 model leads us to consider two spin-liquid Ansätze, one symmetric and one nematic, which upon
spinon condensation give magnetically ordered states with 120◦ order and collinear stripe order, respectively.
The SBMFT contains the parameter κ , the expectation value of the number of bosons per site, which in the exact
theory equals 2S. For κ = 1 there is a direct, first-order transition between the ordered states as J2/J1 increases.
Motivated by arguments that in SBMFT, smaller κ may be more appropriate for describing the S = 1/2 case
qualitatively, we find that in a κ window around 0.6, a region with the (gapped Z2) symmetric spin liquid opens
up between the ordered states. As a consequence, the static structure factor has the same peak locations in the
spin liquid as in the 120◦ ordered state, and the phase transitions into the 120◦ and collinear stripe-ordered states
are continuous and first order, respectively.

DOI: 10.1103/PhysRevB.96.165141

I. INTRODUCTION

Quantum spin liquids have for a long time been a major
research topic in frustrated quantum magnetism [1–3]. Signif-
icant progress has been made in understanding the properties
of various frustrated spin systems, including the S = 1/2
nearest-neighbor (NN) Heisenberg antiferromagnet (HAFM)
on the kagome lattice, for which recent studies point towards
a spin-liquid ground state [4] (but see Ref. [5]). A spin-liquid
ground state was first proposed for the spin-1/2 NN-HAFM
on the triangular lattice [6]. However, for this case it was
later established that the ground state has magnetic order with
a 120◦ angle between NN spins [7]. Here we consider the
closely related J1-J2 HAFM on the triangular lattice, which has
both nearest-neighbor (J1) and next-nearest-neighbor (NNN;
J2) antiferromagnetic interactions (see Fig. 1). Interest in this
model was recently reinvigorated due to various numerical
studies finding a spin-liquid ground state in a region of
intermediate values of J2/J1 [8–12].

We first summarize some of the main conclusions from
classical (i.e., S → ∞) and semiclassical analyses of the
J1-J2 model. The classical model has the 120◦ three-sublattice
noncollinear order [Fig. 2(a)] for J2/J1 < 1/8, while for
1/8 < J2/J1 < 1 the ground state is characterized by a
(generally) four-sublattice order [13] of spin vectors which
sum to zero around two neighboring elementary triangles.
This leads to an infinitely degenerate ground state manifold,
including both states with planar magnetic order and zero
chirality [14], as well as states with nonplanar magnetic order
and nonzero chirality [13] (see also Ref. [15]). For J2/J1 > 1
a spiral state with incommensurate ordering wave vector wins
out [14–16], but this region of the phase diagram will not
be considered here. Spin-wave theory shows that the leading
1/S quantum corrections to the classical ground state lift the
infinite classical degeneracy for 1/8 < J2/J1 < 1 and favor
(by “order from disorder”) a state with collinear stripe order
[Fig. 2(b)]. This is a planar state with two-sublattice collinear
order, ferromagnetic in one direction and antiferromagnetic
in the two other directions of an elementary triangle, thus

giving a threefold-degenerate state breaking lattice rotational
symmetry [13,14,16]. Furthermore, for the S = 1/2 case,
linear spin-wave theory predicts a magnetically disordered
phase in a small window around J2/J1 = 1/8 between the
noncollinear and collinear phases [14,17,18]. However, a
disordered phase was not found in nonlinear spin-wave
theory [16,19] or in linear spin-wave theory applied to finite
systems [19].

A Schwinger-boson study [20] going beyond mean-field
theory found a magnetically disordered region between the
two ordered phases but did not address its nature further.
More recently, a number of studies [8–12,21–26] using various
numerical methods have found a spin liquid in this intermediate
region, but a consensus has not yet been reached concerning
its nature. All density-matrix renormalization-group (DMRG)
studies [11,12,23,25,26] find evidence of a gapped spin liquid,
but some results that may alternatively suggest a gapless spin
liquid were also found [23,26,27]. The coupled-cluster (CCM)
[10] and variational Monte Carlo (VMC) [8,9,21,22] methods
found a gapless spin liquid, with the lowest-energy state of the
latter type being the U(1) Dirac spin liquid [21,22]. The DMRG
studies suggest that the spin-liquid region may have nematic
order, i.e., broken rotational symmetry. But these results
depend on the topological sector [12,23] and could be an
artifact of the explicit breaking of lattice rotation symmetry in
the cylinder systems studied by DMRG. In contrast, nematic
order was not found in VMC [21] and exact diagonalization
(ED) [24]. Reference [12] found evidence for a chiral spin
liquid also being a possible candidate for the spin liquid in the
J1-J2 model, but this was ruled out by later studies [22,24–26]
which found that a transition to a chiral spin liquid takes place
only by adding a small, but finite, chiral interaction term.

Reference [10] argued that the phase transitions from
the spin liquid to the two ordered phases are most likely
continuous. Other studies [9,21,24] agree the transition to
the 120◦ phase is continuous but find that the transition to
the collinear stripe phase is first order. Also, Refs. [9,21]
calculated the static structure factor in the spin-liquid region
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FIG. 1. The triangular lattice with nearest (J1) and next-nearest
(J2) neighbor bonds indicated (for a given site there are six bonds of
each type).

and found that the peak locations were the same as in the
120◦-ordered phase. There is fairly good agreement between
different studies on the approximate location (in J2/J1) of the
spin-liquid region (see Ref. [21] for a detailed comparison)
and between DMRG and the most accurate VMC studies on
the value of the ground-state energy [21,23].

