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Symmetry breaking in occupation number based slave-particle methods
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We describe a theoretical approach to finding spontaneously symmetry-broken electronic phases due to
strong electronic interactions when using recently developed slave-particle (slave-boson) approaches based on
occupation numbers. We describe why, to date, spontaneous symmetry breaking has proven difficult to achieve
in such approaches. We then provide a total energy based approach for introducing auxiliary symmetry-breaking
fields into the solution of the slave-particle problem that leads to lowered total energies for symmetry-broken
phases. We point out that not all slave-particle approaches yield energy lowering: the slave-particle model being
used must explicitly describe the degrees of freedom that break symmetry. Finally, our total energy approach
permits us to greatly simplify the formalism used to achieve a self-consistent solution between spinon and slave
modes while increasing the numerical stability and greatly speeding up the calculations.
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I. INTRODUCTION

The effects of strong electronic interactions and electronic
correlations on materials properties is a subject with a
considerable history. The most celebrated textbook example
is the Mott transition, where with increasing strength of
localized electronic repulsions, electrons in the material lose
band mobility and instead localize at atomic sites (i.e., loss of
wave behavior). However, electronic correlations also underlie
many other ordered electronic phases such as various forms of
magnetism as well as superconductivity. A canonical model
Hamiltonian for correlated electrons is the (extended) Hubbard
model, where electrons can hop between localized orbitals
centered at atomic sites but multiple-electron occupancy of a
given atomic site leads to a significant energy penalty U . By
varying the ratio of U to the band hopping parameters, one can
cover the range from weak to strong electronic interactions and
correlations [1].

The workhorse in realistic first principles calculations in
crystal and electronic structure calculations, density functional
theory (DFT) [2,3], is fundamentally based on a description
of noninteracting electrons, i.e., band theory. Due to its simple
structure, band theory approaches cannot capture the effects
of dynamical electronic fluctuations and localized correlations
on electronic band spectra. Extensions of DFT to go beyond
local exchange-correlation potentials and to include nonocal
Hartree-Fock-type electronic behavior, such as the DFT + U
and hybrid functional approaches [4,5], can capture certain
effects of electron-electron interactions, especially for strongly
symmetry-broken situations. Nevertheless, these are still band
theory descriptions incapable of leading, e.g., to electron
localization without resorting to symmetry breaking.

More advanced computational many-body approaches for
simulation of electronic correlations are based on Green’s
functions methods. One type of approach is the GW approx-
imation to the electron self-energy [6–8], which is a fully
ab initio approach that includes the physics of nonlocal and
dynamical electronic screening and produces accurate results
for electronic band energies of a wide variety of materials

[8,9]. However, the GW method is based on summation of
a subset of many-body diagrams (RPA diagrams) and thus
does not capture a number of physical effects; separately GW

calculations are notoriously expensive in terms of computation
time due to their fully ab initio nature and lack of a particular
basis set. Another avenue of approach is represented by dy-
namical mean-field theory (DMFT) [10,11], which can include
the effect of local interactions and dynamical fluctuations by
solving a model Hamiltonian with local interactions exactly
(i.e., all diagrams for the local interactions are included).
However, DFT + DMFT calculations on realistic materials
with large unit cells are still quite challenging, as they require
large-scale parallel computations.

For all these reasons, approximate and efficient methods
for solving correlated problems continue to be of interest
to the computational many-body community. One set of
methods of recent interest for solving Hubbard models is
slave-particle (slave-boson) methods. These methods, which
have a long background in condensed matter theory, have
been used to study cases with infinitely strong repulsive
interactions [12–18]. Dealing with finite interaction strengths
was enabled by the Kotliar-Ruckenstein approach [17], whose
variants and modifications have been applied to the study of
high-temperature superconductors [19] as well as multiband
models [20–22] to elucidate the effects of multiple orbitals,
degeneracy, and Hund’s coupling [20,21]. In these approaches,
each bosonic slave degree of freedom tracks the occupancy of
a particular electronic configuration of a correlated site: once
multiple orbitals and multiple electron counts can exist at a site,
the number of required bosons becomes large. These methods
can and have been used to describe spontaneously broken elec-
tronic symmetry (e.g., magnetic) states [17,20,23]. In addition,
fully rotationally invariant slave-boson formalisms have been
designed that permit spontaneous breaking of particle-number
conservation and superconducting solutions [24].

A recent set of more economical slave-particle methods has
been developed and become of wider interest, such as the slave-
rotor method [25,26] and its application to nickelate oxides
[27] and the slave-spin method [28–30] and its application to
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iron-based superconductors [31]. Recently, we have developed
a generalized version of these methods that does not require
the analogy with spin or angular momentum and introduces
multiple intermediate slave-particle models [32]. These recent
approaches use the slave degrees of freedom to track the
electron occupation number at a site, and its distribution among
orbital and spin channels, and thus require a much smaller
number of bosons per site.

