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Corrections to the self-consistent Born approximation for Weyl fermions
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The average density of states of two- and three-dimensional Weyl fermions is studied in the self-consistent
Born approximation (SCBA) and its corrections. The latter have been organized in terms of a 1/N expansion.
It turns out that an expansion in terms of the disorder strength is not applicable, as previously mentioned by
other authors. Nevertheless, the 1/N expansion provides a justification of the SCBA as the large N limit of Weyl
fermions.
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I. INTRODUCTION

A very common and straightforward approach to the
average one-particle Green’s function of a disordered sys-
tem of noninteracting electrons is the self-consistent Born
approximation (SCBA). Numerous applications of SCBA-
based techniques to low–dimensional systems of disordered
electrons provided an excellent confirmation for a number
of experimental observations [1–5]. However, the claim of
a “failure of the SCBA” for two-dimensional (2D) Dirac
particles by Aleiner and Efetov [6] has questioned whether
this approach is applicable at all to two-band systems with
spectral degeneracies in general. These authors argued that the
self-energy diagrams of order g2 in disorder strength dominate
over the local density of states (DOS) predicted by the SCBA.
Another approach to the average DOS, based on a bosonization
concept, predicts that the DOS obeys a power law at the node
with a disorder-dependent exponent [7], which also contradicts
the nonvanishing DOS of the SCBA.

The SCBA and the power-law prediction for the average
DOS were checked recently in numerical studies as well as
by a functional renormalization group approach by Sbierski
et al., who found that there is no power law, and that the
SCBA is only missing a factor of two in the logarithm of the
DOS (i.e., the square root of SCBA must be taken) [9] in
2D. Moreover, in 3D, the critical disorder strength is twice
as large for the SCBA, although the slope of the DOS agrees
quite well [8,9]. These missing factors of two suggest that the
corrections to the SCBA are of the same order as the SCBA
itself. The renewed interest in the behavior of the average
DOS of Weyl systems [8–12] suggests a clarification of the
role of the traditional SCBA approach, which is based on a
commonly accepted mean-field type of approximation. Since
the SCBA is equivalent to a saddle-point approximation of
a functional integral, these corrections are easily accessible
from the fluctuations around the saddle point. The aim of the
present paper is to analyze corrections to the SCBA for 2D and
3D disordered Weyl fermions in a systematic 1/N expansion
[13–17].

II. THE MODEL

A generalization of the Weyl Hamiltonian to the one with
N orbitals per site reads [18–20]:

H = 1N ⊗ i /∂ + v ⊗ σν, (1)

where the Dirac contraction notation is /∂ = σ1∂1 + σ2∂2 in 2D
and /∂ = σ1∂1 + σ2∂2 + σ3∂3 in 3D, respectively. In contrast
to the 2D case, in 3D there is no Pauli matrix left, which
anticommutes with the Dirac operator. The Pauli matrix σν

is either σ0 (i.e., the 2 × 2 unit matrix) for a random scalar
potential, or σ3 for a random Dirac mass in 2D, and only
σ0 for a random scalar potential in 3D. Different physical
realizations of Weyl electrons reveal different values of N ,
e.g., N = 2 for graphene, N = 4 for π -flux model in 2D, and
N = 8 for π -flux model in 3D [10,11]. The random potential v
represents a symmetric N × N -matrix (vij

r )i,j=1,...,N with zero
mean 〈vij

r 〉 = 0 and with the correlator〈
vij

r vkl
r ′
〉 = g

N
δilδjkδ(r − r ′). (2)

We use the convention h̄vF = 1, where vF denotes the Fermi
velocity.

The DOS is the imaginary part of the diagonal element
of the retarded Green’s function G(iε) = [1N ⊗ G−1

0 + v ⊗
σν]−1 (ε > 0), where G0 = [iεσ0 + i /∂]−1 is the one-particle
Green’s function of the electron in a clean system:

�(ε) = − 1

π
ImTr2NGrr (iε). (3)

The operator Tr2N denotes the trace with respect to the space
of Pauli matrices and the N orbitals. The Green’s function can
be written as a functional integral:

Gii
rr = −i

∫
Dψ†DψDϕ†Dϕψi

rψ
i†
r eiSF +iSB , (4)

with the actions

SB = ϕ† · [1N ⊗ G−1
0 + v ⊗ σν

]
ϕ (5)

and

SF = ψ† · [1N ⊗ G−1
0 + v ⊗ σν

]
ψ. (6)

Here, ϕ represents a 2N -component complex field and ψ a
2N -component Grassmann field. Since ε > 0, the convergence
of the complex functional integral is guaranteed. The advan-
tage of using complex and Grassmann fields is that the integral

∫
Dψ†DψDϕ†DϕeiSF +iSB = 1 (7)

is already normalized, whereas using only the complex or
only the Grassmann part requires an extra normalization. This
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would create problems for the calculation of the average with
respect to disorder.