A commonly used theoretical device involves expressing
the S = 1/2 spin operator on each site in terms of either
(“Abrikosov”) fermionic or (“Schwinger”) bosonic particles,
whose total number on a site is fixed (the “local constraint”).
From this “slave-particle”/“parton” representation a mean-
field theory for the lattice spin model can be constructed, in
which the spin-spin interactions are approximated by effective
quadratic terms, and the local number operator constraints
are replaced by a (weaker) expectation value constraint. The
effective quadratic Hamiltonian is then diagonalized, and its
coefficients are determined self-consistently. Such mean-field
theories may give qualitative insights and/or may be a starting
point for more refined methods (including the VMC studies
already noted, in which the variational trial states are fermionic
mean-field states numerically projected to satisfy the local
constraint). The bosonic formulation is, in fact, valid for any
(integer or half integer) S. In the associated (Schwinger-boson)
mean-field theory (SBMFT) [28] it is possible and useful to
consider κ = 2S as a continuous parameter. A candidate mean-
field state will represent a gapped spin liquid for κ < κc and a
magnetically ordered state for κ > κc (the transition occurring
by Bose condensation of the bosonic “spinon” excitations),
where κc depends on the model parameters. SBMFT was
applied to the S = 1/2J1-J2 model in Ref. [29]: taking κ = 1,
they found a direct, first-order transition between the 120◦
and collinear stripe-ordered states at J2/J1 ≈ 0.16 (see also
Ref. [30]). Later, by analyzing the spin stiffness, Ref. [20]
found that one-loop corrections to the mean-field theory led

(a) (b)

FIG. 2. Magnetically ordered phases considered in this work:
(a) the 120◦ ordered phase and (b) the collinear stripe phase.

to a small J2/J1 region with a magnetically disordered phase
between the two ordered phases.

One of the aims of our work is to investigate the nature of
this disordered phase in the bosonic formulation, a task that
was not undertaken in Ref. [20]. We will, however, stay purely
within the mean-field theory. This requires some explanation
since, as already noted, SBMFT for κ = 1 found no disordered
phase. But although κ = 1 is the correct choice in an exact
treatment of the S = 1/2 model, a lower value of κ may
be more appropriate in mean-field theory [31,32]. We will
therefore consider the phase diagram as a function of κ , which
is taken to be a free continuous parameter. Not fixing κ also
gives more insight into which states may be energetically close
in parameter space and is generally more consistent with the
fact that the information provided by mean-field theory is, at
best, qualitative.

The recent numerical studies reviewed earlier suggest that
the relevant spin-liquid candidate states are nonchiral and may
or may not be nematic. Thus it is necessary to consider sym-
metry properties of parton mean-field states. Wen introduced
the concept of the projective symmetry group (PSG) and used
it to derive and classify spin-liquid mean-field Ansätze in the
fermionic formulation [33,34]. Wang and Vishwanath [35]
adapted this approach to the bosonic formulation by using a
PSG analysis to derive SBMFT spin-liquid Ansätze. These
works considered symmetric spin-liquid Ansätze representing
physical states invariant under space-group transformations,
spin rotations, and time reversal (thus not including chiral
states). For the triangular lattice, Ref. [35] found eight such
Ansätze in the bosonic formulation. These findings have been
reproduced by later analyses which have also mapped the
bosonic Ansätze to corresponding fermionic ones [36–39].
However, based on the mean-field parameters they allow, only
two of the eight Ansätze have been considered as promising
candidates for the J1-J2 model [35–37]: the zero-flux state
(previously identified by Sachdev [40] in a large-N bosonic
formulation) and the π -flux state [41]. A natural question
is whether these two states could upon spinon condensation
give rise to precisely the two types of magnetically ordered
states found in the J1-J2 model. Indeed, this is the connection
between the zero-flux state and the 120◦ order [35,40]. On
the other hand, although the magnetic order associated with
the π -flux state was found to have the same ordering wave
vectors as the collinear stripe order (three possible ordering
vectors, located at the Brillouin-zone edge centers), the actual
magnetic order was found to be different [35,42].

We are not aware of any PSG analysis for the SBMFT
formulation that has found a symmetric spin-liquid Ansatz
whose associated magnetic ordering is that of the collinear
stripe phase (with three possible ordering vectors). Thus we are
led to look for an Ansatz which is not fully symmetric. As the
collinear stripe state breaks the lattice rotational symmetry, it is
natural to consider an Ansatz that does the same (i.e., a nematic
spin liquid [37]) and upon spinon condensation gives rise to
collinear stripe order with a unique ordering vector. In this
work we study the competition between the zero-flux state, the
nematic-spin-liquid (NSL) state, and the magnetically ordered
states these can give rise to.

This paper is organized as follows: Sec. II discusses
the SBMFT for the zero-flux and NSL states. Most of the
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numerical results, including the ground-state phase diagram as
a function of J2/J1 and κ , are presented in Sec. III. Section IV
gives a discussion and conclusions. Derivations of the static
structure factor and a small-κ expansion are included in two
Appendices.