However, in all the previous literature in which these oc-
cupation number based methods have been used, spontaneous
symmetry breaking has been achieved in multiorbital systems
where both a Hubbard U and a nonzero Hund’s J interaction
have been operative [27,29,31]. For a system where only the
repulsion U operates, spontaneous symmetry breaking has not
been displayed, even when interaction-induced magnetism is
a feature of the actual ground state of the model Hamiltonian
[e.g., ground-state antiferromagnetic (AFM) order for a half-
filled single-band Hubbard model]. Indeed, as we show,
stabilizing a purely interaction-induced symmetry-broken
phase is very difficult for slave-particle methods without the
introduction of symmetry-breaking fields. Our work describes
this issue in detail and provides a total energy approach that
naturally produces symmetry breaking. We then show how
one can make slave-particle self-consistency between spinon
and slave modes much more efficient via a specific and exact
decoupling of the two modes.

II. THE SLAVE-PARTICLE APPROACH

In this section we review the key aspects of the slave-particle
formalism used in previous work to set up the notation and
language used in subsequent sections. The general correlated-
electron Hamiltonian we consider is an extended Hubbard
model given by

Ĥ =
∑

i

Ĥ i
int+

∑
imσ

εimσ d̂
†
imσ d̂imσ −

∑
ii ′mm′σ

timi ′m′σ d̂
†
imσ d̂i ′m′σ .

(1)

The d̂ are canonical fermion annihilation operators. The
indices i and i ′ range over the localized sites in the system
(usually atomic sites), mm′ range over the localized spatial
orbitals on each site, σ = ±1 denotes spin, Ĥ i

int is the local
Coulombic interaction for site i, εimσ is the on-site energy
of the state labeled imσ , and timi ′m′σ is the spin-conserving
hopping element term connecting orbital imσ to orbital
i ′m′σ . A commonly used interaction term is given by the
Slater-Kanamori form [33]

Ĥ i
int = Ui

2

(
n̂2

i − n̂i

) + Ui − U ′
i

2

∑
m�=m′

n̂imn̂im′

−Ji

2

∑
σ

∑
m�=m′

n̂imσ n̂im′σ

−Ji

2

∑
σ

∑
m�=m′

(d̂†
imσ d̂imσ̄ d̂

†
im′σ̄ d̂im′σ

+ d̂
†
imσ d̂

†
imσ̄ d̂im′σ d̂im′σ̄ ). (2)

While the Coulombic parameters Ui , U ′
i , and Ji can in principle

depend on the site index i, in practice in most models they
are assumed to be the same for all correlated sites. Briefly,
the U term describes repulsion between the same spatial
orbitals on a site, U ′ describes repulsion between different
orbitals, and J measures the strength of the Hund’s interaction
between different orbitals with the same spin state. The number
operators are

n̂imσ = d̂
†
imσ d̂imσ , n̂im =

∑
σ

n̂imσ , n̂i =
∑
mσ

n̂imσ .

The interacting Hubbard problem is impossible to solve
exactly and even difficult to solve approximately. Some of
the complexity is due to the fact that the interacting fermions
have both charge and spin degrees of freedom. In slave-boson
approaches [12–18], one separates the spin from the charge
degrees of freedom at each site by introducing a spinless
charged bosonic “slave” degree of freedom at each site along
with a spinful neutral fermion termed a spinon. The spinon
and slave-boson annihilation operators are indicated by the f̂

and Ô operators, respectively. Specifically, the electron-field
operator is decomposed as

d̂imσ = f̂imσ Ôiα, d̂
†
imσ = f̂

†
imσ Ô

†
iα. (3)

The index α is part of our generalized notation [32] that permits
us to unify different occupation number based slave-particle
models. At each site, the α’s label disjoint sets of localized
states mσ . The meaning of α depends on the type of slave-
particle model chosen, and α refers to a subset of the mσ

indices that belong to a site i. For example, if we use a slave-
rotor model for the correlated orbitals at a site [25,26], then
α is nil: Ôiα = Ôi . Namely, we have a single slave particle at
each site i that only tracks the total number of electrons at that
site. At the opposite limit, we can have a unique slave boson
for each mσ combination at a site (the “slave-spin” method
[28,29]), so that in this case α = mσ .

In the slave-particle approach used in this work, as well
as prior literature on this class of methods [25,26,28,29,32],
the Ô operators are not standard bosonic-field annihilation
operators and thus do not obey canonical bosonic commutation
relations. Instead, they simply lower the number of particles,
Ô|N〉 = |N − 1〉 (there is no factor of

√
N present). This is

required for the type of slave-boson approach we use to be
faithful to the original description: i.e., the matrix elements of
d̂ and f̂ Ô are identical between physical states and they both
obey fermionic commutation relations. The equality of matrix
elements is shown in the Appendix of Ref. [32] and a separate
demonstration of faithfulness is found in the Appendix here.