Arranging bosonic and fermionic fields to a vector super-
field � = (ϕ,ψ)T we can easily perform the disorder averaging
(cf. Appendix A), and decouple by means of the matrix
superfield Q̂. This has the matrix structure

Q̂r =
(

Qr χr

χ̄r iPr

)
, (8)

with Qr,Pr representing 2 × 2 matrices with commuting
and χr,χ̄r with anticommuting matrix elements. The average
Green’s function then becomes

N∑
i=1

〈
Gii

rr (iε)
〉 = −i

N

g
σν

∫
DQ̂Pre

−NS[Q̂], (9)

with the effective action

S[Q̂] = trg

{
1

2g
Q̂2 + log

[
σ0 ⊗ G−1

0 + Q̂ν

]}
, (10)

where ν = σ0 ⊗ σν , and trg is the graded trace. Since the
effective action does not depend on N , the integral in Eq. (9)
suggests a saddle-point approximation for large N and a 1/N-
expansion. This will be discussed subsequently.

The scattering rate η is related to the nontrivial saddle point
of S[Q̂], which is a solution of the saddle-point equation
δS = 0. Thus, the field can be written as Q̂ = Q̂0 + Q̂′ with
the saddle point

Q̂0 = iην. (11)

For convenience, we rename the integration field Q̂′ → Q̂. In
terms of the Green’s function we get

N∑
i=1

〈
Gii

rr

〉 = −iN
η

g
σ0 +

N∑
i=1

δGii
rr , (12)

where the first term represents the uniform saddle-point
contribution through the scattering rate and the second term
represents the correction due to quantum fluctuations around
the saddle point

N∑
i=1

δGii
rr = −i

N

g
σν

∫
DQ̂rPre

−NS[Q̂], (13)

with the shifted action

S[Q̂] = trg

{
1

2g
(Q̂ + iην)2 + log[Ḡ−1 + Q̂ν]

}
. (14)

The inverse average Green’s function reads Ḡ−1 = σ0 ⊗
[izσ0 + i /∂], z = ε + η. From Eqs. (3) and (12) the saddle-
point approximation of the DOS becomes

�SCBA = 2N

π

η

g
, (15)

regardless of the model dimension d. The behavior of the
scattering rate η does, however, crucially depend on d.

III. SADDLE-POINT ANALYSIS AND FLUCTUATIONS

To obtain the effective action in the limit of slowly varying
quantum fields, we expand Eq. (14) in powers of fluctuations

Q̂ around the saddle point. The small expansion parameter
is 1/N , since only the prefactor of the action depends on
N in Eq. (13). Therefore, we can employ a saddle-point
approximation, which leads to the saddle-point condition:

η = g

∫
ddq

(2π )d
η

η2 + q2
. (16)

Solutions of this equation are described in the literature
[1,2,21,22]. While in 2D, they predict an exponentially small
but nonvanishing scattering rate for any value of the disorder
strength g,

η2d ∼ �e−2π/g. (17)

In 3D, the nonvanishing scattering rate emerges only if the
disorder strength becomes larger than a critical value,

gc ∼ 2π2

�
, (18)

where � represents a UV-cutoff of the order of inverse lattice
constant, giving for small values of g:

η3d ∼ g

(
2π

gc

)2

θ (g − gc). (19)

The expansion of the logarithm around this nontrivial vacuum
reads

S[Q̂] = trg

{
1

2g
Q̂2 − 1

2
[ḠQ̂ν]2 −

∑
n≥3

(−1)n

n
[ḠQ̂ν]n

}
.

(20)

The third term represents a perturbation to the scattering
rate beyond the Gaussian approximation. Because of the
structure of the matrix Ḡ, all sectors of our theory, bosonic
and fermionic, have the same propagators; i.e., there is no
supersymmetry breaking. In Gaussian order of Pr , we get

SG[P ] = tr

{
1

2g
P 2 − 1

2
ḠPσνḠPσν

}
, (21)

with the Hermitean matrix field P , which can be represented
as

P =
(

P0 + P3 P1 − iP2

P1 + iP2 P0 − P3

)
= Pασα (22)

with real Pα . The summation convention is used in Eq. (21) for
α = 0,1,2,3, and σα denote the Pauli matrices. This enables
us to perform the trace in the first term immediately:

tr
1

2g
P 2 = 1

g
P · P = 1

g

∫
ddq

(2π )d
Pq · P−q, (23)

where the vector P is assembled from elements of the matrix
Pα . Second term reads after transforming it into Fourier
representation

1

2
trḠPσνḠPσν =

∫
ddq

(2π )d
P α

q P
β
−q�

(ν)
2|αβ(q), (24)

where ν = 0 denotes the random scalar potential and ν = 3 a
random gap. The explicit expression and evaluation of the two-
point vertex function �

(ν)
2 are given in Appendix B. It turns out

that the inverse effective propagators do not have zero modes.
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This reflects the absence of a broken continuous symmetry.
For vanishing momenta and frequencies, the effective action
becomes

SG[Q̂] = M(ν)
aa

∫
ddr

[
Qa

r Q
a
r + 2χa

r χ̄a
r + P a

r P a
r

]
. (25)

In 2D, the solution η = 0 of Eq. (16) is always unstable (cf.
Appendix B), and for η > 0 the mass matrices are

M(0)
2D ∼

⎛
⎜⎜⎜⎜⎝

c�

2π
0 0 0

0 1
g

+ c�

2π
0 0

0 0 1
g

+ c�

2π
0

0 0 0 2
g

⎞
⎟⎟⎟⎟⎠, c� = �2

η2 + �2

(26)

for a random scalar and

M(3)
2d ∼

⎛
⎜⎜⎜⎜⎝

2
g

0 0 0

0 1
g

− c�

4π
0 0

0 0 1
g

− c�

4π
0

0 0 0 c�

2π

⎞
⎟⎟⎟⎟⎠ (27)

for a random gap. In the 3D case, the mass matrix for the
random potential reads

M(0)
3D ∼

⎛
⎜⎜⎜⎝

η

4π
0 0 0

0 λ 0 0

0 0 λ 0

0 0 0 λ

⎞
⎟⎟⎟⎠, (28)

with the matrix element λ given in Appendix B, Eq. (B6).