II. THEORY

A. Schwinger-boson mean-field theory

We will investigate the J1-J2 HAFM on the triangular lattice
(Fig. 1). The Hamiltonian is

H = J1

∑
〈i,j〉

Ŝi · Ŝj + J2

∑
〈〈i,j〉〉

Ŝi · Ŝj , (1)

where the sums run over pairs of NN and NNN sites,
respectively, each pair being counted once. Periodic boundary
conditions will be imposed on the spins.

In the Schwinger-boson representation the spin operators
Ŝi are written as

Ŝi = 1

2

∑
αβ

b̂
†
iασαβ b̂iβ, (2)

where σ is the vector of Pauli matrices and b̂
†
iσ and b̂iσ

are creation and annihilation operators for a boson with
spin σ = {↑,↓} on lattice site i; these operators satisfy the
standard commutation relations [b̂iα,b̂

†
jβ ] = δij δαβ . To enforce

that Ŝ2
i = S(S + 1), the operator identity

n̂i =
∑

σ

b̂
†
iσ b̂iσ = 2S (3)

should hold at each site i; this is the local constraint.
As spin-liquid states do not break spin rotation symmetry,

in SBMFT one seeks to express the Hamiltonian in terms of
quadratic operators that do not break this symmetry, letting
the expectation value of these operators serve as mean-field
parameters. The only quadratic operators that qualify are

Âij = 1
2 (b̂i↑b̂j↓ − b̂i↓b̂j↑), (4a)

B̂ij = 1
2 (b̂i↑b̂

†
j↑ + b̂i↓b̂

†
j↓), (4b)

and their adjoints. These “bond operators” satisfy Âij = −Âji

and B̂
†
ij = B̂ji . The Heisenberg interaction can then be written

Ŝi · Ŝj = : B̂
†
ij B̂ij : −Â

†
ij Âij (5a)

= B̂
†
ij B̂ij − Â

†
ij Âij − 1

4 n̂i , (5b)

where : · : means normal ordering.
In the mean-field approximation, we write Âij = 〈Âij 〉 +

(Âij − 〈Âij 〉) ≡ 〈Âij 〉 + δÂij , with similar notation for the
field B̂ij . Ignoring deviations from the mean of order (δA)2,
we obtain the A term,

Â
†
ij Âij � 〈Âij 〉∗ Âij + Â

†
ij 〈Âij 〉 − |〈Âij 〉|2, (6)

with similar notation for the B term. The mean-field param-
eters 〈Âij 〉, 〈B̂ij 〉 will from now on be denoted by Aij ,Bij .
The set of mean-field parameters {Aij ,Bij } is referred to as an
Ansatz.

In SBMFT, the local constraint (3) is relaxed to hold only
at the level of expectation values, i.e.,

〈ni〉 = κ. (7)

(Although, naively, κ = 2S, other choices of κ can be justified,
as discussed later.) Thus we should minimize the mean-field
Hamiltonian ĤMF with respect to {Aij ,Bij }, subject to the N

local constraints (7) (N is the total number of sites). This is
done by adding to ĤMF a term

∑
i λi(n̂i − κ), where {λi} is a

set of Lagrange multipliers. This gives

ĤMF =
∑

i

λi(n̂i − κ) +
⎛
⎝J1

∑
〈i,j〉

+J2

∑
〈〈i,j〉〉

⎞
⎠

×
{

(B̂†
ijBij − Â

†
ijAij + H.c.)

+ |Aij |2 − |Bij |2 − 1

4
n̂i

}
. (8)

B. States and Ansätze

As discussed in Sec. I, motivated by previous work, we are
led to consider the competition between two spin-liquid states:
the zero-flux state and a nematic-spin-liquid state, whose
magnetic ordering patterns are the 120◦ order and a collinear
stripe order, respectively (see Fig. 2), both of the coplanar
type. As these states are nonchiral, they can be described by
real Ansätze [32]. Also, these states’ Ansätze have the same
translation symmetry as the lattice, so the Ansatz unit cell
consists of a single site. The mean-field parameters Aij ,Bij

can therefore depend only on ri − rj . Only the NN parameters
(denoted by Aδ1 ,Bδ1 ) and NNN parameters (denoted by
Aδ2 ,Bδ2 ) will enter into the determination of the mean-field
solution. These parameters are listed for the two states in
Table I (see also Fig. 3).

The zero-flux state is characterized by having equal
magnitude for all NN Aδ1 ,Bδ1 and NNN Bδ2 , while the
NNN Aδ2 vanish [35]. The name “zero-flux” derives from
the gauge-invariant flux 	 ≡ arg(AijAjkAklAli) = 0 around
a rhombus.

The NSL state is threefold degenerate, breaking lattice
rotational symmetry by having ferromagnetic spin correlations
along one of the three directions of a triangle and antifer-
romagnetic correlations along the two other directions. The

TABLE I. Nearest- (δ1) and next-nearest (δ2) neighbor mean-field
parameters for the zero-flux and nematic-spin-liquid (NSL) states
studied in this work. The components of the triples are bond
parameters for (NN or NNN) bonds 1–3 in Fig. 3.