The introduction of slave bosons by itself does not make
solution of the Hubbard model any easier, as more degrees of
freedom have been introduced to further enlarge the Hilbert
space. To avoid sampling of unphysical states in the enlarged
spinon + slave Hilbert space which have no correspondence to
those in the original electronic Hilbert space, one must ensure
that the number of slave particles and number of spinons track
each other. More precisely, as Eq. (3) shows, spinon and slave
particles are created or annihilated at the same time so that
only state kets in the extended Hilbert space that obey this
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condition are physical. Hence, one must ensure that

d̂
†
imσ d̂imσ = f̂

†
imσ f̂imσ

and also that the subset of physical states |�phys〉 must obey

n̂iα|�phys〉 = N̂iα|�phys〉, (4)

where N̂iα is the number counting operator for the slave
particles and the corresponding particle count for spinons is

n̂iα =
∑
mσ∈α

f̂
†
imσ f̂imσ . (5)

The constraint of Eq. (4) ensures that the number of slave
bosons and the number of spinons match exactly for each α

index [25,26,28,32].
The key approximation that makes the slave-boson ap-

proach more tractable than the original problem is to assume a
separable form for the overall wave function of the system,
which takes a product form |�f 〉|�s〉, where |�f 〉 is a
spinor-only state ket and |�f 〉 is a slave-only state ket. This
means that one can only enforce the above operator constraints
on average

〈n̂iα〉f = 〈N̂iα〉s , (6)

where the spinon and slave averages for any operator Â are
defined via

〈Â〉f = 〈�f |Â|�f 〉, 〈Â〉s = 〈�s |Â|�s〉.
We point out that the matching condition of Eq. (6) can go

beyond simply setting the total number of spinons and slaves
equal at each site. When the index α is sufficiently fine-grained,
the matching is a much stronger constraint: for example, if
α distinguishes different spin directions, then the numbers
of spinons and slaves must match for each spin direction
separately. As we show below, this is crucial for correctly
describing situations where symmetry is broken because it
ensures that the broken symmetry appears in both spinon and
slave sectors simultaneously.

This separability assumption means that one must solve two
separate and easier eigenvalue problems,

Ĥf |�f 〉 = Ef |�f 〉, Ĥs |�s〉 = Es |�s〉,
in a self-consistent fashion. In the simplest case of the
interaction Hamiltonian, where U = U ′ and J = 0, the spinon
Hamiltonian is given by

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
iα

hiαn̂iα

−
∑
ii ′αα′

〈Ô†
iαÔi ′α′ 〉s

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ f̂
†
imσ f̂i ′m′σ , (7)

while the slave-boson Hamiltonian takes the form

Ĥs =
∑

i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii ′αα′

⎡
⎢⎢⎢⎣

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

⎤
⎥⎥⎥⎦Ô

†
iαÔi ′α′ , (8)

where the spinon averages 〈f̂ †
imσ f̂i ′m′σ 〉f renormalize the slave

boson hoppings (and vice versa). The slave-boson problem
is one of interacting charged bosons without spin on a
lattice. Self-consistency refers to the fact that the spinon
Hamiltonian involves averaged quantities involving the slave
wave function, and vice versa. In addition, the values of the
Lagrange multipliers hiα must be chosen to ensure average
particle-number matching as per Eq. (6).

As stated above, the forms written in Eqs. (7) and (8)
are for the simplest “U -only” form of the interaction term
Ĥint. More generalized forms for Ĥf and Ĥs that describe
the generic multiband case (where U �= U ′ and J �= 0) can
be found in Secs. II D 1 to II D 4 of Ref. [32]. We note
that these slave-boson methods have successfully described
multiband cases and the effects of Hund’s interactions on a
number of physical properties (e.g., band narrowing, orbitally
selective Mott transitions, magnetism, etc.) [27,28,30,32].
However, in the following, we focus on the simplest case (U =
U ′ and J = 0), which is already highly informative about
the shortcomings of these slave-boson approaches regarding
symmetry breaking: we use the simple forms in Eqs. (7) and
(8) in the remainder of this work.

III. SINGLE-SITE MEAN-FIELD APPROXIMATION

In practice, the slave Hamiltonian, Eq. (8), represents a
many-body interacting bosonic problem that has no exact
solution. In what follows, when solving numerically for the
ground state of a spinon + slave problem, we use a simple
single-site mean-field approach: when dealing with site i in
the salve problem, we replace the Ôiα slave operators at the
other neighboring sites by their averages 〈Ôiα〉s . For the spinon
Hamiltonian, this boils down to the simple replacement

〈Ô†
iαÔi ′α′ 〉s → 〈Ô†

iα〉s〈Ôi ′α′ 〉s
in the hopping term. The slave Hamiltonian turns into

Ĥs =
∑

i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii ′αα′

⎡
⎢⎢⎢⎣

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

⎤
⎥⎥⎥⎦

×[〈Ô†
iα〉sÔi ′α′ + H.c.], (9)

which is a simple many-body system of isolated sites where
the bosonic Ôiα and Ô

†
iα operators remove and add bosons to

the site from an effective bosonic mean-field bath. We note
that, for the simple model Hamiltonians we use below in this
approach, the quasiparticle renormalization factor (or weight)
Z is simply given by Ziα = 〈Oiα〉2

s .

IV. DIFFICULTIES OBTAINING SYMMETRY-BROKEN
PHASES

In this section, we explain why the current implementation
of mean-field theory fails to obtain proper symmetry-broken
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phases. We use the example of the well-understood one-
dimensional (1D) Hubbard model at half-filling. Consider
the Hamiltonian,

Ĥ = U

2

∑
i

(
N̂2

i − N̂i

) −
∑
i,σ

t(ĉ†i,σ ĉi+1,σ + ĉ
†
i+1,σ ĉi,σ ),

(10)
where i is the site index, there is a single orbital per site,
there are two spin channels per site, and we consider the case
where we are at half-filling (〈N̂i〉 = 1). The ground state is
well known. For U = 0, the ground state is nonmagnetic and
metallic. For U > 0 but finite, the ground state is insulating
and shows AFM correlations [34] but has finite quasiparticle
weight Z > 0.

