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We generalize the twisted quantum double model of topological orders in two dimensions to the case with
boundaries by systematically constructing the boundary Hamiltonians. Given the bulk Hamiltonian defined by a
gauge group G and a 3-cocycle in the third cohomology group of G over U (1), a boundary Hamiltonian can be
defined by a subgroup K of G and a 2-cochain in the second cochain group of K over U (1). The consistency
between the bulk and boundary Hamiltonians is dictated by what we call the Frobenius condition that constrains
the 2-cochain given the 3-cocyle. We offer a closed-form formula computing the ground-state degeneracy of the
model on a cylinder in terms of the input data only, which can be naturally generalized to surfaces with more
boundaries. We also explicitly write down the ground-state wave function of the model on a disk also in terms of
the input data only.
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I. INTRODUCTION

Two-dimensional phases of matter with intrinsic topolog-
ical orders [1–15] have received significant and fast growing
attention because of their potential applications in supercon-
ductivity [16–18], quantum memory [19], and topological
quantum computation [5,20–22]. Promising candidates of
two-dimensional topological orders are, for example, chiral
spin liquids [2,23], Z2 spin liquids [24–26], Abelian quantum
Hall states [27–29], and non-Abelian fractional quantum Hall
states [30–34].

Guided by symmetry considerations, a large class of two-
dimensional topological orders can be described and classified
by the twisted quantum double (TQD) model [12,13,35],
which are a Hamiltonian extension of the three-dimensional
Dijkgraaf-Witten topological gauge theory [36] with finite
gauge groups G and 3-cocyles α in the cohomology group
H 3[G,U (1)]. In a topological order described by the TQD
model on a closed surface with a finite gauge group G, anyon
excitations carry representations of an emergent, generalized
hidden symmetry specified by a quantum group, namely, the
TQD D[G]. The simplest example is the Kitaev model [7].
Later, the TQD model has also been generalized to three
dimensions [37].

Realistic materials that may realize topological orders
mostly, however, have boundaries and thus urge the study
of the TQD model on open surfaces. The untwisted version,
namely, the Kitaev model with boundaries, has been studied
in in Refs. [38–40]. The Hamiltonians constructed in Ref. [38]
would turn out to be a special case of our boundary Hamilto-
nian when the bulk 3-cocylce is set trivial. References [39,40]
focus on how to braid the boundary defects in the untwisted
case, whereas our work focuses on boundaries in the twisted
case without boundary defects. Two of us also systematically
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constructed the boundary Hamiltonians [41] of the Levin-Wen
model, which is dual to the construction in this paper in the
case with finite groups without cocycle twists. Kitaev and Kong
also has a formulation of the gapped boundaries of topological
orders in the language of categories [42], whose relation to the
construction in Ref. [41] is discussed in a parallel paper [43],
also by two of us. Fuchs et al. provides a geometric approach
to boundaries in Dijkgraaf-Witten theories [44]. The full TQD
model has been studied mostly on closed manifolds, e.g., a
torus. Very recently during the preparation of this paper, Wang
et al. studied the gapped interfaces of symmetric topological
orders based on the TQD model [45].

Focusing on two dimensions, when there are boundaries,
the Hamiltonian of the model would have to contain boundary
terms as well. Boundary terms in turn affect the spectrum
of the model in two aspects. First, a key feature of any
topological order—its topologically protected ground-state
degeneracy (GSD)—may be modified due to its boundary
conditions. Second, different boundary conditions correspond
to different sets of anyons condensing at the boundaries.
Computing the GSD of a topological order on an open surface
and identifying the anyon condensation responsible for a
gapped boundary had been an open problem of topological
orders in two dimensions for about two decades until only
recently when they were solved for Abelian topological orders
[46] and for general, non-Abelian topological orders [47,48].
Nevertheless, the solutions in Refs. [47,48] rely on prior
knowledge of the modular data of the topological orders being
studied and are purely algebraic rather than being based on a
certain microscopic Hamiltonian model of topological orders
with boundaries. It is then interesting but also challenging
to see if one can systematically construct a microscopic
Hamiltonian model of topological orders on open surfaces.
From solely the input microscopic degrees of freedom of this
model, the properties of any topological order with boundaries
describable by the model, such as the GSDs, ground-state wave
functions, modular data, and so on, can be derived as the output
data of the model. We tackle the challenge in this paper.
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In our work, we generalize the two-dimensional TQD
model to the case with boundaries. It is worth noting that
when there are no 3-cocyle twists, the TQD model reduces
to the usual Kitaev quantum double (KQD) model, whose
boundary terms have been studied by Shor and co-workers
[38]. In Ref. [38] the boundary conditions are classified
by the subgroups of the gauge group G that defines the
KQD model. Each subgroup K ⊆ G specifies a boundary
anyon condensation. The subgroup K = {1G} with 1G G’s
identity specifies charge condensation, also known as the rough
boundary condition; K = G specifies the flux condensation,
also known as the smooth boundary condition; and a K ⊂ G

specifies certain dyon condensation. In the TQD model,
however, the defining data consists of both a gauge group G and
a 3-cocycle α ∈ H 3[G,U (1)], such that the model describes
more topological orders and more exotic anyon spectra than
the KQD model does; hence, specifying a subgroup K ⊆ G

would not be sufficient for fully characterizing the possible
boundary conditions of a topological order described by the
model. It is natural and reasonable to speculate that we also
need to specify a 2-cochain β ∈ C2[K,U (1)] along with a
choice of K because the boundaries are one dimensional.