States

Parameters Zero flux NSL

Aδ1 (A,A,A) (0,A,A)
Bδ1 −(B,B,B) −(B,0,0)
Aδ2 (0,0,0) (Ā,0,Ā)
Bδ2 (B̄,B̄,B̄) (0,B̄,0)
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FIG. 3. Nearest-neighbor (red) and next-nearest-neighbor (blue)
bonds used for specifying Ansätze. The arrows indicate our choice of
positive reference directions for A parameters (an arrow from site i

to site j means Aij > 0). The oriented NN bonds 1 and 2 also define
the basis vectors a1 and a2 for the triangular lattice.

parameters shown in Table I correspond to ferromagnetic
correlations in the horizontal direction [see Fig. 2(b)].

C. Solving the SBMFT

As the Ansätze {Aij ,Bij } to be considered here are
translationally invariant, we expect the Lagrange multipliers
to be site independent, so we set λi ≡ λ. The N local
constraints (7) thus reduce to a single global constraint∑

i〈ni〉 = κN , implemented by a single Lagrange multi-
plier λ. By introducing a Fourier transformation b̂iσ =

1√
N

∑
k eik·ri b̂kσ , the Hamiltonian is block diagonalized as (we

redefine λ �→ λ − 1
8

∑
δ1

J1 − 1
8

∑
δ2

J2)

ĤMF =
∑

k

(
γ B

k + λ
)
(b̂†k↑b̂k↑ + b̂−k↓b̂

†
−k↓)

+
∑

k

iγ A
k (b̂k↑b̂−k↓ − b̂

†
k↑b̂

†
−k↓) − Nλ(κ + 1)

+ N

2

2∑
i=1

∑
δi

Ji

(
A2

δi
− B2

δi

)
, (9)

where here and in the following we have omitted a constant
C = −(Nκ/8)

∑2
i=1

∑
δi

Ji on the right-hand side, and we
have introduced

γ A
k = 1

2

2∑
i=1

∑
δi

JiAδi
sin(k · δi), (10a)

γ B
k = 1

2

2∑
i=1

∑
δi

JiBδi
cos(k · δi). (10b)

The diagonalization is completed with a Bogoliubov transfor-
mation,

b̂k↑ = cosh θkβ̂k↑ − sinh θkβ̂
†
−k↓, (11a)

b̂
†
−k↓ = i sinh θkβ̂k↑ − i cosh θkβ̂

†
−k↓, (11b)

with

tanh 2θk = − γ A
k

γ B
k + λ

. (12)

The result is

ĤMF = E0 +
∑

k

ωk(β̂†
k↑β̂k↑ + β̂

†
−k↓β̂−k↓), (13)

where the dispersion of the bosonic excitations (the spinons)
is

ωk =
√(

γ B
k + λ

)2 − (
γ A

k

)2
(14)

and the ground-state energy E0 is

E0 = N

2

2∑
i=1

∑
δi

Ji

(
A2

δi
− B2

δi

)

−N (κ + 1)λ +
∑

k

ωk. (15)

The mean-field parameters are determined from

∂E0

∂Aδi

= 0,
∂E0

∂Bδi

= 0,
∂E0

∂λ
= 0, (16)

which leads to the mean-field equations

Aδi
= 1

2N

∑
k

γ A
k

ωk
sin(k · δi), (17a)

Bδi
= 1

2N

∑
k

γ B
k + λ

ωk
sin(k · δi), (17b)

1 + κ = 1

N

∑
k

γ B
k + λ

ωk
. (17c)

Using the mean-field equations, the ground-state energy can
be rewritten as

E0 = 1

2

∑
k

ωk − N

2
λ(κ + 1)

= N

2

2∑
i=1

∑
δi

Ji

(
B2

δi
− A2

δi

)
. (18)

It can be verified that the local constraints (7) are satisfied,
as expected. Given Eq. (3), setting κ = 2S seems natural,
and indeed, this has been a standard choice in the literature.
However, it is not the only or necessarily the best choice
[31,32]. It can be shown (see Appendix A) that our SBMFT
gives 〈Ŝ2

i 〉 = 3
8κ(κ + 2), so the correct result S(S + 1) is

overshot by a factor 3/2 for κ = 2S [43]. Choosing to solve
the mean-field theory subject to the alternative constraint that
〈Ŝ2

i 〉 takes the correct value would give a smaller value of κ (in
particular, S = 1/2 would give κ = √

3 − 1 ≈ 0.73). In view
of this nonuniqueness and in order to get more insights from the
mean-field theory (whose conclusions are, in any case, at best
qualitative), we will treat κ as a continuous parameter in the
theory. It can then be used to extrapolate between the extreme
quantum limit (κ = 0) and the classical limit (κ = ∞) and
to determine the critical parameter value κc below which the
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FIG. 4. Left and middle: Spinon dispersion ωk for the two states evaluated for κ = 1 and L = 48 (left: zero-flux state for J2/J1 = 0,
middle: NSL state for J2/J1 = 0.5). In both plots, κ > κc(J2/J1), so magnetic order is present. The plots of ωk look qualitatively the same
also for κ < κc, but the variations are smoother. Right: Locations of the spinon dispersion minima in the zero-flux state (blue upward-pointing
triangles) and in the NSL state (blue circles), locations of ordering vectors in the zero-flux state (red downward-pointing triangles) and in the
NSL state (red squares). The hexagon is the first Brillouin zone of the triangular lattice.

quantum fluctuations destroy magnetic order (κc will depend
on the Ansatz and J2/J1).