For U = 0 and U 	 |t |, the model’s solutions are well
described by existing slave-particle mean-field implementa-
tions. For the intermediate region U ∼ |t |, we are aware of
no published study using recent slave-spin, slave-rotor, or
other formalisms from the same family that has obtained the
correct AFM phase for this model. Namely, the AFM solution
does not appear to be a self-consistent ground-state solution
of the spinon + slave coupled Hamiltonians. In addition to
being annoying, this is very worrisome since even a simple
uncorrelated approach such as Hartree-Fock easily delivers an
AFM ground state.

To understand where the problem lies, consider the spinon
Hamiltonian of Eq. (7) and how one would achieve symmetry
breaking, e.g., spin symmetry breaking and ordering, due to
electron interaction effects. Since the electron interaction is
handled by the slave sector, the only quantities that can be
affected by the slave calculation that then feed into the spinon
Hamiltonian are the Lagrange multipliers hiα and the rescaling
factors 〈Ô†

iαÔi ′α′ 〉s of the spinon hopping.
In the simplest slave treatment, we have a single slave

particle at the site: for example, the slave-number and slave-
rotor treatments. In this case, the α label is nil so our Lagrange
multipliers are only indexed by site hi , and the rescaling factors
as well, 〈Ô†

i Ôi ′ 〉s . Obviously, no spin symmetry breaking
is possible in the spinon sector since these variables do not
depend on spin in any way.

When we move to more elaborate slave-particle models
where there are different slave modes for the different spin
channels, one can imagine that symmetry breaking is possible.
For example, in our single orbital per site, 1D Hubbard model,
when we have one slave particle for each spin channel, then
α = σ . We can now imagine that the hiσ shift the on-site
energies of the orbitals in such a way as to break spin symmetry
or that the hopping rescaling factors are also spin dependent.
In practice, however, we have not found this to be the case:
starting from a strongly symmetry-broken initial guess, the
self-consistency cycle between spinon and slave sectors drives
the system towards a paramagnetic solution and the two
spin channels become equivalent. Any initial magnetization
disappears upon self-consistent iteration.

We have analyzed this failure and discovered the following
situation. If at some point the spinon system has broken spin
symmetry at a site i with net spin-up, then hi↑ > hi↓ is what
makes this true. However, although hi↑ > hi↓ favors a higher
spin ↑ occupancy in the spinon sector [due to the negative

FIG. 1. �n = n↑ − n↓ as a function of �h = h↑ − h↓ at one site
of the 1D, half-filled, single-band Hubbard model with U = 2 and t =
1. Top: FM phase. Bottom: AFM phase. The �h dependences of the
spinon and slave occupancies are shown separately. Self-consistency
between the two requires zero occupancy difference.

sign in front of hiα in Eq. (7)], it favors a higher occupancy
of the spin ↓ channel in the slave sector [positive sign of hiα

in Eq. (8)]. The two effects fight each other, and the final
self-consistent solution has hi↑ = hi↓. An explicit example is
provided by the 1D single-band Hubbard model at half-filling,
for which the dependences of slave and spinon occupancies
on h are shown in Fig. 1. These plots are generated by
providing �ni = ni↑ − ni↓ at some fixed site i as input to
the slave problem, which yields �hi = hi↑ − hi↓ and 〈Ôiσ 〉,
which are then used to solve the spinon problem to get the
spinon �ni . Figure 1 clearly shows that the only self-consistent
solution where the slave and spinon particle numbers match
is for �hi = 0, which is the symmetric paramagnetic
state.

V. SYMMETRY-BREAKING FIELDS

In this section, we show how manually adding small
external symmetry-breaking terms (“fields”) to the on-site
energies can lead to electronic symmetry breaking and lower
the energy of the self-consistent ground state. In the next
section, we justify this apparently ad hoc approach.

Adding additional symmetry-breaking (“magnetic-field”)
terms bimσ to the on-site energies of the orbitals in the spinon
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Hamiltonian gives the simple modification

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
iα

hiα

∑
mσ∈α

f̂
†
imσ f̂imσ

−
∑
ii ′αα′

〈Ô†
iαÔi ′α′ 〉s

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ f̂
†
imσ f̂i ′m′σ

−
∑
imσ

bimσ f̂
†
imσ f̂imσ . (11)

We do not modify the slave Hamiltonian in any way in this ad
hoc approach.

We note that a symmetry-breaking field indexed by imσ

can break symmetry between sites, between orbitals, and
between spin directions (and any combination thereof). It is
critical to note that the nature and type of symmetry-breaking
fields predetermine the types of solutions one can describe:
to generate more complex types of symmetry breaking (e.g.,
superconducting order with slave bosons [24]), one will first
have to generalize the formalism to allow for the appropriate
symmetry-breaking fields.