Our strategy is as follows. First, we restrict the boundary
degrees of freedom in the TQD model with boundaries to
take values in K ⊆ G. Second, we add to the original TQD
Hamiltonian certain boundary terms depending on K and a
2-cochain β ∈ C2[K,U (1)], such that the boundary terms do
not affect the exact-solvability of the model. Third, we then
study the properties of the model on open surfaces. Our main
results are as follows.

We extend a TQD bulk Hamiltonian by a local boundary
Hamiltonian, where the boundary degrees of freedom are
in a subgroup (not necessarily a proper one) of the gauge
group in the bulk, and the local operators in the boundary
Hamiltonian are constructed in terms of 2-cochains of the
boundary subgroup. The boundary local Hamiltonian needs to
be compatible with the bulk Hamiltonian, such that the ground
states are invariant under topology-preserving mutation of
triangulation both in the bulk and on the boundary. We find
that the compatibility condition forms a Frobenius algebra
structure on the input 2-cochain. This agrees with the result
in Ref. [41] for the Levin-Wen model with boundaries, which
constructs the boundary Hamiltonian in terms of Frobenius
algebra from a unitary fusion category.

Base on our boundary Hamiltonian, we write down a
formula of the ground-state wave function of our model on
a disk in terms of the input 2-cochain only. We also derive a
closed-form formula for the GSD on a cylinder in terms of the
input data only. We show a couple of examples.

II. BRIEF REVIEW OF THE TQD MODEL

In this section, we briefly review the TQD model on closed
surfaces. The TQD model is defined by an infrared fixed-point
Hamiltonian HG,α , with G a finite group and α ∈ H 3[G,U (1)],
on a lattice � that is a triangulation of a closed two-dimensional
(2D) Riemannian surface (Fig. 1). Each edge ab between two
vertices a and b in � is graced with a group element [ab] ∈
G, such that the Hilbert space of the model consists of all
possible configurations of the group elements on the edges of

FIG. 1. A portion of a graph that represents the basis vectors in
the Hilbert space. Each edge carries an arrow and is assigned a group
element denoted by [ab] with a < b.

�. Namely,

H�,G = {[ij ] ∈ G|i,j ∈ V (�)}, (1)

where V (�) is the set of vertices of �. The states are
orthogonal in an obvious way. The group elements on the
edges can be considered as the discretized gauge field of
the underlying Dijkgraaf-Witten topological gauge theory.
The graph is oriented with an arbitrary choice of the order
of the vertices [49], such that each edge is arrowed from its
larger vertex to the smaller and that [ab] = [ba]−1, where the
exponent −1 denotes the inverse of a group element. Such an
ordering of the vertices is called an enumeration [11], which
does not affect the physics as long as the relative order of
the vertices remains unchanged when the graph mutates, i.e.,
expands or shrinks. The graph � mutates via the Pachner moves
[50,51] of 2D triangulations, seen in Eq. (2).

f 1 :

f 2 :

f 3 : .

(2)

Certainly the mutation of � turns � into a different graph �′ and
hence alters the total Hilbert space of the model. But it is shown
in Ref. [11] that the topological properties of the topological
order described by the model HG,α remains unchanged because
a mutation cannot change the topology of the surface.

For simplicity, we neglect drawing the group elements on
the edges but keep only the vertex labels. We may also often
refer to ab as an edge or the group element on that edge
to avoid clutter. On any part of � that resembles Fig. 2(a),
one can define a normalized 3-cocycle α(v1v2,v2v3,v3v4) ∈
H 3[G,U (1)]. The three variables in the α from left to right are
the three group elements, v1v2, v2v3, and v3v4, which are along
the path from the least vertex v1 to the greatest vertex v4 passing
v2 and v3 in order. Necessary rudiments of such mathematical
objects are reviewed in the Appendix. Here one should keep
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v1 v3

v2

v4

(a)

v1 v2

v3

v4

(b)

FIG. 2. Given the enumeration v1 < v2 < v3 < v4, (a) is the
defining graph of the 3–cocycle α([v1v2],[v2v3],[v3v4]), and (b) for
α([v1v2],[v2v3],[v3v4])−1.

in mind that an α is an equivalence class [α] of U (1)-valued
functions on G3 = G × G × G. A normalized α is a particular
representative of [α] that satisfies the normalization condition

α(1,g,h) = α(g,1,h) = α(g,h,1) = 1 (3)

and the 3-cocyle condition

α(g1,g2,g3)α(g0 · g1,g2,g3)−1

× α(g0,g1g2,g3)α(g0,g1,g2g3)−1α(g0,g1,g2) = 1 (4)

for all gi ∈ G.
It is shown in Ref. [11] that each [α] defines a topological

order and the choice of the normalized α as the representative is
merely a convenience that does not affect the physics. A graph
like Fig. 2(a) has a natural signature and hence the associated
3-cocyle has a chirality determined as follows. One first reads
off a list of the three vertices counterclockwise from any of
the three triangles of the defining graph of the 3–cocycle,
e.g., (v2,v3,v4) from Fig. 2(a) and (v3,v2,v4) from Fig. 2(b).
One then appends the remaining vertex to the beginning of
the list, e.g., (v1,v2,v3,v4) from Fig. 2(a) and (v1,v3,v2,v4)
from Fig. 2(b). If the list can be turned into ascending order
by even permutations, such as (v1,v2,v3,v4) from Fig. 2(a),
one has an α but an α−1 otherwise, as by (v1,v3,v2,v4) from
Fig. 2(b). In an alternative point of view, if one lifts the vertex
v2 in Fig. 2(a) above the paper plane, the three triangles turn
out to be on the surface of a tetrahedron. In this sense, one
can think of the 3–cocycle as associated with a tetrahedron as
well, and the signature of the graph is the very orientation of
the corresponding tetrahedron. This is a useful picture when
we evolve the graph � by the Hamiltonian.