D. Spin correlations and magnetic order

In order to investigate spin correlations and possible
magnetic order we consider the correlation function

〈Ŝi · Ŝj 〉 = 1

N

∑
q

S(q) eiq·(ri−rj ), (19)

where its Fourier transform S(q), the static structure factor, is
given by (see Appendix A for a derivation)

S(q) = 3

8N

∑
k

[(
γ B

k + λ
)(

γ B
k−q + λ

) − γ A
k γ A

k−q

ωkωk−q
− 1

]
. (20)

Maxima in S(q) occur for q ∈ {q0} due to terms in (20) for
which k and k − q0 are inequivalent spinon dispersion minima.
Plots of the spinon dispersion for the zero-flux and NSL states
are given in Fig. 4, which also shows the locations of the spinon
dispersion minima [for each state there are two such wave
vectors ±k0 in the Brillouin zone (BZ)] and the wave vectors
{q0} of the dominant magnetic correlations. In the zero-flux
state, both ±k0 and {q0} consist of the two inequivalent
wave vectors ±Q at the BZ corners. In the NSL state, for
our choice of ferromagnetic correlations in the horizontal
direction, ±k0 = (±π,0), and {q0} consists of a single vector
Q, in the middle of the horizontal BZ edge.

To investigate magnetic order, we consider the dominant
contribution to 〈Ŝ0 · Ŝi〉,

1

N

∑
q∈{q0}

S(q) eiqri = Nq0S(Q)

N
cos(Q · ri), (21)

where Nq0 is the number of vectors in {q0}. This motivates the
definition of a sublattice magnetization parameter

m2(N ) ≡ Nq0S(Q)

N
� 3

2

(
γ A

k0

Nωk0

)2

, (22)

where in the last expression S(Q) was approximated by the
biggest term(s) in (20) (in the zero-flux state, this comes from

the spinon minimum at −Q, while in the NSL state it includes
both spinon minima) [44]. Thus in the magnetically ordered
phase, characterized by m2(N ) approaching a nonzero value
in the thermodynamic limit, S(Q) diverges linearly with N ,
and the spinon dispersion minimum (spinon gap) ωk0 scales to
zero like 1/N .

III. RESULTS

We have solved the self-consistent equations (17) numer-
ically for finite lattices with N = L2 sites, with periodic
boundary conditions after L sites along the a1 and a2 directions
(defined in Fig. 3). We used L values in the range 12–60, further
restricted by requiring that the spinon dispersion minima
should lie on the numerical grid of k vectors (giving L divisible
by 6 and 4 in the zero-flux and NSL phases, respectively).
Such finite-N calculations can be used to determine the
lowest-energy phase in most of the (J2/J1,κ) parameter space.
As an example, Fig. 5 shows the ground-state energy for
L = 48 as a function of J2/J1 for various values of κ . For
each κ , the ground state is zero flux at small J2/J1 and NSL
at larger J2/J1, with the first-order transition point (J2/J1)c
increasing with decreasing κ .

In order to determine more precisely the boundary between
the two phases and the boundary between magnetic order
and disorder within a given phase, we have also considered
extrapolations of finite-N results to the thermodynamic limit.
By fitting m2(N ) in (22) [45] to the scaling form [46] m2(N ) =
m2

0 + a/L + b/L2 + c/L3, we determined the critical value
κc(J2/J1) for magnetic order from the estimated onset of a
positive value of the fitting parameter m2

0. We have done such
fits for lattices up to N = 3600. We have also used an alterna-
tive method in which κc is found as the intersection of plots of
ξa/L for different (large) L, where ξa is the correlation length
measure ξa = |q1|−1√S(Q)/S(Q + q1) − 1, with q1 being
the smallest nonzero wave vector along some chosen direction
[47]. To determine the ground-state energy in the magnetically
ordered phases in the thermodynamic limit, we used the scaling
form [46] E0(N ) = E0 + A/L3 + B/L4 + C/L5. In the
magnetically disordered phases below κc, where the spinon
gap ωk0 is finite, the energy was found to be so well converged
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FIG. 5. Ground-state energies of the zero-flux state (solid lines)
and the NSL state (dotted lines) for L = 48 and various values of κ .

for our largest L values that further extrapolations were not
needed.

The ground-state phase diagram resulting from the numer-
ical calculations is shown in Fig. 6. We now discuss some
aspects of this phase diagram.

The phase transition between the zero-flux and NSL phases
(solid line) moves to higher J2/J1 as κ is reduced, ending at
J2/J1 = 1/2 in the limit κ → 0. We have also calculated the
ground-state energies analytically using a small-κ expansion
[48] with terms up to and including O(κ3) (see Appendix B);
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FIG. 6. Zero-temperature phase diagram for the J1-J2 model.

as expected, the resulting transition (dashed line) is found to
agree with the numerical curve for small enough κ .