The addition of nonzero symmetry-breaking fields bimσ

will modify the self-consistent solution to the spinon + slave
problem. To gauge whether this improves the solution, we
monitor the total electronic energy and see if it is lowered due to
symmetry breaking. The total energy is the expectation value
of the original Hubbard Hamiltonian, Eq. (1), with respect to
the approximate spinon + slave wave function |�f 〉|�s〉 and
is equal to

Etotal = 〈Ĥ 〉 =
∑

i

〈
Ĥ i

int

〉
s
+

∑
imσ

εimσ 〈f̂ †
imσ f̂imσ 〉f

−
∑

ii ′mm′σ

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f 〈Ô†

iαÔi ′α′ 〉s . (12)

(Please note that in order for the expectation value
of Ĥ to give the associated energy, the state must be
normalized, which is most convenient to achieve by setting
〈�f |�f 〉 = 〈�s |�s〉 = 1.)

We now apply this approach to the 1D single-band Hubbard
model at half-filling, Eq. (10). Without loss of generality, we
choose bi↑ = −bi↓ to break the spin symmetry at each site i.
For ferromagnetic (FM) order, we choose aligned symmetry-
breaking fields between neighboring sites bi+1,σ = biσ , while
AFM order requires staggered fields bi+1,σ = −biσ . Hence,
the field strength b for spin-up at one site is sufficient to
specify the fields at all sites. We numerically solve the spinon +
slave self-consistent equations using the single-site mean-field
approximation described in Sec. III. In essence, we search
broken-symmetry solutions parameterized by b to find the
lowest energy state. As we have prespecified FM (or AFM)
order with one (or two) site(s) per unit cell, we only find
such solutions; more complex magnetic orderings will require
more complex unit cells and symmetry-breaking fields with
more degrees of freedom.

We begin our analysis with the most coarse-grained slave-
boson representations, which only describe the total electron
count at each site (i.e., give no information on the spin
configuration). These are the slave-rotor and number-slave
methods. The chief difference between them is that the

FIG. 2. Total energy per site and quasiparticle weight Z (renor-
malization factor) versus symmetry-breaking perturbation field
strength b based on the slave-rotor method for the half-filled,
single-band 1D Hubbard model with U = 2 and t = 1.

number count at a site can be any integer in the slave-rotor
method, while the number-slave method corrects this by only
permitting the electron count to be among the physically
allowed values (e.g., 0, 1, or 2 for the single-band Hubbard
model). Figure 2 shows the dependence of the total energy
and quasiparticle weight Z (i.e., renormalization factor) on
the field strength b within the slave-rotor approach. For the
slave-rotor method, increasing b increases the total energy of
both AFM and FM solutions: the nonmagnetic solution is the
preferred ground state. The strength of electronic correlations,
measured by how much Z deviates from its noninteracting
value of unity, also increases with b. This b dependence is
opposite to what one would expect for the actual model system:
a more spin-polarized system should have smaller number
fluctuations, as occupancies are driven towards 1 or 0 and the
electron configuration becomes better described by a single
Slater determinant. Finally, the slave rotor predicts an abrupt
transition to a Mott insulator at finite b, which is peculiar (and
wrong).

The number-slave results for total energy and Z versus b,
displayed in Fig. 3, are somewhat improved over the slave-
rotor results but are still fundamentally flawed. The energy is
still minimized by the nonmagnetic solution at b = 0 (although
the energy rises more gently with b) and Z drops with b (albeit
more modestly). The failure of the slave-rotor and number-
slave methods is tied to the fact that they do not consider the
spin degree of freedom.
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FIG. 3. Total energy per site and Z versus field strength b for
the number-slave method for the single-band 1D Hubbard model at
half-filling with U = 2 and t = 1.

Due to the simplicity of the single-band Hubbard model,
the only remaining slave model is the spin + orbital-slave
approach (called “spin-slave” in the literature [28,29,35]).
At each site, each spin channel has its own dedicated slave
particle. The energy versus b plot in Fig. 4 shows that we
obtain an AFM ground state since a minimum appears at
finite b. The figure also shows that the degree of electronic
correlation is reduced with increasing b (and increasing
strength of AFM order) as the occupancies get closer to 0
and 1: the system becomes less strongly interacting as b is
strengthened. This is what we expect: with increasing AFM
spin polarization, the electronic configuration of the system
is driven to extremes of occupation (0 or 1 for each spin
channel), meaning that one can describe the system more
accurately with a single (noninteracting) Slater determinant.
More details on the energetic behavior versus b are provided
in Fig. 5, where the individual components of the total energy
are shown versus b. The interaction energy (Hubbard U term)
is reduced by the spin symmetry breaking since for both FM
and AFM order the occupancies move away from half-filling,
where occupancy fluctuation is largest. The band (hopping
or kinetic) energy rises with b due to the splitting of bands
upon symmetry reduction. Both behaviors are generic and
as expected. However, the reason the AFM order shows a
minimum total energy versus b is the fact that Z becomes larger
with b in this case: a larger Z (i.e., larger 〈O〉) will enhance
hopping, widen the bands, and thus offset the reduction in the
total band energy due to the creation of spin polarization.

FIG. 4. Total energy per site and Z versus field b for the spin
+ orbital-slave approach for the single-band 1D Hubbard model at
half-filling with U = 2 and t = 1. Unlike with the number-slave and
slave-rotor approaches, correlations decrease with increasing b for
the AFM phase and slowly increase with b for the FM phase.

