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Emergent transport in a many-body open system driven by interacting quantum baths
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We analyze an open many-body system that is strongly coupled at its boundaries to interacting quantum
baths. We show that the two-body interactions inside the baths induce emergent phenomena in the spin transport.
The system and baths are modeled as independent spin chains resulting in a global nonhomogeneous X X Z
model. The evolution of the system-bath state is simulated using matrix-product-states methods. We present two
phase transitions induced by bath interactions. For weak bath interactions we observe ballistic and insulating
phases. However, for strong bath interactions a diffusive phase emerges with a distinct power-law decay of
the time-dependent spin current Q o ¢~“. Furthermore, we investigate long-lasting current oscillations arising
from the non-Markovian dynamics in the homogeneous case and find a sharp change in their frequency scaling

coinciding with the triple point of the phase diagram.

DOI: 10.1103/PhysRevB.96.165137

I. INTRODUCTION

Nonequilibrium dynamics of quantum many-body systems
have recently become the subject of considerable theoretical
investigation. Of particular interest has been the question,
foundational to quantum statistical mechanics, of equilibration
and thermalization of many-body systems arising from unitary
dynamics [1,2]. Largely responsible for this surge in interest
are breakthroughs in experimental methods in the field of
ultracold atoms, which make it possible to reproduce model
Hamiltonians with great accuracy and investigate their unitary
dynamics with unprecedented insulation from the environment
[3-8].

From this context, the study of nonequilibrium phase
transitions has emerged as a field of its own. These transitions
differ significantly from equilibrium transitions in that they
are not well understood as arising from thermal or quantum
fluctuations [9], thus creating a need for new theoretical
approaches [10]. The study of transport in boundary-driven
one-dimensional systems provides a suitable paradigm to study
these critical phenomena. The X X Z spin chain is an attractive
choice for this purpose, both for its relative simplicity and
ability to accurately describe real materials [11-13].

Transport in the X X Z model has been investigated under
the assumption of Markovian coupling. At low bias near
infinite temperature, where linear response theory is valid,
diffusive and ballistic transport phases have been observed,
with a transition at the Heisenberg point [14]. Investigations
at high bias have instead revealed a ballistic and an insulating
phase, separated by a subdiffusive Heisenberg point [15].

The limitations of the Markovian approach are twofold.
First, the Markovian assumption is by definition valid only
for weak coupling between system and bath. Second, in the
case of weak coupling between system and bath but strong
interactions within the system, a Markovian description is
only available if one can obtain a full eigendecomposition
of the system Hamiltonian, which may easily be beyond
computational reach. Indeed, to derive the master equation
by the book, all system operators in system-bath coupling
should be expressed in the interaction picture, which results in
expressing them in the basis of eigenoperators of the system
Hamiltonian [16]. If the couplings within the system are weak,
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the eigenoperators of the noninteracting system may be used as
an ersatz, yielding a local-phenomenological master equation.
Such an approach is, however, insufficient to model strong
couplings, as has been recently shown by Ref. [17]. Modeling
both bath and system within a Hamiltonian formalism provides
instead a way to investigate the regime of strong coupling and
strong system interactions.

Such a methodological shift has already proved fruitful,
with several studies having investigated the dynamics of
quenches arising from the junction of two spin chains. The
junction of two X X Z chains has recently been shown to give
rise to ballistic and diffusive transport phases [18]. Motivated
in part by the integrability of its dynamics, investigations
of this setup have covered a large range of topics such as
light cone velocities [19], entanglement spreading [20], energy
transport arising from joining chains of different temperatures
[21-25], and emerging hydrodynamics [26]. Two junction
setups have also been studied: an XXZ chain coupled to
two X X chains acting as magnetization reservoirs was found
to behave similarly to the Markovian full-bias regime, with
ballistic and insulating phases separated by a subdiffusive
critical point [27].

An additional opportunity opened by purely Hamiltonian
evolution that has yet to be addressed is the possibility of
investigating systems coupled to interacting baths. Indeed,
Markovian coupling requires the baths to be composed of
noninteracting particles, and due to the prevalence of the
Markovian paradigm in the field of open quantum systems
the effects of interactions in the baths have been left mostly
unexplored. In this work, we present evidence of critical
behavior arising from bath interactions in a strongly coupled
boundary-driven spin chain.