Within each of the two phases, a line κc(J2/J1) separates
regions of magnetic order (κ > κc) and disorder (κ < κc). The
two methods we have used for determining κc give lines that
track each other closely, but the line from the m2 method is
systematically slightly below that from the ξa method, with
the quantitative difference more noticeable in the NSL phase.
Our results for κc for the zero-flux phase should be compared
with Ref. [35], where magnetic order was analyzed using a
Bose-Einstein condensation (BEC) approach which involves
taking the limit N → ∞ from the outset. While the results
appear to agree in the limit J2/J1 → 0, the difference increases
with increasing J2/J1, with our κc lying higher. Differences in
the predicted onset of magnetic order between finite-N extrap-
olations and the BEC approach were also noted in Ref. [31].

We now turn to the question of the possibility of a spin-
liquid phase for a certain range of J2/J1 in the S = 1/2 model.
With the conventional identification κ = 2S in SBMFT this
corresponds to κ = 1, which has been considered in previous
SBMFT studies of this model [29,30]. In agreement with
these, we find for this case a direct transition at J2/J1 ≈ 0.16
between the 120◦ ordered phase and the collinearly ordered
phase. On the other hand, referring back to the arguments
outlined at the end of Sec. II C, it is of interest to also consider
smaller values of κ as possibly qualitatively relevant for the
S = 1/2 model. Figure 6 shows that for κ in a small window
around ≈0.6, a spin-liquid region of the zero-flux type exists
for a small range of J2/J1 values between the two ordered
phases. In this κ window there are thus two phase transitions
as J2/J1 is increased: a continuous phase transition between
the 120◦ ordered phase and the spin liquid, and a first-order
transition between the spin liquid and the collinearly ordered
phase. The qualitative picture of an intervening spin liquid
(without nematic order) between the ordered phases, as well as
the nature of the two phase transitions, is in agreement with the
findings of Refs. [9,21]. In the SBMFT this scenario arises be-
cause the line for κc(J2/J1) for the zero-flux state hits the zero-
flux/NSL transition line (solid black line in Fig. 6) at a higher
value of κ than the corresponding κc line for the NSL state.

To further illustrate the nature of the three phases in this
scenario, Fig. 7 shows S(q) for κ = 0.61 and three values
of J2/J1, corresponding to representative points within the
120◦ ordered phase, the zero-flux spin-liquid state, and the
collinearly ordered state. In the 120◦ ordered phase S(q)
has very sharp peaks at the Brillouin-zone corners. In the
spin-liquid state the peak locations are the same, but the
peaks are considerably lower and broader. In the collinearly
ordered state there are again sharp peaks, now located
at the midpoint of the horizontal Brillouin-zone boundary
edge. We note that our plot of S(q) in the spin-liquid
phase has the same peak structure as corresponding plots in
Refs. [9,21].

Below this κ window the sequence of phases changes. For
κ � 0.57, a region of NSL opens up between the zero-flux
and collinearly ordered states. As κ is reduced further, the
extent of the two ordered phases diminishes rapidly, with the
120◦ ordered phase disappearing for κ ≈ 0.42. For smaller κ

the transition to the collinearly ordered state continues to be
pushed to higher J2/J1 [49].
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FIG. 7. The static structure factor S(q) for κ = 0.61 and L = 48: Left: J2/J1 = 0, middle: J2/J1 = 0.18, right: J2/J1 = 0.3. The hexagon
is the first Brillouin zone of the triangular lattice.

IV. DISCUSSION AND CONCLUSIONS

In this work we have studied the ground-state phase diagram
of the antiferromagnetic J1-J2 model on the triangular lattice
using SBMFT, treating κ = 2S as a continuous parameter.
Motivated by previous numerical and analytical works relevant
for the S = 1/2 case, we have focused our attention on two
spin-liquid Ansätze, the zero-flux state [35] and a nematic
spin liquid, which upon spinon condensation give rise to,
respectively, the two magnetically ordered states known to
exist in the S = 1/2 model, namely, the 120◦ ordered state
at small J2/J1 and a collinear stripe-ordered state at larger
J2/J1. The need for a nematic spin-liquid Ansatz is due to the
fact that no symmetric spin-liquid Ansatz giving rise to the
collinear stripe order has been identified in PSG analyses.

The choice κ = 1 is the standard one for describing the
S = 1/2 model, and for this case we find, in agreement
with previous SBMFT studies, a direct, first-order transition
between the two ordered states. We have also explored the
phase diagram for κ < 1, motivated by arguments that in
the Schwinger-boson mean-field theory a smaller value of
κ may be more appropriate for qualitatively describing the
physics of the exact model. As κ is reduced from 1, the first
qualitative change in the sequence of states (as a function of
J2/J1 for fixed κ) occurs for κ around 0.6, where in a small
κ window a spin-liquid region opens up between the two
ordered states. This spin liquid is the zero-flux state. This has
several consequences: (i) the static structure factor S(q) of the
spin liquid has the same peak locations as in the 120◦ ordered
state, (ii) the spin-liquid region does not have nematic order,
(iii) the transition to the 120◦ ordered state is continuous,
and (iv) the transition to the collinear stripe state is first
order. We note that these consequences agree with the VMC
results of Refs. [9,21]. On the other hand, these works found
gapless spin liquids, while our spin liquid is of the gapped Z2