The α that defines the model HG,α comprises the matrix
elements of the Hamiltonian that reads

HG,α = −
∑

v

Av −
∑
f

Bf , (5)

where Bf is the face operator defined at each triangular face
f , and Av is the vertex operator defined on each vertex v. The
operator Bf acts on a basis state vector as

(6)

The discrete delta function δ[v1v2][v2v3][v3v1] is unity if
[v1v2][v2v3][v3v1] = 1, where 1 is the identity element in
G, and 0 otherwise. Note again that here, the ordering

of v1, v2, and v3 does not matter because of the iden-
tities δ[v1v2][v2v3][v3v1] = δ[v3v1][v1v2][v2v3] and δ[v1v2][v2v3][v3v1] =
δ{[v1v2][v2v3][v3v1]}−1 = δ[v3v1]−1[v2v3]−1[v1v2]−1 = δ[v1v3][v3v2][v2v1]. In
other words, in any state on which Bf = 1 on a triangular face
f , the three group degrees of freedom around v is related by a
chain rule:

[v1v3] = [v1v2][v2v3] (7)

for any enumeration v1,v2,v3 of the three vertices of the face f .
The chain rule (7) is physically known as the flatness condition
in the sense that the gauge connection along the edges of a
triangular face is flat. The operator Av acting on a vertex v is
an average

Av = 1

|G|
∑

[vv′]=g∈G

Ag
v, (8)

over the operators A
g
v specified by a group element g ∈ G

acting on the same vertex. The action of A
g
v replaces v by a

new enumeration v′ that is less than v but greater than all the
vertices that are less than v in the original set of enumerations
before the action, such that v′v = g. In a dynamical language,
v′ is understood as on the next “time” slice, and there is an edge
[v′v] ∈ G in the (2 + 1)-dimensional “space-time” picture. We
illustrate such an action in the example below.

(9)

where on the right-hand side, the new enumerations are in
the order v1 < v2 < v′

3 < v3 < v4, together with the following
flatness conditions:

[v1v
′
3] = [v1v3][v3v

′
3],

[v2v
′
3] = [v2v3][v3v

′
3],

[v′
3v4] = [v′

3v3][v3v4].

(10)

The basis vector on the left-hand side of (9) is specified
by six group elements, [v1v3], [v2v3], [v3v4], [v1v4], [v2v1],
and [v2v4].The phase factor consisting of three 3-cocycles on
the right-hand side of Eq. (9) encodes the nonvanishing matrix

elements of B
v′

3
v3 , namely,(

Ag
v3

)[v1v3][v2v3][v3v4]

[v1v
′
3][v2v

′
3][v′

3v4]
(v1v2,v2v3,v1v3)

= α(v1v2,v2v
′
3,v

′
3v3)α(v2v

′
3,v

′
3v3,v3v4)

× α(v1v
′
3,v

′
3v3,v3v4)−1. (11)

The 3-cocycles appearing on the right-hand side of Eq. (9) can
be easily understood from Fig. 3. This figure illustrates the
time evolution of the graph before being acted on by A

g
v3 to

that after the action.
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FIG. 3. The topology of the action of Ag
v3

.

The vertex operator in Eq. (9) can naturally extend its
definition from a trivalent vertex to a vertex of any valence. The
number of 3-cocyles in the phase factor brought by the action
of A

g
v on a vertex is equal to the valence of the vertex. It is

clear that A
g=1
v ≡ I by the normalization of α. It is shown

that all Bf and Av are projection operators and commute
with each other, which renders the Hamiltonian (5) exactly
solvable. The ground states and all elementary excitations
are thus common eigenvectors of these projectors; they carry
representations of the TQD Dα[G]. On a torus, there is a
one-to-one correspondence between the ground-state basis
states and the types of anyon excitations. More precisely, on
a torus, a ground-state basis state or its corresponding anyon
excitation can be labeled by |A,μ〉, where A is a conjugacy
class of G and μ an irreducible representation of the centralizer
of A in G. This representation μ is of a special type, called βgA

regular. This βgA is a twisted 2-cocycle derived from α via the
slant product (A2) introduced in the Appendix. Interestingly,
the topological orders described by the TQD model are not
classified by the 3-cocycles α ∈ H 3[G,U (1)] given G but
instead classified by the twisted 2-cocycle βgA derived from α

[11]. On a torus, the GSD of the model HG,α is

GSD =
∑
A

#(βgA representations of ZA), (12)

where the sum runs over all conjugacy classes of G and ZA ⊂
G is the centralizer of the conjugacy class A.

It is clear that the TQD model HG,α=1 reduces to the usual
KQD model, where the action of the vertex operators A

g
v

implements gauge transformations on the group elements on
the edges incident at the vertex v.

III. TQD MODEL WITH BOUNDARIES

We now extend the TQD model reviewed in the previous
section to one that works on open surfaces. To this end, we need
to add boundary terms to the Hamiltonian (5), preserving the
exact solvability of the model. In Ref. [38], for the KQD model
on an open square lattice, the boundary operators descend
directly from the bulk operators with, however, restricting
the boundary gauge fields to take value in a subgroup K ⊆
G; different subgroups K characterize different boundary
conditions, or equivalently speaking, different boundary anyon
condensation. Inspired by this construction, for the TQD
model, we can likewise construct the boundary operators.

FIG. 4. A torus with multiple holes. Only the lattices near the
boundaries are shown explicitly.