II. MODEL

We study the dynamics of a tripartite X X Z chain, which
is sketched in Fig. 1. The first and third parts of the chain
play the role of positive and negative leads of a magnetization
battery and will be referred to as the battery leads. The middle
part will be referred to as the system. We call Ny the length
of the batteries and Ng the length of the system. Sites Np
and Ny + Np are situated at the interfaces of battery leads
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FIG. 1. Sketch of the chain. Spin current flows from left to right
due to initial condition.

and system and will be referred to as the junctions. Unless
specified otherwise, Ng = 1.5N5.

The Hamiltonian for the entire chain can be expressed in
terms of Pauli matrices as

2Ng+Ns—1

H= Y

i

UB, 1fl<N30r12NB+NS
U, = . ,
Ug, otherwise

JXiXip + YY)+ UZiZiyy, (1)

with J the spin hopping rate and Ug,Us the spin repulsions
inside the battery leads and system, respectively.

At the start of the simulation, we prepare the battery
leads in the |11 ... 111) and ||| ... |} ]) states. The system
is prepared in the ground state of its XXZ Hamiltonian
|G). The initial state of the whole chain is thus |¥) =
T DG P

The dynamics resulting from this initial state can be
understood as the result of two local quenches occurring at the
junctions. These quenches spawn excitations that propagate
throughout the chain.

Our global Hamiltonian being nonhomogeneous, it is not
solvable by Bethe Ansatz techniques. We rely instead on
DMRG methods, which have proven efficient at simulating
local quenches. Simulation of the system is performed using
time-dependent matrix product state techniques (tMPS). Time
evolution is performed using second-order Trotter-Suzuki
decomposition with time step dr = 0.05/J and maximal bond
dimension D = 500.

The transport properties are studied by computing the spin
currents Q; = 2J (X;Y; 41 — Y; X;41), which appear in the
continuity equation (Z;) = Q;_; — Q;. Of particular interest
are the current at the positive lead junction, which we denote as
0, and the current in the middle of the system, Q,,. The time
dependence of Q reveals two distinct transient regimes. We
note t; and 1, the end of each transient regime, and Q(t > 1)
is the quasi-steady-state current.

In previous literature there have been two main strategies
for characterising the type of transport. The spreading of
local excitations [18] and the system size scaling of persistent
currents [14,15]. We note that both approaches may be directly
linked as discussed in Ref. [28], and in principle only one
of the above criteria should be enough to characterize the
transport; however, we have found in practice by performing
both analyses that the time behavior gives more consistent
conclusions.

Let us assume the current to scale with the system size
as Q o« N77. We have that if y = 0 the system is a perfect
ballistic conductor, y < 1 indicates super-diffusion, y =1
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FIG. 2. Junction currents as function of U and Uy for system
size Ng =20. Currents are taken during the second transient
regime Q(71-2),Ti»2 = 0.15Np/J. Superimposed, proposed phase
boundaries. The transport of each phase boundary is indicated by the
legend. The type of transport in each area-region delimited by the
boundaries is indicated by the text written on top of the figure.

diffusion and y > 1 super-diffusion. This also translates into
the time behavior of the current. In the spirit of spreading of in-
homogeneities we consider the total magnetization transferred
form one of the baths,

AZ(t) = f 0(t) x t°, 2)
0

such that § = 1 indicates ballistic transport, § > % super-

diffusion, § = % diffusion, and § < % subdiffusion. Further-
more, if Q(t) & t~%, we may identify « = 1 — §. A relation
between y and o maybe expected; however, we find no obvious
functional form.

We point out that the phenomenological master equation
driving in Refs. [14,15,28] ensures persistent currents even
outside the ballistic phase. In contrast, our simulations that
explicitly model the bath do not guarantee that currents will
persist in the infinite time limit. Therefore, even though we
make an effort to relate the current work to the finite size
scaling in Ref. [15], we find the time behavior of the current
to be a more appropriate object for study.