type [35].
While a κ value as small as 0.73 for S = 1/2 can be

argued from the requirement that 〈S2
i 〉 take its correct value

S(S + 1), κ values as low as 0.6 are a priori harder to justify.
Also, the particular sequence of states exists only in a small-κ
window, thus requiring a significant amount of “fine tuning.”
To justify our consideration of κ values around 0.6, we first
note that Ref. [20] calculated one-loop corrections to SBMFT
for κ = 1 and found a magnetically disordered state appearing

between the two ordered states. It seems reasonable to guess
that this disordered state is the zero-flux spin-liquid found here.
If so, it would seem to suggest that the behavior seen in SBMFT
for κ ∼ 0.6 is “shifted” to κ ∼ 1 in more accurate calculations
that go beyond mean-field theory. In fact, a similar conclusion
was suggested in an SBMFT study of a different model
[31], namely, a NN Heisenberg antiferromagnet perturbed
by Dzyaloshinskii-Moriya interactions on the kagome lattice,
for which it was found that the SBMFT phase diagram
for κ ∼ 0.4 qualitatively resembled exact diagonalization
results for the S = 1/2 model [50]. We speculate that this
might be a quite generic feature of SBMFT: The mean-field
theory underestimates quantum fluctuations, something which
to some extent can be qualitatively compensated for by
considering smaller κ values, thus giving results that are closer
to those of more accurate methods.

We conclude by mentioning some issues that we hope can
be resolved in future work.

As our study based on finite-N calculations and the BEC
approach used in Ref. [35] give somewhat different predictions
for the boundary κc(J2/J1) between magnetic order and
disorder in the zero-flux part of the phase diagram (a difference
which increases with increasing J2), there is some uncertainty
concerning the correct location of such boundaries. We note
that a similar comparison for the NSL part of the phase diagram
is unavailable as Ref. [35] did not consider this state.

Finally, the possible connection between the NSL state
studied here in the bosonic formulation and the nematic spin
liquids discussed by Lu [37] in the fermionic formulation is
not clear to us; it would be interesting to understand this better.
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APPENDIX A: STATIC STRUCTURE FACTOR

We will here briefly sketch the derivation of the static
structure factor, which is the Fourier transform of the spin-spin
correlation function. Using the spin rotation symmetry of the
Heisenberg model and the fact that we work with finite systems
so this symmetry is not broken in the ground state, it follows

165141-7



DAG-VIDAR BAUER AND J. O. FJÆRESTAD PHYSICAL REVIEW B 96, 165141 (2017)

that we can express the spin-spin correlation function as

〈Ŝ0 · Ŝi〉 = 3
〈
Ŝz

0Ŝ
z
i

〉
= 3

4 〈(b̂†0↑b̂0↑ − b̂
†
0↓b̂0↓)(b̂†i↑b̂i↑ − b̂

†
i↓b̂i↓)〉. (A1)

As before, we can introduce Fourier-transformed operators to
write

Ŝz
0Ŝ

z
i = 1

4N2

∑
k,k′,q,q′

ei(q′−q)·ri [b̂†k↑b̂k′↑b̂
†
q↑b̂q′↑+b̂

†
k↓b̂k′↓b̂

†
q↓b̂q′↓

− b̂
†
k↑b̂k′↑b̂

†
q↓b̂q′↓ − b̂

†
k↓b̂k′↓b̂

†
q↑b̂q′↑]. (A2)

The expectation values are evaluated by transforming to the ba-
sis that diagonalizes the Hamiltonian and using β̂kσ |�GS〉 = 0.
For example, the first term in (A2) becomes

〈b̂†k↑b̂k′↑b̂
†
q↑b̂q′↑〉

= δkq′δk′q sinh θk cosh θ ′
k cosh θq sinh θq′

+ δkk′δqq′ sinh θk sinh θk′ sinh θq sinh θq′ . (A3)

Combining all four terms, after some algebra we get

〈Ŝ0 · Ŝi〉 = 3

2N2

∑
kq

ei(k−q)·ri [(cosh 2θk − 1)(cosh 2θq + 1)

− sinh 2θk sinh 2θq]. (A4)

Invoking condition (12), we finally obtain

〈Ŝ0 · Ŝi〉 = 3

8N2

∑
k,q

ei(k−q)·ri F (k,q), (A5)

where

F (k,q) =
(
γ B

k + λ
)(

γ B
q + λ

) − γ A
k γ A

q

ωkωq
− 1. (A6)

This gives the static structure factor

S(q) =
∑

i

〈Ŝ0 · Ŝi〉 e−iq·ri = 3

8N

∑
k

F (k,k − q). (A7)

We also note that by setting i = 0 in (A5) and using (17c)
and the antisymmetry of γ A

k , the result 〈Ŝi · Ŝi〉 = 3
8κ(κ + 2)

follows.