Moreover, the compatibility between the bulk and boundary
whose degrees of freedom are restricted to a subgroup K ⊆ G

of the TQD model still leaves room for another tweak. Namely,
we can associate a 2-cochain β ∈ C2[K,U (1)] to the action of
a boundary vertex operator. Later, we will show that given a
K ⊆ G, all possible boundary conditions, each specified by
a β, are in one-to-one correspondence with the 2-cocycles
in H 2[K,U (1)], which generalizes the consideration of a
boundary 2-cocycle in H 2[K,U (1)] in Ref. [38] for the KQD
model.

Let us first write down the general Hamiltonian of the
TQD model with multiple disjoint boundaries, followed by
explanation.

H
K,β

G,α = HG,α −
M∑
i=1

⎛
⎝ ∑

v∈∂i�

AKi

v −
∑

f ∈∂i�

B
Ki

f

⎞
⎠, (13)

where HG,α is the bulk Hamiltonian (5), and the rest are the
boundary terms. In this general form, we assume the lattice
system � has M boundaries, ∂1�,∂2�, . . . ,∂M�, as sketched in
Fig. 4. Each boundary certainly not necessarily bounds a hole
but can be infinitely long, such as a side of an infinite strip.
On the ith boundary, the degrees of freedom are restricted to
the subgroup Ki ⊆ G. A boundary vertex v sits right on the
boundary, whereas a boundary triangular face f contains one
and only one edge on the boundary and two virtual edges, as
in Fig. 5. We now explain the boundary operators individually.
Boundary plaquette operators simply project the boundary

FIG. 5. A boundary face f is made of a boundary edge, say, [12]
and two virtual edges, the two dotted lines below the boundary. Only
a segment of the boundary is shown.
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degrees of freedom to a subgroup K ⊆ G:

BK
f =

∑
k∈K

Bk
f ,

(14)

The BK
p operator defined above thus clearly satis-

fies BK
p BK

p = BK
p and is a projector. The commutativity

[BK
p ,BK

p′ ] = 0 is also obvious. Hereafter, we shall not draw any
virtual boundary face. A boundary segment is always placed
horizontally unless stated otherwise, such that the bulk is above
the boundary.

The boundary vertex operator acts on the vertices right
on a boundary, defined in the example below without loss of
generality.

AK
v = 1

|H |
∑
k∈K

Ak
v,

(15)

where in the second line, the vertex 1 is chosen for illustration
of the action, and 1′1 := k by definition. Here we only depict
two bulk plaquettes because the rest of the plaquettes are
irrelevant to the action of Ak

1. The action of Ak
1 replaces the

boundary vertex 1 by a new boundary vertex 1′ with 1′ < 1
(this notation is explained in Sec. II) together with an amplitude
A(01,12,13,k), a U (1) function of the group elements 01 ∈ G,
and 12,13,k = 1′1 ∈ K .

A(01,12,13,k) = = α(01′,1′1,12)β(1′1,12)

α(01′,1′1,13)β(1′1,13)
.

(16)

Similar to the action of a bulk vertex operator described
in the previous section, the action of an edge vertex operator,
such as the Ak

1 in Eq. (15), evolves the original spatial lattice
to a new spatial lattice. Such an evolution creates a space-
time 3-complex, e.g., the one in Eq. (16), which encodes the
amplitude of the action. Let us explain the amplitude (16).
The two 3-cocycles α(01′,1′1,12) and α(01′,1′1,13)−1 are,
respectively, associated with the tetrahedra 01′12 and 01′13
in the 3-complex in Eq. (16). As in the case with bulk vertex
operators, the newly created three triangles along the time
direction due to the action of Ak

1, namely, 01′1, 1′12, and 1′13,
shaded in Eq. (16), must be flat as well, leading to the following

chain rules of group elements:
01′ · 1′1 = 01, 1′1 · 12 = 1′2, 1′1 · 13 = 1′3. (17)

This is why the amplitude (16)A(01,12,13,k) depends only on
the original group elements 01,12,13, and the group element
k = 1′1. A boundary vertex operator differs from a bulk vertex
operator by the boundary 2-cochains in its amplitudes, which
we now elaborate on.

Staring at the figure in the amplitude (16), one sees two
boundary triangles, 1′12 and 1′13, extending along the time
direction due to the action of Ak

1. This enables the freedom
of associating a U (1) factor with each of the two boundary
temporal triangles that contributes to the amplitude of Ak

1. Such
a U (1) factor depends only on the group elements of K ⊆ G

on the sides of the corresponding temporal triangle. Since any
boundary temporal triangle must satisfy the flatness condition,
as it is created by a boundary vertex operator, it inhabits only
two independent group elements of K . Without any further
constraints, hence, such a U (1) factor is a 2-cochain β ∈
C2[K,U (1)]. Such a 2-cochain also depends on the orientation
of the boundary temporal triangle. The canonical orientation
of a triangle on the boundary of a tetrahedron is defined in
this way: One grabs using one hand such a triangle along the
ascending direction of the vertex labels of the triangle, while
keeping the thumb pointing outside of the tetrahedron; if this
can only be achieved by one’s right (left) hand, the triangle has
a positive (negative) orientation. For example, the boundary
temporal triangle 1′12 has positive orientation, whereas 1′13
has negative orientation; hence, respectively, they contribute
to the amplitude (16) 2-cochains β(1′1,12) and β(1′1,13)−1.

One may wonder why the amplitude of a bulk vertex
operator, say Eq. (9) for example, does not contain any 2-
cochains associated with the relevant bulk temporal triangles.
The reason is, each bulk temporal triangle belongs to two
neighboring tetrahedra and would thus contribute a 2-cochain
twice to the amplitude but with opposite signs, hence canceling
each other. As such, it is only at a boundary that the freedom
of choosing a 2-cochain takes effect.