A. Corrections to the DOS: Weak disorder

The calculation of the DOS corrections can be organized in
terms of a 1/N expansion, which is obtained by rescaling the
field Q̂ with

√
N . This absorbs the prefactor N in the exponent

of Eq. (13) into the quadratic order of the expansion in Eq. (20)
and produces powers of 1/

√
N for higher order terms. A

further simplification comes from the assumption of weak
disorder; i.e., g 
 �2. In this case, only the smallest diagonal
element of the mass matrices in Eqs. (26)–(28) dominates
the Gaussian fluctuations. Taking the momentum dependence
to leading order in a gradient expansion into account, the
corresponding excitation mode becomes

�(ν)
νν (q) ∼ 12π

g

η4−d

q2 + m2
d

, (29)

where the masses are m2
2 = 12η2 in 2D and m2

3 = 6η2 in 3D
(cf. Appendix B). Since the supersymmetry remains unbroken,
the correlation function of the Grassmann field χ̄χ and the
Hermitean field Q are given by the same expression. In position
space, the correlator Eq. (29) decays exponentially (in 2D it
is proportional to the modified Bessel function of second kind
K0[m2|r − r ′|], in 3D to exp[−m3|r − r ′|]/|r − r ′|) and can
be crudely approximated by the Dirac delta function

�(ν)
νν (r,r ′) ∼ δ(r − r ′). (30)

+

FIG. 1. Leading corrections of the DOS to the SCBA in the 1/N

expansion.

Then, the first nonvanishing correction to the average one-
particle Green’s function (cf. Fig. 1) is of the order 1/N2 and
reads

� = �SCBA + �SCBA

N2

(
2

3
− g

2π
− g3

4π3

)
+ O(N−2) (31)

in 2D and

� = �SCBA + �SCBA

N2

[
π2

2

(
1 − 5π

19

)
− gη

2π
− g2η2

8

]

+O(N−2) (32)

in 3D for the DOS of Eq. (3). Details of the 1/N expansion
are presented in Appendices C and D.

Our calculation identifies the “sunrise” (or maximally
crossed) diagrams as dominant. This gives corrections in each
order 1/N with a polynomial in g. In other words, for each
order 1/N there are g-independent contributions to DOS.
Since, however, an n-order correction goes proportionally to
N1−n, the series converges rapidly.

B. Corrections to the DOS: Strong disorder

In the regime of large g values, we can neglect the gradient
terms in the correlators. In 2D and for scalar disorder, the
correlator of the fields P0 then reads

〈P0rP0r ′ 〉 ∼ π

g
δ(r − r ′), (33)

which is needed in order for DOS to have a finite trace, while
that of Pi=1,2 reads

〈PirPir ′ 〉 ∼ π

2π + gc�

δ(r − r ′), (34)

which is negligible in comparison to the correlator of the
fields P3:

〈P3rP3r ′ 〉 ∼ 1
4δ(r − r ′). (35)

For the case of the random mass disorder, the situation is
analogous, with the interchanging role of the fields P0 and
P3. The dominant contribution comes from the diagrams with
the loops which couple to the external field via P0 channel
and internal coupling of P3 fields. In Appendix E we obtain
for 2D,

� = �SCBA + �SCBA

(4N )2

(
3

2
− 2π

g

)
+ O(N−2), (36)
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i.e., the correction is positive. In 3D, the correlator of P0 in
strong disorder limit reads

〈P0rP0r ′ 〉 ∼ 2π

gη
δ(r − r ′), (37)

while that of Pi=1,2,3 is

〈PirPir ′ 〉 ∼ 1

g�
δ(r − r ′), (38)

cf. Eq. (B6), and since � � η, they are parametrically smaller
and can be neglected in crudest approximation. We get

� = �SCBA − �SCBA

N2

[
π3

gη
+ (2π )2

g2η2
− (2π )5

8g3η3

(
1 − 5π

19

)]

+O(N−2), (39)

i.e. the corrections are negative for large g.

IV. DISCUSSION

Our analysis of the perturbative expansion for the average
DOS in terms of disorder strength g clearly indicates that this
expansion cannot be organized in a systematic way in powers
of g. This result seems to support the claim of Aleiner and
Efetov [6] of a “failure of the SCBA”. However, using N copies
of Weyl fermions, as described by the model in Eqs. (1) and
(2), provides a systematic 1/N expansion, which reveals that
the SCBA has only corrections of order 1/N . Moreover, the
corrections up to order 1/N in Eqs. (31), (32), (36), and (39)
give an enhancement of the DOS in comparison to the SCBA,
in agreement with the numerical results found by Sbirski et al.
[8,9], who got a doubling of the SCBA values in 2D [9]. The
1/N expansion suggests that this doubling is specific for a
single-component Weyl fermion. For models with larger N ,
e.g., for different versions of the π -flux model [10,11], the
DOS corrections to the SCBA become virtually negligible and
the SCBA is exact in the limit N → ∞. Finally, we don’t find
a shift of the critical disorder strength gc in the 1/N expansion
for the appearance of a nonzero DOS in 3D Weyl fermions,
which was predicted in Refs. [8,9].