The take-home message of this section is that the introduc-
tion of symmetry-breaking fields can succeed in stabilizing
symmetry-broken ground states due to electronic correlations
as long as the slave approach being used is able to describe the
symmetry-breaking degree of freedom (spin in the 1D single-
band Hubbard model). We are thus motivated to improve upon
the ad hoc nature of the approach and put it on a firmer
theoretical basis in the next section.

VI. SELF-CONSISTENT TOTAL ENERGY APPROACH

In this section, we justify the successful but ad hoc approach
in the previous section. Namely, we describe a total energy
functional that can be applied to any type of slave-particle
problem and permits easy incorporation of the various types
of desired constraints. Specifically, we show that the slave-
particle approach is a variational approach to the interacting
ground-state problem, and we provide an explicit form for the
variational energy functional. We also show that this viewpoint
provides significant practical benefits for efficient solution of
the self-consistency problem between slave and spinon sectors.

The form of the energy functional F is given by

F = Etotal + constraints,

where Etotal is from Eq. (12) and the constraint terms are
enforced by Lagrange multipliers. Prior to the introduction of
symmetry-breaking fields, the constraints we have enforced are
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FIG. 5. Individual components of the total energy are shown
versus b for the spin + orbital-slave approach for the single-band
1D Hubbard model at half-filling with U = 2 and t = 1.

that 〈Niα〉s = 〈n̂iα〉f as well as the normalization of the spinon
and slave wave functions 〈�f |�f 〉 = 〈�s |�s〉 = 1. To incor-
porate symmetry-breaking fields, we choose to parametrize the
functional F by target spinon occupancies νimσ : these numbers
are the occupancies that we are constraining the spinons to
obey, i.e., the constraints are 〈nimσ 〉f = νimσ . The associated
Lagrange multipliers are bimσ . Hence the energy functional
has the form, where we write out Etotal explicitly,

F ({νimσ }) =
∑

i

〈
Ĥ i

int

〉
s
+

∑
imσ

εimσ 〈f̂ †
imσ f̂imσ 〉f

−
∑

ii ′mm′σ

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f 〈Ô†

iαÔi ′α′ 〉s

−λf [〈�f |�f 〉 − 1]

−λs[〈�s |�s〉 − 1] −
∑
iα

hiα[〈n̂iα〉f − 〈N̂iα〉s]

−
∑
imσ

bimσ [〈n̂imσ 〉f − νimσ ]. (13)

The Lagrange multipliers λf and λs enforce normalization of
the spinon and slave wave functions, respectively (these are
necessary so that the expectation values of the various Hamil-
tonian terms correspond to average energies). The hiα enforce
particle-number matching between slave and spinon sectors.
The bimσ enforce spinon-particle matching to target values. As
expected, when the constraints are obeyed, F = Etotal.

The point of having an energy functional is that the
minimizing variational conditions, which generate desired
eigenvalue problems, are easily derived by differentiation. In
addition, the value of F provides a variational estimate of the
ground-state energy. Setting the derivative versus 〈�f | to 0
gives the spinon eigvenalue equation

0 = δF

δ〈�f | = Hf |�f 〉 − λf |�f 〉,

where the spinon Hamiltonian is Eq. (11), which includes the
symmetry-breaking fields. Similarly, the minimum condition
for |�s〉 gives a slave eigenvalue problem with the slave
Hamiltonian, Eq. (8).

The above formalism shows that, once all the constraints
are obeyed, F ({νimσ }) = Etotal({νimσ }). The remaining task is
to search the target occupancies νimσ to find the minimum
total energy. While theoretically straightforward, in practice
such an approach is difficult and inefficient because for each
specified {νimσ }, one must find the fields bimσ that enforce
those particular target occupancies: this requires solving the
spinon + slave problem a great many times.

Practically, it is better to use the bimσ as the independent
variables and to minimize the energy over them (formally,
this corresponds to a Legendre transformation of F ). Hence,
we now view νimσ as whatever mean spinon occupancies are
generated by the solution of the spinon + slave problem at fixed
{bimσ } which makes that corresponding constraint form always
vanish. Hence, in what follows, we use the symmetry-breaking
fields as independent variables and consider the total energy
functional F ({bimσ }). Since we always obey the key constraints
for a physical solution, F ({bimσ }) = Etotal({bimσ }) will be true.
Hence, minimization of the total energy versus {bimσ } will
coincide with minimization of F .

In summary, we have rewritten the slave-boson problem
as a constrained variational minimization problem. When the
constraints are obeyed, the minimization corresponds directly
to minimizing the total energy expression, Eq. (12).

VII. SIMPLIFIED AND MORE EFFICIENT
SLAVE-PARTICLE APPROACH

Up to this point, the slave-particle approaches we have
developed require self-consistency between spinon and slave
sectors in a specific manner: not only do the spinon expec-
tations renormalize slave hopping terms (and conversely for
slave expectations and spinon hoppings), but a shared set of
Lagrange multipliers hiα enforces particle-number matching
〈n̂iα〉f = 〈N̂iα〉s . The process of finding the hiα is numerically
challenging: the hiα appear with opposite signs in the spinon
Hf and slave Hs Hamiltonians, meaning that increasing hiα

decreases 〈n̂iα〉f but increases 〈N̂iα〉s . Our general observation
is that this “fighting” over hiα between the slave and the spinon
sectors leads to a time-consuming self-consistent process
requiring many iterations to reach convergence.