Having introduced the the action of the boundary operators
in the new Hamiltonian (13), it is straightforward to check
whether these operators are still commuting projectors and
their commutativity with the bulk operators. We show in below
the commutativity between any two boundary vertex operators
because this will lead to the Frobenius condition, which is of
paramount importance in this work.

Consider two boundary vertex operators Ak
v and Ak′

v′ . If v

and v′ are not directly connected by a boundary edge, then
obviously [Ak

v,A
k′
v′ ] = 0. Otherwise, let us concretely compute

the scenario in Fig. 6.
We can extract from the space-time 3-complexes in Fig. 6

the following two amplitudes, respectively, of Ak
2A

k′
1 and

Ak′
1 Ak

2.

× α(01′,1′1,12)

α(01′,1′1,13)α(01′,1′2′,2′2)

β(1′1,12)

β(1′1,13)β(1′2′,2′2)
.

(18)
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FIG. 6. The amplitudes of Ak
2A

k′
1 (first row) and Ak′

1 Ak
2 (second

row). Note that 1′1 = k′ and 2′2 = k. Shaded triangles are flat.

× α(01′,1′1,12′)
α(01,12′,2′2)α(01′,1′1,13)

× β(1′1,12′)
β(12′,2′2)β(1′1,13)

. (19)

The task now is to demonstrate that the two amplitudes above
are equal. It suffices to show that

α(01′,1′1,12)β(1′1,12)

α(01′,1′2′,2′2)β(1′2′,2′2)
= α(01′,1′1,12′)β(1′1,12′)

α(01,12′,2′2)β(12′,2′2)
.

(20)

Using the 3-cocycle condition

α(1′1,12′,2′2)α(01′,1′2′,2′2)α(01′,1′1,12′)
α(01,12′,2′2)α(01′,1′1,12)

= 1,

Eq. (20) boils down to the following condition:

α(1′1,12′,2′2)
β(12′,2′2)β(1′1,12)

β(1′1,12′)β(1′2′,2′2)
= 1. (21)

In other words, if we demand that [Ak
2,A

k′
1′ ] = 0, the above

condition must be hold. If not, the Hamiltonian (13) ceases
being exactly solvable. Since our purpose is to construct
an exactly solvable Hamiltonian with boundaries, we would
not consider the possibility of violating the above condition.
Condition (21) is mathematically known as the Frobenius
condition, which can also be presented graphically as

(22)

In the equation above, the group elements on the edges all
lie in the subgroup K ⊆ G, and each triangle is flat. The
tetrahedron 1′12′2 in Eq. (22) corresponds to the 3-cocycle
α(1′1,12′,2′2) in Eq. (21). The four flat boundary temporal
triangles 1′12′, 1′12, 1′2′2, and 12′2 correspond, respectively,
to the four 2-cochains in Eq. (21).

Here is the essence of the Frobenius condition. The 3-
cocycle α ∈ H 3[G,U (1)] that defines the model must become
cohomologically trivial, i.e., α|K ∼ 1, when all its three
arguments are restricted to the subgroup K ⊆ G because it
is equal to a coboundary made of the 2-cochains β in Eq. (21).
This strongly constrains what boundary conditions are feasible
in the TQD model with certain gauge group G. More precisely
speaking, the Frobenius condition restricts what subgroups of
G can live on a boundary of the model.

For better understanding of this point, let us consider the
simplest example, Dα[Z2], the TQD of G = Z2. Because
H 3[Z(2),U (1)] = Z2, there are only two such models. One is
the Z2-toric code defined by α ≡ 1. The other is the doubled
semion model defined by α(g1,g2,g3) = −1 if g1,g2,g3 	= 1,
otherwise α = 1. Therefore, for the Z2-toric code, the only
two subgroups of Z2, namely, the trivial group {1} or the
entire Z2, can be legal boundary conditions, as α ≡ 1. That
is, the Z2-toric code has two possible boundary conditions.
Nevertheless, for the doubled semion model, in order to satisfy
the Frobenius condition, only K = {1} is allowed to exist in a
boundary. That is, the doubled semion has a unique boundary
condition. We will return to this example again later in the
paper.

Having shown that the boundary vertex operators commute
with each other, we also need to show that they are projectors,
namely, AK

v AK
v = AK

v ∀v ∈ ∂�. For this to hold, it suffices to
show that Ak′

v Ak
v = Ak′k

v . This can be done using the 3-cocyle
condition (4) and the Frobenius condition (21).

As such, the Hamiltonian (13) is again exactly solvable
and composed of projectors. We can then place the model on
surfaces with boundaries to study its physical properties, as we
are going to do shortly. Before that, let us prove the following
theorem, as promised earlier.

Theorem 1. Given a K ⊆ G, the 2-cochain solutions β ∈
C2[K,U (1)] to the Frobenius condition (21) are in one-to-one
correspondence with the 2-cocycle in H 2[K,U (1)].

Proof. Among all possible solutions β to Eq. (21), let
us take an arbitrary one and call it β0. Let H 2[K,U (1)] =
{β̃1,β̃2, . . . ,β̃n}, where β̃i and β̃j are in equivalent 2-
cocycles. Because dβ̃i ≡ 1, ∀i and d(ββ̃i) = dβdβ̃i , for
any β0, the H 2[K,U (1)] yields a set of solutions
{β0,β0β̃1,β0β̃2, . . . ,β0β̃n} to Eq. (21).