III. CONJECTURED PHASE DIAGRAM

In Fig. 2 we present junction currents in the second transient
regime as a function of Ug and U obtained for a system of size
Ngs = 20. At a glance, one sees a square area of high current
defined by max(Upg,Uys) < 1. We show that this area exhibits
ballistic transport at and below the line Ug = Up line and
super-diffusive transport above the line. Outside the square,
another separation can be seen along the Ug = Uy line, with
much greater current above it than below. This motivates us to
distinguish two additional phases: a subdiffusive phase above
the line and an insulating phase below. We show that the current
Q(7) has power law time decay in the generalized-diffusive
phases but exponential decay in the insulating phase. It should
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FIG. 3. Color plots of Magnetization (Z;) and spin current (Q;) as functions of time and space for Ng = 50, spin current at battery-system
junction as function of time for various system sizes. Top row: Ug,Us = (0.5,0.5). Middle row, (0.5,1.3). Bottom row, (1.3,0.5).

be noted that the anamalous-diffusive phases are a feature
contingent on the presence of interactions in the bath. The
above description of the phase diagram is specific regarding
the type of diffusion found in each region. However, our focus
here is not the precise determination of the anomalous diffusion
exponents since these are also plagued by numerical and finite-
size effects. Therefore, we note that in some cases we refer
to all the diffusive-type phases simply as diffusive when it
comes to differentiating them with respect to the ballistic and
insulating phases.

Figure 3 presents magnetization and current profiles char-
acteristic of the three phases. A few general features of the
dynamics can be noted. In all phases, one can see two light
cones arising from the quenches at the junctions. This structure
gives rise to two transient regimes of the junction current. The
first regime lasts until the light cone from one junction crosses
the system and hits the opposite junction. We refer to this time
as 7;. Behavior in all phases is similar in this regime: current
starts to flow from both leads into the system. The dynamics
of this regime are those of a single battery-system junction.

It is instead the second transient regime and the quasi-
steady-state that reveal the differences between the phases.
In contrast to the first transient, their behavior is dictated
by the interference of the two light cones. In the ballistic
phase, the merging of the light cones gives rise to a finite
value of the current and a smooth magnetization profile. In the
insulating phase, we instead observe destructive interference
causing a sharp drop of the current to 0. The magnetization
profile displays staggered order in the system and a sharp step

of the magnetization profile in the middle. In the diffusive
phase, we observe instead a remarkably different evolution
of the profile. The magnetization gradient in the system can
actually be reversed, with (Z;) < O close to the positive lead,
and vice-versa at the negative lead. In addition, the net drop
of the current to 0 is much slower with fast oscillations. These
differences in the current time-dependence and magnetization
profiles provide evidence that the diffusive phase is a phase
induced by bath interactions. To complement these qualitative
observations, we provide a finite-size scaling analysis of the
ballistic-insulating and ballistic-diffusive transitions, as well
as quantitative evidence for the distinct dynamical signatures
at the insulating-diffusive transition.

In Fig. 4 we address the ballistic-insulating transition and
we show the time evolution of the current Q that takes per-
sistent non-vanishing values only for Ug < 1. The dynamical
behavior given a very sharp indicator of the transition.

Finite-size scaling of quasi-steady-state current was in-
vestigated along the ballistic-insulating transition. The non-
Markovian dynamics induce oscillations of the current around
its average even at long times. For this reason we fit the

time-averaged current Q = = _112 fs Q(t)dt with respect to
system size. Figure 5 presents the results of a power-law fit for
the ballistic phase and exponential fit for the insulating phase.

For Ug < 1, the vanishing exponent is a clear indication
of system-size independence and ballistic behavior. However,
we recognize finite size effects give a small but nonzero
exponent especially when closer to the transition at Ug = 1.

At the transition, we observe approximately normal diffusion
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FIG. 4. (Left) The current Q(¢) as a function of time for a central
system of N = 50 with a bath interaction of Ug = 0.5J. (Right) The
long time average current Q as a function of the system interaction.
The time interval for averaging is indicated in the left panel.

y & 0.9. Above the transition point the values of the current are
small and MPS truncation errors become relevant, especially
for large system sizes. Our scaling data would suggest very
weak diffusion; however, due to the dynamical fast drop of
the current in this regime our best interpretation is that an
exponential scaling emerges: in this circumstance, we consider
dynamical features to be better indicators than the scaling. This
motivates our choice of reporting the exponential fits in Fig. 5.
All these findings are similar to what was found in the Ug = 0
case in Ref. [27], suggesting the bath interaction plays no
meaningful role in this region of the phase diagram.