APPENDIX B: SMALL-κ ANALYSIS

For small values of the parameter κ , the mean-field
equations can be solved by series expansion [48]. We
incorporate the various symmetries of the Ansätze directly
into the analysis, writing

Aδi
= z

Ai

δ sgn(Aδ1 )Ai , (B1a)

Bδi
= z

Bi

δ Bi , (B1b)

where z
Ai /Bi

δ = 0 or 1, depending on whether the mean-field
parameter vanishes or not. The sgn(Aδi

) takes care of the
sign structure of the Ansätze, as discussed in Sec. II B and
summarized in Table I. The mean-field equations (17) can

now be rescaled as

zAi
λ

∼
Ai = 1

N

∑
k

∼
γ

A

k
∼
ωk

�
Ai

k , (B2a)

zBi
λ

∼
Bi = 1

N

∑
k

∼
γ

B

k + 1
∼
ωk

�
Bi

k , (B2b)

1 + κ = 1

N

∑
k

∼
γ

A

k + 1
∼
ωk

, (B2c)

where zAi /Bi
= ∑

δ(zAi /Bi

δ )2. In the equations above, Õ≡O/λ

for O = Ai ,Bi ,ωk,γ
A
k ,γ B

k . We have also introduced the
Ansatz-dependent factors

�
Ai

k = 1

2

∑
δi

z
Ai

δi
sgn(Aδi

) sin(k · δi), (B3a)

�
Bi

k = 1

2

∑
δi

z
Bi

δi
cos(k · δi). (B3b)

The dispersion relation motivates us to expand the mean-field
parameters and λ in power series as follows:

∼
Ai = √

κ
∑

n

ainκ
n, (B4a)

∼
Bi = κ

∑
n

binκ
n, (B4b)

λ =
∑

n

λnκ
n. (B4c)

We wish to use the small-κ expansion to write the ground-state
energy as

E0

J1N
=

∑
n

enκ
n. (B5)

This should be compared with

E0

J1N
= 1

2

2∑
i=1

∑
δi

Ji

J1

(
B2

δi
− A2

δi

)
(B6)

= 1

2
λ2

∑
i

Ji

J1

(
zBi

B̃2
i − zAi

Ã2
i

)
. (B7)

This gives the following expansion coefficients for the energy:

e0 = 0, (B8)

e1 = − 1
2λ2

0

(
zA1a

2
10 + jzA2a

2
20

)
, (B9)

e2 = 1
2λ2

0

(
zB1b

2
10 + jzB2b

2
20

) − λ0λ1
(
zA1a

2
10 + jzA2a

2
20

)
− λ2

0(zA1a10a11 + jzA2a20a21), (B10)

e3 = 1
2λ2

0

{[
2zB1b10b11 − zA1

(
2a10a12 + a2

11

)]
+ j

[
2zB2b20b21 − zA2

(
2a20a22 + a2

21

)]}
+ λ0λ1

[(
zB1b

2
10 − 2zA1a10a11

)
+ j

(
zB2b

2
20 − 2zA2a20a21

)]
− 1

2

(
2λ0λ2 + λ2

1

)(
zA1a

2
10 + jzA2a

2
20

)
, (B11)
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TABLE II. Coefficients needed for the small-κ expansion calculation of the ground-state energy for the zero-flux and NSL state, up to and
including O(κ3) terms. An asterisk (*) indicates either that the coefficient does not appear at this order or appears in combination with a factor
that vanishes, thus giving no contribution. See text for further details.

i λi a1i a2i b1i b2i

Zero flux
0 1

4
2√
3

0 2
3

2
3

1 1
24 (11 − 4j )

√
3

36 (−29 + 16j ) ∗ −(
17
18 − 8

3 j
) −(

11
2 + 8

9 j
)

2
(

21935
13824 + 227

96 j + 19
108 j 2

) √
3 4993+15840j+2176j2

1728 ∗ ∗ ∗
NSL

0 1
4

√
2 0 1 1

1 1
8

(
7
2 − j

)
1√
2

(− 19
8 + j

)
2
√

2
1−j

−13+49j−4j2

8(1−j ) −(
5
8 + 1

2 j
)

2 27−33j+78j2−24j3

128(1−j )

√
2 −639+1422j+673j2−752j3+320j4

256(1−j )2 ∗ ∗ ∗

where j = J2/J1 has been introduced. We now expand the mean-field equations (B2a)–(B2c) into power series and determine
the coefficients ain,bin, and λn recursively. To lowest order, only λ0,a10, and a20 are needed. To obtain the terms up to and
including O(κ2),λ1,b10,b20, and a11 are required. Further including the O(κ3) terms, we additionally need λ2,b11,b21,a21, and
a12. The values of the coefficients are given in Table II. For the zero-flux phase, the energy per site is found to be

E0-flux
0

NJ1
= − 3

12
κ − 3

36

(
11

4
− j

)
κ2 +

(
− 3

32
+ 19

72
j − 1

6
j 2

)
κ3 + O(κ4), (B12)

while for the NSL phase we obtain

ENSL
0

NJ1
= − 3

12
κ − 3

36

(
21

8
− 3

4
j

)
κ2 − 9 − 25j + 26j 2 − 8j 3

128(1 − j )
κ3 + O(κ4). (B13)

Thus the energy difference is

ENSL
0 − E0-flux

0

NJ1
=

(
3

8
− 3

4
j

)(
κ

6

)2

+
(−27 + 187j − 262j 2 + 120j 3

32

)(
κ

6

)3

. (B14)

The phase transition line ENSL
0 = E0-flux

0 is plotted from this expression as a dashed line in Fig. 6. One sees that it agrees with
our numerical results for small enough κ , approaching j = 1/2 in the limit κ → 0.
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