Conversely, considering any other solution βm to Eq. (21),
we have αdβm = αdβ0 = 1. Hence,

dβm = dβ0 ⇒ d
(
βmβ−1

0

) = 1 ⇒ βm = β0β̃m,

where β̃m ∈ H 2[K,U ] is a 2-cocycle. The one-to-one cor-
respondence is thus established. And it does not mat-
ter which solution β0 we choose to generate the set

of solutions {β0,β0β̃1,β0β̃2, . . . ,β0β̃n}def={βi |i = 0, . . . ,n =
|H 2[K,U (1)]| − 1}. For future convenience, we denote this
set of 2-cochains that specify all possible boundary conditions
for a given K ⊆ G by �K . �

Now the question is whether two pairs (α,β) and (α′,β ′),
where α,α′ ∈ H 3[G,U (1)] and β,β ′ ∈ �K , define the same
TQD model with a boundary. It turns out that this question
is very interesting and involved, and thus deserves a separate
study. The answer to this question is reported elsewhere [52].
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FIG. 7. Lattice triangulation of a cylinder. The arrows indicate
the identified edges. The group elements are g ∈ G, k1 ∈ K1 ⊆ G,
and k2 ∈ K2 ⊆ G.

IV. GSD ON A CYLINDER

We first consider the first nontrivial case, namely, a sphere
with two holes, which is homeomorphic to a cylinder. We
shall place our model on the cylinder (Fig. 7) and assume the
two ends of the cylinder may, respectively, possess boundary
conditions specified by subgroups K1 and K2 of the gauge
group G. The two subgroups K1 and K2 may or may not be
the same.

Since now we are interested in ground states only, we
can assume flatness on the two triangles in Fig. 7. That is,
we are working in the subspace HBf =1 of the total Hilbert
space. Hence, the group element on the diagonal edge 14 in
Fig. 7 is determined by the group elements on the horizontal
and vertical edges in the figure. Note, however, that we have
both 14 = k1g and 14 = gk2; hence, k1 = gk2ḡ, i.e., k1 and k2

despite being in possibly different subgroups of G still belong
to the same conjugacy class of G in the ground-state space.

In the subspace HBf =1, also because the vertices in
Fig. 7 are all boundary vertices, the ground-state projector
reduces to

P 0
cyl = �v∈∂�Av = 1

|K1||K2|
∑
x∈K1

Ax
1=2

∑
y∈K2

A
y

3=4, (23)

where, in fact, vertices 1 and 2 are identified, and vertices 3
and 4 are identified. Note that when acting the above operator
on the cylinder, one still needs to act Ax on vertices 1 and 2
individually, as if 1 and 2 are different vertices; however, the
identification of 1 and 2 will be automatically accounted for
by the periodic boundary condition and that there is only one
normalization factor 1/|K1|. The same procedure applies to
Ay on vertices 3 and 4. The GSD of our model on the cylinder
in Fig. 7 thus can be obtained by

GSDcyl = TrHBf =1P 0
cyl

(24)

To obtain a concrete answer, we first check how the
projector P 0

cyl acts on the cylinder. The order of acting the
vertex operators comprising P 0

cyl is irrelevant because they
commute. To simplify the calculation, however, we choose
to act on the vertices in descending order. The entire action
creates a space-time 3-complex shown in Fig. 8, from which

FIG. 8. The space-time 3-complex created by acting P 0
cyl on the

cylinder in Fig. 7. The top and bottom layers are, respectively, the
original and the new lattices of the cylinder before and after the action.
Time direction is downward. All the triangles are flat.

we can extract the amplitude of P 0
cyl as follows.

P 0
cyl|12,13,34〉 = 1

|K1||K2|
∑
x∈K1

∑
y∈K2

|1′2′,1′3′,3′4′〉

× α(13,34′,4′4)β(34′,4′4)

α(12,24′,4′4)α(13′,3′3,34′)β(3′3,34′)

× α(12′,2′2,24′)α(1′1,13′,3′4′)β(1′1,12′)
α(1′1,12′,2′4′)β(12′,2′2)

,

(25)

where take a simpler notation for the state on the cylinder,
namely, |12,13,34〉 and |1′2′,1′3′,3′4′〉 for the initial and final
states, and 1′1 = 2′2 = x ∈ K1, 3′3 = 4′4 = y ∈ K2.

Using the flatness condition on all the triangles in Fig. 8, in
terms of the group elements explicitly, Eq. (25) becomes

P 0
cyl|k1,g,k2〉 = 1

|K1||K2|
∑
x∈K1

∑
y∈K2

|xk1x̄,xgȳ,yk2ȳ〉

× α(g,k2ȳ,y)β(k2ȳ,y)

α(k1,gȳ,y)α(gȳ,y,k2ȳ)β(y,k2ȳ)

× α(k1x̄,x,gȳ)α(x,gȳ,yk2ȳ)β(x,k1x̄)

α(x,k1x̄,xgȳ)β(k1x̄,x)
.