The behavior of the leading order correction as a function
of the disorder strength depends crucially on the spatial
dimension of the system. For instance, in zero dimension
(random matrix model) the saddle point condition reads
g = η2, which results in a g-independent DOS.

V. CONCLUSION

Our extended Weyl-fermion model with N orbitals per site
gives in the N → ∞ limit for the average DOS the SCBA
result and a systematic 1/N expansion for the corrections to
the SCBA at finite N . Each term in the 1/N expansion depends
on the disorder parameter g, which can be expanded for weak
disorder as a power series of g or for strong disorder as a
power series of 1/g. This result demonstrates the reliability
of the SCBA and the existence of a systematic expansion for
disordered Weyl fermions at the node.
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APPENDIX A: HUBBARD-STRATONOVICH
TRANSFORMATION

The graded trace of a matrix

M =
(

A B

C D

)
, (A1)

with quadratic matrices A,B,C,D reads

TrgM = Tr[A − D]. (A2)

The graded determinant of the matrix M reads

detgM = det A

det D
det[1 − BD−1CA−1]. (A3)

The ensemble average of the Green’s function reads

〈Grr〉 = N−1
∫ ∞

−∞
dvP(v)Grr, (A4)

N =
∫ ∞

−∞
dvP(v), P(v) = e

− N
2g

trv2

, (A5)

where the integrals are the functional ones. Consider the
combination of v-dependent terms in the exponent of the
integral:

N

2g
trv2 − i�† · [12 ⊗ v ⊗ σν]�

= N

2g
v2

ab − ivab[ϕ†
aσνϕb + ψ†

aσνψb]

= N

2g
v2

ab − ivab�
†
aν�b,

where ν = σ0 ⊗ σν . Here, the summation convention is
understood. The integration over vab can be performed after
completing the square and shifting the potential matrix
elements as

vab → vab − i
g

N
�†

aν�b. (A6)

What remains is the interaction term

− g

2N
trg
(
ν�a�

†
aν�b�

†
b

)
, (A7)

which gives the full action

S̄BF [�†,�] = i�† · 1N ⊗ G−1
0 � − g

2N
trg[ν�a�

†
a]2.

(A8)

The interaction term is then decoupled by means of a Hubbard-
Stratonovich transformation:

S̄BF [Q,�†,�]

= N

2g
trg

[
Q̂ − i

g

N
ν�a�

†
a

]2

− i�† · 1N ⊗ G−1
0 �

+ g

2N
trg[ν�a�

†
a]2, (A9)
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where we shifted the matrix field Q̂ exploiting the “trans-
lational invariance” of the corresponding functional integral
measure. The element ∼(ν�a�

†
a)2 vanishes, but the form of

Eq. (A9) is useful in order to recognize the structure of the
integrand. For every copy it can be expressed in terms of the
matrix field Q̂ as follows:

ψrψ
†
r = i

1

g
σν

[
iP − i

g

N
σν�2a�

†
2a − iP

]
r

. (A10)

Inserting this expression into the functional integral, we notice
that the integration over the term P − (g/N)σν�2a�

†
2a can be

performed independently and in the position space, since the
term with Q̂ − i(g/N)ν�a�

†
a does not possess any gradients

and therefore is already diagonal. The contribution from this
term is zero. Then combining Eq. (A9) and Eq. (A10) we get

〈
Gii

rr

〉 = − i

g
σν

∫
DQ̂Pr

∫
D�†D�e−S̄BF [Q̂,�†,�], (A11)

at which point the integration over vector fields can be carried
out. Rising the graded determinant into the exponent we
acquire the log term in Eq. (9).

APPENDIX B: EFFECTIVE PROPAGATORS
AND CORRELATION FUNCTIONS

Below, we always send the UV-cutoff of radial integrals
to infinity if the dimensional analysis points out their con-
vergence. In the infrared, the divergences are cut off by the
scattering rate η. The two-point vertex functions which appear
in Eq. (24) read

�
(ν)
2|αβ(q) = 1

2
Tr
∫

ddp

(2π )d
[−iz + /p]σασν[−iz + /q + /p]σβσν

[z2 + p2][z2 + (p + q)2]
.