The same procedure was performed for the ballistic-
diffusive transition. In Fig. 6 we show the time dynamics
across the ballistic-diffusive transition as we increase the bath
interaction. Decaying power laws emerge as we approach
Up = 1. Our data suggests the diffusion point to be at Ug ~
0.85; however, due to finite-size simulations and truncation
errors our results do not allow us to draw the precise location
of the diffusive point nor whether or not the weak power laws
preceding it are just due to finite-size effects. What we have
certainly established is that for very small Up the system is
a ballistic conductor and as we increase Up the system turns
into diffusive and even subdiffusing conductor. Results are
presented for the finite-size scaling in Fig. 7. We find weak
system-size dependence for Up < 1, which becomes stronger
approaching Up > 1. Here, however, the finite-size scaling
seems to be a less meaningful analysis. Our analysis would
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FIG. 5. Data points and associated power-law Q(N)= AN~
and exponential Q(N) = Be™V fit results for Uz = 0.5, Us €
[0.7,1.3]. The time-averaging interval is [7, = 0.15,7 = 0.45]Np/J.
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FIG. 6. (Left) The current Q(t) as a function of time for a central
system of N = 50 with a system interaction of Us = 0.5J. (Right)
The exponent of the power law Q ot~ as a function of the system
interaction. The time interval for fitting is indicated in the left panel.

suggest super-diffusive behavior; however, the fast power
laws in Fig. 6 indicate subdiffusion. Regardless of the precise
exponents and transition point the fact that the bath interactions
induce generic diffusive behavior is evident.

We now turn to quantifying the time-dependence difference
between the diffusive and insulating phase. We investigate
data points on a line perpendicular to Ug = Up, which we
parametrize by s as (Z’S‘) = (}:g) —i—s%(_l]). The results are
presented in Fig. 8.

On the left, current as a function of time is drawn for
a point in each phase and a point on the diagonal for
Ng = 50. Inside the insulating phase (s = —0.3) we can see
the dynamical signature of this regime, which is the fast
drop of the current toward zero. Exactly at the diagonal
(s = 0) we have the transition point in which we can see two
distinct features. Persistent fast oscillations are the trait of the
transition point. These oscillations carry, however, an envelope
given by a time-algebraic decay Q o t~*, which is the
signature of the diffusive phase that extends above the diagonal
(s = 0.3). We have fitted the time evolution of the current after
the interference of the light cones both with an exponential and
a power law. The power-law and exponential fit coefficients
and errors are presented on the right. As one can see from the fit
errors, s < 0is better described by an exponential decay, while
at the transition and beyond s > 0 the power-law is a better
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FIG. 7. Data points and associated power-law Q(N) = AN~ fit
results for U € [0.7,1.3], Us = 0.5. The time-averaging interval is
[t =0.3,T =0.45]Ng/J.
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FIG. 8. On the left, junction current as function of time for point
in insulating phase (s = —0.3), diffusive phase (s = 0.3), and on the
transition line (s = 0), Ng = 50. On the right, results of power law
QO(t) = At~ and exponential Q(t) = B exp™# fits on the Jt/N, €
[0.1,0.45] time interval for s € [—0.3,0.3].

description. The two features are consistent with insulating and
diffusive transport, respectively, and therefore concur with the
results of finite-size scaling.

Finally, we compare our protocol to the one in Ref. [18]
in the case in which bath and system interactions are the
same, resulting in a homogeneous Hamiltonian with different
inhomogeneous initial conditions. Our results in Fig. 9 indicate
ballistic transport below U < 1 with a sharp transition to
subdiffusion, while the results in Ref. [18] indicate normal
diffusion. We note that our findings do not contradict Ref. [18],
since the initial conditions are markedly different.

IV. OSCILLATIONS AND TRAPPED QUASIPARTICLES

As one can notice in Fig. 3, oscillations of the current appear
in the the system after the light cones collide. The domain
where these oscillations occur is identical to the domain where
magnetization is close to 0. Thus, these oscillations spatially
expand in the ballistic phase but remain localized inside the
system in both the diffusive and insulating phases.