Accelerating this process requires a simple change of
variables that is motivated by three related observations: (i)
in the total energy functional of Eq. (13), the spinon and
slave number constraints are not treated symmetrically because
the spinons have the added bimσ terms; (ii) in the spinon
Hamiltonian, Eq. (11), we can add the hiα and bimσ terms
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together in a single term, whereas the slave Hamiltonian,
Eq. (8), only has the hiα terms; and (iii) in the end, these
Lagrange multipliers hiα and bimσ do not appear in the total
energy so rearranging them in various ways does not change
the total energy.

For the spinon Hamiltonian, we consider instead the new
symmetry-breaking field given by the sum Bimσ = hiα + bimσ .
The spinon Hamiltonian is now

Ĥf =
∑
imσ

εimσ f̂
†
imσ f̂imσ −

∑
imσ

Bimσ f̂
†
imσ f̂imσ

−
∑
ii ′αα′

〈Ô†
iαÔi ′α′ 〉s

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ f̂
†
imσ f̂i ′m′σ , (14)

while the slave Hamiltonian is unchanged:

Ĥs =
∑

i

Ĥ i
int +

∑
α

hiαN̂iα

−
∑
ii ′αα′

⎡
⎢⎢⎢⎣

∑
mσ ∈ α

m′σ ∈ α′

timi ′m′σ 〈f̂ †
imσ f̂i ′m′σ 〉f

⎤
⎥⎥⎥⎦Ô

†
iαÔi ′α′ .

The slave Hamiltonian Hs no longer shares a common
Lagrange multiplier with the spinon Hamiltonian Hf .

Operationally, this means that when we solve the slave
Hamiltonian problem, we are given specified 〈n̂iα〉f as input,
and we solve the slave problem while adjusting the hiα so
as to ensure that the slave-particle counts match the input:
〈N̂iα〉s = 〈n̂iα〉f . However, when solving the spinon problem
in the presence of symmetry-breaking fields Bimσ , there is no
need to do particle-number matching: the Lagrange multiplier
Bimσ simply make the spinon-particle counts match some free-
floating values. In this way, particle-number matching between
the slave and the spinon sectors is decoupled, which greatly
simplifies the self-consistency process. Put another way, the
symmetry-breaking fields Bimσ specify a set of desired spinon-
particle counts {νimσ }, and the slave sector is required to match
these particle numbers via the hiα Lagrange multipliers.

We find that this simplified approach, which is equivalent
to the standard approach of having hiα appear in both Hamil-
tonians, is much more efficient in numerical calculations, as
it greatly speeds up self-consistency. In this new approach,
one achieves rapid self-consistency for a given set of {Bimσ }
which specify the spinon Hamiltonian and the target spinon
occupancies νimσ . One can then minimize Etotal({Bimσ }) over
the Bimσ to find the symmetry-broken ground state. In our
experience, this new approach requires ∼5–10 times fewer
self-consistent steps to reach the same level convergence.

Using this method, we can rapidly scan over B in a
stable, self-consistent way to obtain the ground-state energies.
Figure 6 shows the dependence of the ground-state energy of
the half-filled, single-band, 1D Hubbard model as a function
of U/t : for each U/t , we easily scan over the new symmetry-
breaking field strength B to find the AFM ground-state energy.
The figure shows energy versus U/t for the AFM state as
well as the B = 0 nonmagnetic solution compared to the
exact Bethe ansatz solution for this problem [34]. Overall,
the comparison between the AFM slave-spin solution (which

FIG. 6. Comparison of the total ground-state energies (in units
of t) for the single-band 1D Hubbard model at half-filling based
on the AFM Hartree-Fock solution, the PM slave-spin solution, the
symmetry-broken (AFM) slave-spin ground-state solution, and the
exact Bethe ansatz (AFM) solution as calculated using the method in
Ref. [36].

is insulating in the spinon sector) and the exact Bethe ansatz is
satisfactory given the simplicity of the single-site mean-field
slave model used here. As expected, the AFM slave-spin
method becomes very much like the AFM Hartree-Fock in
the large-U/t limit of very strong spin polarization since both
approaches essentially describe the system as a single Slater
determinant. We note that the nonmagnetic ground state has
an incorrect evolution from a metallic system at small U/t to
a Mott-insulating phase at U/t � 10.

We provide a word of caution regarding the interpretation of
the results. The results show that in this particular situation, the
slave-boson approach provides an energy that is close to but
below that of Hartree-Fock and above the true ground-state
energy. However, to the best of our knowledge, there is no
known principle guaranteeing that these slave-boson methods
give an upper bound to the total energy (e.g., in the same way
that the Hartree-Fock does). Etotal in Eq. (12) does provide
a variational upper bound of the energy, but in the extended
spinon + slave Hilbert space. The state |�f 〉|�s〉 is a valid
and normalized state in the extended Hilbert space so that
Etotal, being the expectation of Ĥ for this state, must be higher
than the ground-state energy in the extended Hilbert space.
However, the extended Hilbert space includes both physical
and unphysical states, and there is no known guarantee that the
ground-state energy in the extended space coincides with the
ground state in the subspace of physical states. Nevertheless,
we note that many useful electronic structure methods for
solid-state systems (e.g., DFT with an approximate exchange-
correlation functional) do not obey strict bounds on the total
energy and yet can often outperform the Hartree-Fock (which
does come with a bound). Hence, whether total energies from
slave-boson methods lie above or below the true ground-state
energy in more complex physical systems is an interesting and
open question.