(B1)

To calculate the contributions to the mass we set ε = 0 and
p = 0. We first neglect all terms under the integral which are
not rotationally invariant:

�
(ν)
2|αβ = 1

2
Tr
∫

ddp

(2π )d
−η2σασνσβσν + p2

d
σi=1,...,dσα=0,...,3σνσiσβσν

[η2 + p2]2
, (B2)

where the factor 1/d in front of the second part appears
due to the angular average. Since the product of any two
or three Pauli matrices is a Pauli matrix again, the trace in
Eq. (B2) is nonzero only for α = β. Therefore, the inverse
propagator is diagonal in both 2D and 3D. Below we evaluate
Eq. (B2) for all combinations of external indices α,β and
use the following shorthand σiσν = ζσνσi for all i. In 2D
ζ = (−) + 1, if σν (anti)commutes with σi , in 3D ζ = +1.
The trace of the term proportional to η2 gives Trσασνσβσν =
2ζ δαβ . The second part has to be evaluated for different
index combinations separately. In 2D: 1) α = β = 1,2 is zero
because of the matrix product property σiσaσi = σa(σi=α −
σi =α)σi = 0, i is summed over; 2) α = β = 0: Tr[−η2σνσν +
p2/2σiσνσiσν] = 2(ζp2 − η2); 3) α = β = 3, i.e., σν com-
mutes with σ3 for both disorder types: Tr[−η2σ3σνσ3σν +
p2/2σiσ3σνσiσ3σν] = −2(η2 + ζp2). With the help of the
saddle-point condition Eq. (16), cf. Ref [21], the elements
of the mass matrix become

M(ν)
00 = 1

g
−
∫

d2p

(2π )2

−η2 + ζp2

[p2 + η2]2

=
{

�2

2π(η2+�2) , ν = 0, ζ = +1
2
g
, ν = 3, ζ = −1

, (B3)

M(ν)
αα=1,2 = 1

g
+
∫

d2p

(2π )2

ζη2

[p2 + η2]2
= 1

g
+ ζ

4π

=
{ 1

g
+ , ν = 0, ζ = +1

1
g

− �2

4π(η2+�2) , ν = 3, ζ = −1
, (B4)

M(ν)
33 = 1

g
−
∫

d2p

(2π )2

−η2 − ζp2

[p2 + η2]2

=
{ 2

g
, ν = 0, ζ = +1

�2

2π(η2+�2) , ν = 3, ζ = −1
. (B5)

In 3D, the evaluation differs technically in that respect, that
there is no Pauli matrix which anticommutes with the kinetic
energy operator −i /∂ . Second term is for 1) σα = 0, σβ =
0: Trσασiσβσi = −2δαβ ; 2) α = β = 0, Trσ0σiσ0σi = 6.
The vertex is a diagonal matrix �2|αβ(0) = δαβ�2|α(0), with
elements

�0(0) = −
∫

d3p

(2π )3

η2 − p2

[p2 + η2]2
, and

�i=1,2,3(0) = −1

3

∫
d3p

(2π )3

3η2 + p2

[η2 + p2]2
.

All elements of the mass matrix are then massive:

M0 = 1

g
− �0(0) = 2

∫
d3p

(2π )3

η2

[p2 + η2]2
= η

4π
,

Mi=1,2,3 = 1

g
+ 1

3

∫
d3p

(2π )3

3η2 + p2

[η2 + p2]2
= λ. (B6)

APPENDIX C: DETAILS OF THE PERTURBATIVE
CORRECTIONS TO THE DOS

Main corrections to the DOS are calculated as

δGii
rr ∼ −i

√
N

g
σν

∫
DQ̂e−SGP i

r (1 + Sp + · · · ), (C1)

where SG represents the full Gaussian action and

Sp = N
∑
n�3

(−1)n

n

(
g

N

) n
2

trg[ḠQ̂ν]n, (C2)

where the fields are again rescaled as Q̂ → √
g/NQ̂. It is

obvious from Eq. (C1) that only terms with an odd power
of fields P contribute to the DOS. To order g3 the relevant
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contributions are

Sp ∼ −N

3

(
g

N

) 3
2

trg[ḠQ̂ν]3 − N

5

(
g

N

) 5
2

trg[ḠQ̂ν]5.

(C3)

After performing the graded trace and retaining only contri-
butions with an odd number of field factors third order term
becomes:

−i
N

3

( g

N

) 3
2
tr{[ḠPσν]3 − 3ḠPσνḠχ̄σνḠχσν}, (C4)

and five-field term becomes

i
N

5

(
g

N

) 5
2

tr{[ḠPσν]5 − 5[ḠPσν]3Ḡχ̄σνḠχσν} (C5a)

+ iN

(
g

N

) 5
2

tr{ḠPσν(Ḡχ̄σν[ḠQσν]2Ḡχσν

+ [Ḡχ̄σνḠχσν]2)}. (C5b)

Here, the fermionic fields are normally ordered to guarantee
for the positive sign of contractions. The contribution from
Eq. (C4) reads:

δG(1)
rr = −g

3
σνσa

∑
r1,r2,r3

[〈
P a

r P α
r1
P β

r2
P γ

r3

〉
G

− 3
〈
P a

r P α
r1

〉
G

〈
χ̄β

r2
χγ

r3

〉
G

]
�

(ν)
3|αr1,βr2,γ r3

, (C6)

where the contraction brackets represent functional integration
over the Gaussian action. The third order virtual fermion loop
reads

�
(ν)
3|αr1,βr2,γ r3

= TrσασνḠr1r2
σβσνḠr2r3

σγ σνḠr3r1
, (C7)

and is invariant under cyclic index permutations. Because
of this cyclicity, all three pairwise contractions of fields P

contribute equally after index relabeling:〈
P a

r P α
r1
P β

r2
P γ

r3

〉
G

= 3
〈
P a

r P α
r1

〉
G

〈
P β

r2
P γ

r3

〉
G
, (C8)

and since bosonic and fermionic correlators are the same, this
DOS correction vanishes as a whole. Diagrammatically, this
equation is shown in Fig. 2. This result is nothing but the
manifestation of the linked-cluster theorem and has a very
simple meaning, namely it postulates the vanishing of the
leading order “rainbowlike” corrections, which are already
accounted in the saddle-point equation.