0
0 0.2 0.4 0.5 1 1.5
Jt/Ng U

FIG. 9. (Left) The current Q(t) as a function of time for a
central system of N = 50 with a system interactionof Us = Up = U.
(Right) The exponent of the power law Q o ¢~ as a function of the
interaction. The time interval for fitting is indicated in the left panel.
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FIG. 10. Left: Current profile for U = 0.7. High and medium
frequency oscillations are well visible. Right: |Q,,(v)| for points in
ballistic phase.

To further characterize these oscillations, we investigate the
midsection current Q,, = Q Npils and the Fourier transform
2

of its oscillations around the mean Qm(v). For a system of size
Ny = 50, we place the beginning of the Fourier analysis atr =
10/J. We focus on the homogeneous system Ug = Ug = U,
which includes points from the ballistic phase as well as the
diffusive-insulating phase boundary. Figures 10 and 11 present
closeups of the currents in the system for the ballistic phase
and diffusive-insulating phase boundary on the left. O,,(v) is
presented on the right.

We distinguish three main oscillations. The higher-
frequency peak, with a frequency between 1.2 and 1.6, is
responsible for the checkerboard pattern visible in both current
pictures. The middle peak, with a frequency between 0.3 and
0.6, is best visible in the ballistic phase, where it is responsible
for the larger pattern visible in Fig. 10. The lower peak, with
a frequency between O and 0.3, only appears on the phase
boundary, and is responsible for the pattern in Fig. 11. It is
of much higher amplitude than the medium oscillation, and
thus overshadows it in this regime, although all three peaks
are discernible in the spectrum.

A remarkable feature of these oscillations is their persis-
tence in the long time limit, which is only possible in the
diffusive phase due to the very slow relaxation to a stationary
state. This feature is of course absent in the phenomeno-
logical Master equation description, and is an indicator of
the non-Markovian character of the strong coupling regime
studied here. As previously mentioned, the low-frequency
oscillation is unique in that it remains trapped in the middle
of the system. The combination of its localization and long-
time persistence suggests a rather reminiscent analogy to
classical solitons. These nontrivial phenomena highlight the

FIG. 11. Left :

frequency oscillations are well visible. Right: |0,(v)| for points on
phase boundary.

Current profile for U = 1.3. High- and low-
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FIG. 12. One parameter fit of oscillation frequencies. o« = 0.63.

relevance of studying the strong coupling non-Markovian
regime from both a theoretical and experimental point of
view.

The frequencies of the oscillations are well described by
the following expressions:

Viow = & max(U — J,0),
Vmediom = o min(U, J),

Vhigh = @ [2J + max(U — J,0)].

Figure 12 presents the result of fitting the data using a
single o for all three frequencies. The qualitative change
of frequency scaling is remarkable and coincides with the
change from ballistic phase to insulating-diffusive phase
boundary.
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V. CONCLUSION

We have presented a study of the effects of bath interactions
on the transport phases of a non-Markovian boundary-driven
spin chain. Behavior for Up < 1 was analogous to previous
results for noninteracting baths [27]. Above Up > 1, we have
presented evidence for bath interaction-induced transitions
to a diffusive phase that we characterized by power-law
finite-size scaling. Most importantly, we have shown that
this diffusive phase has a distinctive long-time-algebraic
decay of the current Q o t~*. Along Up = Uy, ballistic and
diffusive behavior was found, analogous to results from the
single-junction case [18,29]. In the homogeneous system,
we have characterized the oscillations arising from the non-
Markovian aspect of the strong coupling. Their amplitude was
found to not decay at long times, and spatial localization
of one of the oscillations was observed. The scaling of
oscillation frequencies was found to sharply change at the
Heisenberg point, coinciding with transition from ballistic
phase to insulating-diffusive boundary. These findings attest
to the relevance of considering non-Markovian coupling
that goes beyond the local-phenomenological master-equation
treatment. As a future perspective, it would interesting to
further explore the quasiparticle picture to better understand
the interference of the light cones and the nature of the trapped
oscillations we have observed. One possible route is the
Bethe-based Hydrodynamical approach recently introduced
and applied to integrable regimes [26,30-37].
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