VIII. CONCLUSION

We have shown how slave-particle methods can be used
to obtain spontaneously symmetry-broken electronic phases
based on a total energy approach. We have described and
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tested our ideas on the classic 1D Hubbard model Hamilto-
nian. Furthermore, we have shown how to enable symmetry
breaking via the use of auxiliary symmetry-breaking fields in
a self-consistent way that greatly lowers the computational
burden and stability of the standard slave-particle calculation.
Further, we have demonstrated that in order to obtain sponta-
neously symmetry-broken phases in the spinon sector, the slave
sector must be allowed to break the corresponding symmetry
explicitly by having different slave modes for the different
degrees of freedom which may undergo symmetry breaking.
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APPENDIX

We show, via a detailed derivation, that the slave-boson
representation is faithful by showing that canonical commu-
tation relations are obeyed. By definition, the commutators
of the physical electron operators d̂imσ satisfy fermionic
anticommutation relations:

{d̂imσ ,d̂
†
jm′σ ′ } = δij δmm′δσσ ′ . (A1)

We show that this equality holds when we perform the
slave-boson substitution d̂imσ = f̂imσ Ôiα if we deal only with
physical states (i.e., states in the extended spinon + slave
Hilbert space where the number of spinons and bosons match
exactly). Namely, for a pair of physical states |p1〉 and |p2〉,

〈p1|{f̂imσ Ôiα,f̂
†
jm′σ ′Ô

†
jβ}|p2〉 = δij δmm′δσσ ′ 〈p1|p2〉. (A2)

To prove the above equality, we begin by remembering that
α and β label disjoint sets of localized states each specified by
the combination of labels imσ describing site i, spatial orbital
m, and σ . In addition, we have that imσ ∈ α and jm′σ ′ ∈
β. Also, by definition, the spinon operators f̂ are fermionic
field operators obeying canonical commutation relations. As
discussed in the text, the Ô operators are bosonic but are
not canonical field operators. The matrix representation of the
lowering Ô operator in the number basis is [32]

Ôiα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

Ciα 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)

The number of slave bosons Niα is an integer obeying 0 �
Niα � Miα , where Miα is the maximum slave boson count
(i.e., maximum number of electrons) that can be placed into
the set of orbitals α. For use below, we also have the matrix
representations

Ô
†
iαÔiα =

⎛
⎜⎜⎜⎜⎜⎜⎝

|Ciα|2 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(A4)

and

[Ôiα,Ô
†
iα] = (1 − |Ciα|2) ·

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎠

. (A5)

To prove Eq. (A2), we use the anticommutation properties
of the f̂ to arrive at

{f̂imσ Ôiα,f̂
†
jm′σ ′Ô

†
jβ} = f̂imσ f̂

†
jm′σ ′[Ôiα,Ô

†
jβ]

+Ô
†
jβÔiαδij δmm′δσσ ′ . (A6)

We examine the four cases of index combinations that can
occur and show that in each case Eq. (A2) holds.

(a) When i �= j , the bosonic operators at different sites
commute by definition so the first term on the right-hand side
of Eq. (A6) is 0. And the second term is 0 since i �= j , so
Eq. (A2) holds.

(b) When i = j but α �= β, the bosonic operators at the
same site refer to a disjoint set of states at the site and
commute by definition. So the first term on the right-hand side
of Eq. (A6) is 0. And the second term is also 0 since α and β are
disjoint and do not share any states at the same site. So Eq. (A2)
holds.

(c) When i = j and α = β but (mσ ) �= (m′σ ′), only the first
term on the right-hand side of Eq. (A6) survives and equals

{f̂imσ Ôiα,f̂
†
im′σ ′Ô

†
iα} = f̂imσ f̂

†
im′σ ′ · (1 − |Ciα|2) ·

×

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎠

. (A7)

The action of the right-hand side on any physical state which
has between 1 and Miα − 1 particles is 0. When acting on a
state with 0 particles, the action of f̂imσ will kill the state and
yield 0. When acting on a state with the maximum number Miα

of particles, the action of f̂
†
im′σ ′ gives 0. So Eq. (A2) holds.

(d) Finally, when all indices match (i = j , α = β, m = m′,
σ = σ ′), we have

{f̂imσ Ôiα,f̂
†
imσ Ô

†
iα}

= f̂imσ f̂
†
imσ · (1 − |Ciα|2) ·

⎛
⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 0 −1

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

|Ciα|2 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 1 0
0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A8)
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If the state imσ is empty, the action of f̂imσ f̂
†
imσ is the identity

operation on this state, and adding the matrices we find the
identity matrix except for the bottom right corner element,
which is |Ciα|2 instead of 1; but this is irrelevant since if
imσ is empty, then the number of particles is less than the
maximum Miα so this matrix element is never accessed. If the

state imσ is full, f̂imσ f̂
†
imσ kills the state and we are again left

with the identity matrix except for the top left corner element
being |Ciα|2; this is irrelevant since if imσ is full, the number
of particles is greater than 0 so this element is never accessed.
So Eq. (A2) holds.
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