A similar line of reasoning reveals the mutual annihilation
of all rainbow- and “bulgelike” DOS corrections to order g2

3 3 __ 0_

FIG. 2. Compensation of the leading order corrections from
“rainbow” diagrams as explained in the main text. Wavy lines denote
contractions of bosonic fields P while straight lines denote the
contractions of Grassmann variables χ̄χ .

__ 05 + _ 5 _ 5_ 510

FIG. 3. Partial compensation of the second order “rainbow” and
“bulge” corrections arising from Eq. (C5a) as explained in the main
text.

encoded in Eq. (C5a) as depicted in Fig. 3. Five nonvanishing
pairwise contractions〈

P a
r P α

r1
P β

r2
P γ

r3
P ι

r4
P τ

r5

〉
G

= 5
〈
P a

r P α
r1

〉
G

〈
P β

r2
P ι

r4

〉
G

〈
P γ

r3
P τ

r5

〉
G

(C9)

generate the so-called sunrise diagrams shown in Fig. 1 on the
left. The factorization of the four-fermion term from Eq. (C5b)
is not unique and yields two contributions〈

P a
r P α

r1
χ̄β

r2
χγ

r3
χ̄ ι

r4
χτ

r5

〉
G

= 〈
P a

r P α
r1

〉
G

〈
χ̄β

r2
χγ

r3

〉
G

〈
χ̄ ι

r4
χτ

r5

〉
G

− 〈P a
r P α

r1

〉
G

〈
χ̄β

r2
χτ

r5

〉
G

〈
χ̄ ι

r4
χγ

r3

〉
G
,

(C10)

where the minus sign in front of the second term is due to
the odd number of Grassmannian permutations. Because of
the sublying supersymmetry, this negative term gets totally
annihilated by the term〈

P a
r P α

r1
χ̄β

r2
Qγ

r3
Qι

r4
χτ

r5

〉
G

= 〈
P a

r P α
r1

〉
G

〈
χ̄β

r2
χτ

r5

〉
G

〈
Qι

r4
Qγ

r3

〉
G
.

(C11)

This is shown diagrammatically in Fig. 4. Hence, the rainbow-
like contributions get annihilated to this order too. The positive
contraction from Eq. (C10) gives rise to the nonvanishing
correction to the DOS in form of a “bulge” diagram, shown
in Fig. 1 on the right. This is a rather remarkable unexpected
result, since, naively, diagrams of that type are considered to
be one particle reducible. This misapprehension roots in the
formal similarity of this diagrammatic approach to that of the
nonlocal self-energy of interacting systems which employs a
slightly different version of the linked-cluster theorem. The
nonvanishing terms to order g2 are

δG(2)
rr = g2

N
σνσa

∑
r1r2r3r4r5

�
(ν)
5|αr1,βr2,γ r3,ιr4,τ r5

× [〈P a
r P α

r1

〉
G

〈
P β

r2
P ι

r4

〉
G

〈
P γ

r3
P τ

r5

〉
G

+ 〈P a
r P α

r1

〉
G

〈
χ̄β

r2
χγ

r3

〉
G

〈
χ̄ ι

r4
χτ

r5

〉
G

]
, (C12)

__ 0_

FIG. 4. Partial compensation of the second order “rainbow”
corrections arising from Eq. (C5b) as explained in the main text. The
dashed wavy line denotes the contraction of the fields Q. Together
with Fig. 4, the total annihilation of the “rainbow” corrections, already
included in the saddle-point equation is insured.
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with the fifth order virtual fermion loop

�
(ν)
5|αr1,βr2,γ r3,ιr4,τ r5

= TrσασνḠr1r2
σβσνḠr2r3

σγ σνḠr3r4
σισνḠr4r5

στσνḠr5r1
.

(C13)

In ultraweak limit, the correlators are replaced by delta func-
tions. The detailed evaluation of this correction in ultraweak
disorder limit is given in Appendix D.

APPENDIX D: EVALUATION OF THE PERTURBATIVE
CORRECTIONS: WEAK DISORDER LIMIT

In ultraweak disorder limit, the correction to the Green’s
function which arise from diagrams depicted in Fig. 1 read

δG(2)
rr ∼ g2

N
σ0Tr

∑
r1,r2

[
Ḡrr1

Ḡr1r1
Ḡr1r2

Ḡr2r2
Ḡr2r

+ Ḡrr1
Ḡr1r2

Ḡr2r1
Ḡr1r2

Ḡr2r

]
. (D1)

First term is harmless: each of the two bulges can be expressed
using the saddle-point condition as Ḡrr = −iη/g, while the
remaining loop converges in both dimensions.