(26)

The GSD on the cylinder can then be obtained as

GSDcyl =
∑

k1 ∈ K1
k2 ∈ K2

∑
g∈G

δk1,gk2ḡ〈k1,g,k2|P 0
cyl|k1,g,k2〉

=
∑

x,k1 ∈ K1
y,k2 ∈ K2

∑
g∈G

δk1,gk2ḡδk1x,xk1δk2y,yk2δxg,gy

|K1||K2|

× α(g,k2ȳ,y)β(k2ȳ,y)

α(k1,gȳ,y)α(gȳ,y,k2ȳ)β(y,k2ȳ)

× α(k1x̄,x,gȳ)α(x,gȳ,yk2ȳ)β(x,k1x̄)

α(x,k1x̄,xgȳ)β(k1x̄,x)
. (27)

The above expression can be massaged into a more compact
and topologically meaningful form by the following proce-
dure. First, using the δ functions above and the relations
x = gyḡ, xgȳ = g, h1 = gk2g

−1, and x = gyg−1 implied by
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the flatness conditions, GSDcyl becomes

GSDcyl =
∑

x,k1 ∈ K1
y,k2 ∈ K2

∑
g∈G

δk1,gk2ḡδk1x,xk1δk2y,yk2δxg,gy

|K1||K2|

× α(g,k2ȳ,y)β(k2ȳ,y)

α(k1,gȳ,y)α(gȳ,y,k2ȳ)β(y,k2ȳ)

× α(gk2ȳḡ,gyḡ,gȳ)α(gyḡ,gȳ,k2)β(gk2ȳḡ,gyḡ)

α(gyḡ,gk2ȳḡ,g)β(gyḡ,gk2ȳḡ)
.

Applying the 3-cocyle condition

α(gk2ȳḡ,gyḡ,gȳ)α(gyḡ,gk2ḡ,gȳ)α(gyḡ,gk2ȳḡ,gyḡ)

α(gk2ḡ,gyḡ,gȳ)α(gyḡ,gk2ȳḡ,g)
= 1

and the Frobenius condition

α(gyḡ,gk2ȳḡ,gyḡ)−1 β(gyḡ,gk2ȳḡ)β(gk2ḡ,gyḡ)

β(gk2ȳḡ,gyḡ)β(gyḡ,gk2ḡ)
= 1,

we obtain

GSDcyl =
∑

x,k1 ∈ K1
y,k2 ∈ K2

∑
g∈G

δk1,gk2ḡδk1x,xk1δk2y,yk2δxg,gy

|K1||K2|

× α(g,k2ȳ,y)β(k2ȳ,y)

α(k1,gȳ,y)α(gȳ,y,k2ȳ)β(y,k2ȳ)

× α(gk2ḡ,gyḡ,gȳ)α(gyḡ,gȳ,k2)β(gyḡ,gk2ḡ)

α(gyḡ,gk2ḡ,gȳ)β(gk2ḡ,gyḡ)
.

Again, by the 3-cocycle condition

α(gȳ,y,k2)α(g,k2ȳ,y)

α(gȳ,k2y)α(gȳ,y,k2ȳ)α(y,k2ȳ,y)
= 1

and the Frobenius condition

α(y,k2ȳ,y)
β(k2ȳ,y)β(y,k2)

β(y,k2ȳ)β(k2,y)
= 1,

we have

GSDcyl =
∑

x,k1 ∈ K1
y,k2 ∈ K2

∑
g∈G

δk1,gk2ḡδk1x,xk1δk2y,yk2δxg,gy

|K1||K2|

× α(gȳ,k2,y)β(k2,y)

α(gk2ḡ,gȳ,y)α(gȳ,y,k2)β(y,k2)

× α(gk2ḡ,gyḡ,gȳ)α(gyḡ,gȳ,k2)β(gyḡ,gk2ḡ)

α(gyḡ,gk2ḡ,gȳ)β(gk2ḡ,gyḡ)
.

Now in the expression above, we can apply the definition of
twisted 2-cocycles to the two groups of 3-cocycles, namely,

α(gȳ,k2,y)

α(gk2ḡ,gȳ,y)α(gȳ,y,k2)
= βgk2ḡ(gȳ,y)−1

and

α(gk2ḡ,gyḡ,gȳ)α(gyḡ,gȳ,k2)

α(gyḡ,gk2ḡ,gȳ)
= βgk2ḡ(gyḡ,gȳ).

FIG. 9. Triangulation of the cube obtained from that in Fig. 8 by
the topological moves associated with the 3-cocycle and Frobenius
conditions used to obtain Eq. (28).

Finally, we obtain

GSDcyl =
∑

x,k1 ∈ K1
y,k2 ∈ K2

∑
g∈G

δk1,gk2ḡδk1x,xk1δk2y,yk2δxg,gy

|K1||K2|

× β(gyḡ,gk2ḡ)βgk2ḡ(gyḡ,gȳ)

β(gk2ḡ,gyḡ)

β(k2,y)

βgk2ḡ(gȳ,y)β(y,k2)
.

(28)

The 3-cocycles and Frobenius conditions applied in the
procedure above to obtain Eq. (28) are in fact topological
moves that turn the triangulation in Fig. 8 into the following
triangulation in Fig. 9 (see also Fig. 10).

V. GROUND STATES ON A DISK

Here, we present an explicit formula of the ground-state
wave function on a disk.

Since we are interested in boundary theories only, we
assume no quasiparticles exist in the bulk. Any triangulation
of a disk can be reduced to a pie-disk using Pachner moves in
the bulk, such that there is only one vertex left in the bulk (see
Fig. 11).

Boundary theories can be studied on the reduced triangu-
lation with N boundary vertices (and N triangles in the bulk).
We denote the basis of the Hilbert space by

{|a1,a2, . . . ,aN 〉} (29)

with an = [0n] in Fig. 11. The boundary edges are determined
by these an.

FIG. 10. Splitting the cube in Fig. 9 along the plane 123′4′

into two halves. Each half is associated with a combination of
two 2-cochains and one twisted 2-cocycle, presented below the
corresponding figure.
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FIG. 11. Any triangulation of a disk (left) can be reduced to a
pie-disk using the Pachner moves in the bulk.