D1 = Tr
∑
r1,r2

Ḡrr1
Ḡr1r1

Ḡr1r2
Ḡr2r2

Ḡr2r

= −η2

g2
Tr
∫

ddq

(2π )d
Ḡ3(q)

= 2i
η3

g2

∫
ddq

(2π )d
3q2 − η3

[q2 + η2]3
, (D2)

which leads to

D1 = i

2π

ηd−1

g2
. (D3)

To the contrary, the evaluation of the first contribution is
technically more demanding. Transforming the loop into the
Fourier space we get

D2 = Tr
∑
r1,r2

Ḡrr1
Ḡr1r2

Ḡr2r1
Ḡr1r2

Ḡr2r

= Tr
∫

ddpddq

(2π )2D
Ḡ(q + p)Ḡ(q)

×
∫

ddk

(2π )d
Ḡ(k − p)Ḡ(k)Ḡ(k). (D4)

Integrals over q and k can be carried out separately using
Feynman representation of the fraction product:

1

A1+nB
=
∫ 1

0
dx

(n + 1)(1 − x)n

[(1 − x)A + xB]2+n
. (D5)

The q integral reads

I1 =
∫

ddq

(2π )d
Ḡ(q + p)Ḡ(q)

=
∫ 1

0
dx

∫
ddq

(2π )d
[/q + /p − iη][/q − iη]

[x(q + p)2 + (1 − x)q2 + η2]2
. (D6)

By shifting qi → qi − xpi the denominator becomes rotation-
ally invariant, which enables us to drop all odd powers of qi in
the numerator, getting

I1 =
∫ 1

0
dx

∫
ddq

(2π )d
q2 − η2 − x(1 − x)p2 − iη/p(1 − 2x)

[q2 + η2 + x(1 − x)p2]2
.

(D7)

One recognizes that the term with 1 − 2x vanishes after
integration over x: Since 1 − 2x = d

dx
x(1 − x) and the

remaining expression depends only on x(1 − x) we get

∫ 1

0
dxf [x(1 − x)]

d

dx
[x(1 − x)]

=
∫ 1

0
dx

d

dx
F [x(1 − x)] = F [0] − F [0] = 0, (D8)

where F (x) is the indefinite integral of f (x). Since I1 is
symmetric under p → −p, we can omit all odd powers of
p in the integral over k. In 2D, the remaining integral I1 was
computed in Ref. [23]. Assuming a very large upper cutoff and
using the saddle-point condition we get:

I 2D
1 ∼ 1

g
− 1

2π

√
4 + t2

t2
atanh

√
t2

4 + t2

∣∣∣∣
t=p/η

. (D9)

The evaluation in 3D takes a few computational lines more:
Splitting the integrand in divergent and convergent parts

I 3d
1 =

∫ 1

0
dx

∫
d3q

(2π )3

[
1

q2 + η2 + x(1 − x)p2

− 2
η2 + x(1 − x)p2

[q2 + η2 + x(1 − x)p2]2

]
, (D10)

we can perform q integral in the convergent part. We continue
by adding and subtracting 1/g to the divergent part and using
the saddle point equation:

I 3d
1 = 1

g
− 1

4π

∫ 1

0
dx
√

η2 + x(1 − x)p2 + 1

2π2

∫ 1

0
dx

×
∫ ∞

0
dq

[
q2

q2 + η2 + x(1 − x)p2
− q2

q2 + η2

]
.

(D11)

The divergent contribution in the remaining q integral cancels,
hence the integral can be carried out using the residue theorem:

I 3d
1 = 1

g
+ η

4π
− η

2π

∫ 1

0
dx
√

1 + x(1 − x)t

∣∣∣∣
t=p/η

.

(D12)
The indefinite integral over x is known, putting the boundaries
and simplifying the expression we finally get

I 3d
1 ∼ 1

g
− η

8π

4 + t2

t
atan

(
t

2

)∣∣∣∣
t=p/η

. (D13)
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Second integral can be evaluated in a similar fashion: Using the Feynman parametrization we get

I2 =
∫

ddq

(2π )d
Ḡ(q − p)Ḡ(q)Ḡ(q) = 2

∫ 1

0
dx(1 − x)

∫
ddq

(2π )d
[/q − /p − iη][/q − iη][/q − iη]

[(1 − x)q2 + x(q − p)2 + η2]3
(D14)

= −2iη

∫ 1

0
dx(1 − x)

∫
ddq

(2π )d
3q2 − η2 − x(1 − x)p2

[q2 + η2 + x(1 − x)p2]3
. (D15)

Power counting indicates that the integral over q converges in both dimensions. The symmetrization of the denominator is
achieved by shifting qi → qi + xpi , when we dropped odd powers of q and p and regrouped x-dependent factors at p2 using
the fact that the integral operator

∫ 1
0 dx does not change under substitution x → 1 − x. This leads in 2D to

I 2D
2 = − i

2πη

∫ 1

0
dx

1 − x

1 + x(1 − x)t2

∣∣∣∣
t=p/η

= − i

πη

1√
t2(4 + t2)

atanh

√
t2

4 + t2

∣∣∣∣
t=p/η

. (D16)

In 3D we analogously get

I 3D
2 = − i

2π

∫ 1

0
dx

1 − x√
1 + x(1 − x)t2

∣∣∣∣
t=p/η

= − i

2πt
atan

(
t

2

)∣∣∣∣
t=p/η

. (D17)

Taking the trace over the Dirac space becomes trivial and gives a factor of two. In 2D, we obtain with Eqs. (D9) and (D16)

D2d
2 = −2i

η

π

∫
d2t

(2π )2

atanh
√

t2

t2+4

t
√

t2 + 4

⎡
⎣1

g
− 1

2π

√
t2 + 4

t2
atanh

√
t2

t2 + 4

⎤
⎦. (D18)

Extracting from the saddle-point Eq. (16) the fitting expression

1

2
log

[
1 + �2

η2

]
= f2d ≡ 2π

g
, (D19)

we obtain with high accuracy

− i
η

π2g

∫ �/η

0
dt

atanh
√

t2

t2+4√
t2 + 4

∼ −i
1

π2

η

g

f 2
2d

2
= −i2

η

g3
,

i
4η

(2π )3

∫ �/η

0
dt

1

t

⎡
⎣atanh

√
t2

t2 + 4

⎤
⎦

2

∼ i
4η

(2π )3

[
1

2
+ f 3

2d

3

]
= i

η

g

[
4

3g2
+ 2g

(2π )3

]
, (D20)

where in the second equality the saddle-point condition is used. Counting D2d
1 and D2d

2 together we finally get the correction to
the

δGii
rr ∼ −i

�SCBA

2N2

[
2

3
− g

2π
− g3

4π3

]
σ0, (D21)

and from here the DOS correction given in Eq. (31). In 3D, the remaining integral reads

D3d
2 = − iη3

gπ

∫
d3t

(2π )3

1

t
atan

(
t

2

)
+ iη4

8π2

∫
d3t

(2π )3

4 + t2

t2

[
atan

(
t

2

)]2

= − i

g

η3

2π3

∫ �/η

0
dttatan

(
t

2

)
+ iη4

(2π )4

∫ �/η

0
dt(4 + t2)

[
atan

(
t

2

)]2

. (D22)

From the saddle-point Eq. (16) we get the fitting polynomial

�

η
− atan

(
�

η

)
= f3d ≡ 2π2

gη
. (D23)

Fitting integrals in Eq. (D22) with different powers of the polynomial f3D, we obtain with excellent accuracy

I 3D
2 ∼ − i

g

η3

2π3

π

4
f 2

3D + iη4

(2π )4

(
π2f3D + 5π

19
f 3

3D

)
= −i

η

g

[
π2

2g2

(
1 − 5π

19

)
− η2

8

]
. (D24)
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Counting D3D
1 and D3D

2 together we eventually obtain

δGii
rr ∼ −i

�SCBA

2N2

[
π2

2

(
1 − 5π

19

)
− gη

2π
− g2η2

8

]
σ0, (D25)

which upon taking the trace over the Dirac space and the imaginary part yields the correction in Eq. (32).

APPENDIX E: EVALUATION OF THE PERTURBATIVE CORRECTIONS: STRONG DISORDER LIMIT

Here we get

δG(2)
rr ∼ πg

16N
σ0Tr

∑
r1,r2

[
Ḡrr1

σ3Ḡr1r1
σ3Ḡr1r2

σ3Ḡr2r2
σ3Ḡr2r

+ Ḡrr1
σ3Ḡr1r2

σ3Ḡr2r1
σ3Ḡr1r2

σ3Ḡr2r

]
. (E1)

The evaluation of the first contribution is entirely analogous to the weak disorder case, we get

D1 = πg

16N
Tr
∑
r1,r2

Ḡrr1
σ3Ḡr1r1

σ3Ḡr1r2
σ3Ḡr2r2

σ3Ḡr2r
= i

�SCBA

(8N )2
. (E2)

Second contribution reads

D2 = Tr
∫

d2pd2q

(2π )4
Ḡ(q)σ3Ḡ(q + p)σ3

∫
d2k

(2π )2
Ḡ(k + p)σ3Ḡ(k)Ḡ(k)σ3. (E3)

The presence of the σ3 matrix which anticommutes with the Dirac Hamiltonian changes the sign of the q integral:

∫
d2q

(2π )2
Ḡ(q)σ3Ḡ(q + p)σ3 = −

(
1

g
− 1

2π

t√
4 + t2

atanh

√
t2

4 + t2

)
+ i

/t

π

1

t
√

4 + t2
atanh

√
t2

4 + t2
, (E4)

where again t = p/η and /t = tiσi=1,2. Second integral becomes

∫
d2k

(2π )2
Ḡ(k + p)σ3Ḡ(k)Ḡ(k)σ3 = 2i − /t

2πη

(
1

4 + t2
− t

(4 + t2)3/2
atanh

√
t2

4 + t2

)
, (E5)

which eventually leads to

D2 = −i
�SCBA

2πN

∫ �/η

0
dt

(
t

4 + t2
− t2

(4 + t2)3/2
atanh

√
t2

4 + t2

)
= −i

�SCBA

2πN

[
2π

g
− 1

2

(
2π

g

)2]
. (E6)

The integrals can be evaluated analytically. Adding the contributions from all diagrams and extracting the DOS we finally get

� ∼ �SCBA + �SCBA

(4N )2

(
3

2
− 2π

g

)
. (E7)
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