The ground state is expressed by

	({an}) = α
(
k,a1,a

−1
1 aN

)−1
β
(
a1,a

−1
1 aN

)−1

×
N−1∏
n=1

α
(
k,an,a

−1
n an+1

)
β
(
kan,a

−1
n an+1

)−1
. (30)

Particularly, if G = K and α is trivial, the ground state is

	({an}) = β
(
a1,a

−1
1 aN

)−1
N−1∏
n=1

β
(
an,a

−1
n an+1

)
. (31)

To verify that |	〉 is a ground state, we check that |	〉
is Av = 1 eigenstate for all v. The action of Ak

v in the local
basis is

.

(32)

As an example, acting Ak
v on Eq. (31) in the local basis yields

,

(33)

from which one checks that |	〉 is a ground state.
The topological feature on a boundary can be described

in terms of unitary 1 + 1D boundary Pachner moves, which
expand or shrink the boundary by one boundary edge (see
Fig. 12). The unitary representation of these moves can be
constructed in terms of β, in a way similar to that in Ref. [41],
which defines generic transformations in the language of
Frobenius algebra. The ground-state Hilbert space is invariant
under these boundary Pachner moves.

FIG. 12. Boundary Pachner moves mutating between two bound-
ary edges and one boundary edges.

TABLE I. Number of 2-cochain solutions for D3.

K α0 α α2 α3 α4 α5

{00} 1 1 1 1 1 1
{00,10} = Z2 1 × 1 × 1 ×
{00,11} = Z2 1 × 1 × 1 ×
{00,12} = Z2 1 × 1 × 1 ×
{00,01,02} = Z3 1 × × 1 × ×
D3 1 × × × × ×

VI. EXAMPLES: G = D3 AND D4

For the Dm group, we denote the group elements by (A,a),
with A = 0,1 and a = 0,1, . . . ,m − 1. The multiplication is
given by

(A,a)(B,b) = [A + B]2[(−1)Ba + b]m, (34)

where [x]y := x mod y.
All 3-cocycles are given by

αp{(A,a),(B,b),(C,c)}

= exp

{
2ipπ

m2

[
(−1)B+Ca{(−1)Cb + c − [(−1)Cb + c]m}

+m2

2
ABC

]}
, (35)

where p = 0,1, . . . ,2m − 1.
For the D3 (D4) group, the number of 2-cochain solutions

to the Frobenius condition (21) for each 3-cocycle αp and each
subgroup K is listed in Table I (Table II). Since all subgroups
of D3 are cyclic, there is at most one solution for any αp and
K . A solution exists if and only if αp|K is trivial. And all such
solutions are β = 1, using Eq. (35).
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APPENDIX: REVIEW OF Hn(G,U(1))

We give a brief review of the cohomology groups
Hn[G,U (1)] of finite groups G.

TABLE II. Number of 2-cochain solutions for D4.

K α0 α α2 α3 α4 α5 α6 α7

{00} 1 1 1 1 1 1 1 1
{00,02} = Z2 1 × 1 × 1 × 1 ×
{00,10} = Z2 1 × 1 × 1 × 1 ×
{00,11} = Z2 1 × 1 × 1 × 1 ×
{00,12} = Z2 1 × 1 × 1 × 1 ×
{00,13} = Z2 1 × 1 × 1 × 1 ×
{00,01,02,03} = Z4 1 × × × 1 × × ×
{00,02,10,12} = Z2 × Z2 Z2 × Z2 × Z2 × Z2 ×
{00,02,11,13} = Z2 × Z2 Z2 × Z2 × Z2 × Z2 ×
D4 Z2 × × × × × × ×
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We first define the nth cochain group Cn[G,U (1)]
of G, which is an Abelian group of n-cochains. The
group elements of Cn[G,U (1)] are functions c(g1, . . . ,gn) :
G×n → U (1), where gi ∈ G. The group multiplication
reads c(g1, . . . ,gn)c′(g1, . . . ,gn) = (cc′)(g1, . . . ,gn). There is
a coboundary operator δ that maps Cn to Cn+1, namely,

δ : Cn → Cn+1 : c(g1, . . . ,gn) �→ δc(g0,g1 . . . ,gn),

where

δc(g0,g1 . . . ,gn) =
n+1∏
i=0

c(. . . ,gi−2,gi−1gi,gi+1, . . . )(−1)i .

At i = 0, the series of variables starts at g0, and at i = n + 1,
the series of variables ends at gn−1. The coboundary operator
δ is nilpotent: δ2c = 1, which results in an exact sequence:

· · · Cn−1 δ→ Cn δ→ Cn+1 · · · . (A1)

The images of the coboundary operator, im(δ : Cn−1 → Cn),
form the nth coboundary group, where the n-cochains are
called n-coboundaries. The kernel ker(δ : Cn → Cn+1) forms
the group of n-cocycles, which are the n-cochains meeting the

n-cocycle condition δc = 1. The exact sequence (A1) leads to
the definition of the nth cohomology group:

Hn[G,U (1)] := ker(δ : Cn → Cn+1)

im(δ : Cn−1 → Cn)
.

The group Hn[G,U (1)] is clearly Abelian and consists of the
equivalence classes of the n-cocyles that differ from each other
by merely an n-coboundary. A trivial n-cocycle is one that can
be written as an n-coboundary. One can define a slant product
that maps an n-cocycle c to an (n − 1)-cocycle cg:

cg(g1,g2, . . . ,gn−1) = c(g,g1,g2, . . . ,gn−1)(−1)n−1

×
n−1∏
j=1

c[g1, . . . ,gj ,(g1 · · · gj )−1

× g(g1 · · · gj ), . . . ,gn−1](−1)n−1+j

.

(A2)

The twisted 2-cocycles defined above Eq. (28) are examples
of the slant product above.
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