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Dirac and Weyl fermions appear as quasiparticle excitations in many different condensed-matter systems. They
display various quantum transitions which represent unconventional universality classes related to the variants of
the Gross-Neveu model. In this paper we study the bosonized version of the standard Gross-Neveu model—the
Gross-Neveu-Yukawa theory—at three-loop order, and compute critical exponents in 4 − ε dimensions for a
general number of fermion flavors. Our results fully encompass the previously known two-loop calculations, and
agree with the known three-loop results in the purely bosonic limit of the theory. We also find the exponents to
satisfy the emergent superscaling relations in the limit of a single-component fermion, order by order up to three
loops. Finally, we apply the computed series for the exponents and their Padé approximants to several phase
transitions of current interest: metal-insulator transitions of spin-1/2 and spinless fermions on the honeycomb
lattice, emergent supersymmetric surface field theory in topological phases, as well as the disorder-induced
quantum transition in Weyl semimetals. Comparison with the results of other analytical and numerical methods
is discussed.
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I. INTRODUCTION

Dirac and Weyl fermions are an abundant form of quasipar-
ticle excitations in condensed-matter physics [1,2] appearing
in very different materials ranging from graphene, via d-
wave superconductors, to the surface states of topological
insulators, or even three-dimensional (3D) materials such as
Na3Bi and Cd3As2 [3,4]. While the physical origin of the
quasirelativistic energy dispersion can be quite different in
various materials, it leads to universal low-energy properties
shared by all these materials, such as, e.g., the density of
states (DOS) and the concomitant thermodynamic properties
or various response functions. Dirac and Weyl systems can
also undergo transitions from their natural semimetallic phase
to a variety of broken-symmetry phases as some parameter
is varied. This includes continuous quantum transitions to
interaction-induced, ordered, many-body ground states [5–10]
and a disorder-driven transition to a diffusive state with finite
DOS [11–16]. Depending on the broken symmetry of the
ordered phase and the fermionic content, the corresponding
transition represents a universality class with the concomitant
critical behavior. Various of these transitions have been
suggested to belong to the universality class defined by the
chiral transition appearing in the 3D Gross-Neveu (GN) model
[7] well known in the context of high-energy physics and
conformal field theories [17,18]. This applies, in particular,
to the interaction-induced transition toward a charge-density
wave (CDW) of electrons on the two-dimensional honeycomb
lattice that breaks the (Ising) sublattice symmetry [7], or the
disorder-driven transition toward a diffusive metal in a 3D
Weyl semimetal [15].

II. MODEL

The bosonized GN model—the Gross-Neveu-Yukawa
(GNY) model—is represented by the Lagrangian

L = ψ̄(/∂ + gφ)ψ + 1
2φ

(
m2 − ∂2

μ

)
φ + λφ4, (1)

which is defined in Euclidean space and is renormalizable
in D = 4 − ε dimensions. It includes a real scalar field φ

resulting from a Hubbard-Stratonovich decoupling of the
four-Fermi interaction and lies in the same universality class
as the GN model for (space-time) dimensions 2 < D < 4
[19,20]. Here, /∂ = γμ∂μ and we use a four-dimensional
representation of the Clifford algebra {γμ,γν} = 2δμν14, with
μ,ν, = 0,1, . . . ,D − 1. The conjugate of the Dirac field is
given by ψ̄ = ψ†γ0. The scalar field couples to the fermions
with the Yukawa coupling g and has a self-interaction (quartic
term coupling) λ. For generality, we allow for an arbitrary
number N of four-component fermion species.

The precise determination of the critical exponents of the
GN model is a formidable task and has been attempted by var-
ious methods, e.g., perturbative [21–24] and nonperturbative
[25–27] renormalization-group (RG) approaches, Monte Carlo
(MC) simulations [28–33], and the conformal bootstrap (see
Refs. [34–36]). For the case of the purely bosonic φ4 theory
with Ising symmetry in three dimensions, the development
and comparison of these different methods have led to an im-
pressive convergence across different theoretical approaches,
settling beyond a three digit agreement, for example, for
the correlation length exponent νIsing ≈ 0.630 [37–41]. For
the 3D Gross-Neveu or “chiral Ising” universality class, the
calculation of critical exponents has also been attempted by
different methods; here, however, the situation is less settled
(see Table II). Recent progress in MC simulations [29–31]
and the application of field-theoretical methods [24,26,27]
could not resolve the existing discrepancies, and the difference
between the results still shows up in the first digits. In fact,
the paradigmatic role of the GNY model notwithstanding, its
critical exponents are currently only known to two-loop order
in the epsilon expansion near four dimensions [21].

We have calculated the beta functions and the critical
exponents for the GNY model with the general number of
fermion flavors N at three-loop order, providing an important
further step towards a more quantitative understanding of the
fermionic universality classes. The full analytical expressions
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TABLE I. Critical exponents for the chiral Ising universality class
to order ε3 for three different choices of N .

N = 2 ν−1 ≈ 2 − 0.952ε + 0.00723ε2 − 0.0949ε3

ηψ ≈ 0.0714ε − 0.00671ε2 − 0.0243ε3

ηφ ≈ 0.571ε + 0.124ε2 − 0.0278ε3

N = 1 ν−1 ≈ 2 − 0.835ε − 0.00571ε2 − 0.0603ε3

ηψ ≈ 0.1ε + 0.0102ε2 − 0.033ε3

ηφ ≈ 0.4ε + 0.102ε2 − 0.0632ε3

N = 1/4 ν−1 ≈ 2 − 0.571ε − 0.0204ε2 + 0.024ε3

ηψ ≈ 0.143ε + 0.0408ε2 − 0.048ε3

ηφ ≈ 0.143ε + 0.0408ε2 − 0.048ε3

N = 0 ν−1 ≈ 2 − 0.333ε − 0.117ε2 + 0.125ε3

ηψ ≈ 0.167ε + 0.0478ε2 − 0.0469ε3

ηφ ≈ 0.0185ε2 + 0.0187ε3

for general N are presented below. Numerical values for the
physically relevant cases N = 2,1,1/4, and 0 are presented in
Table I, where we display the first three terms in the expansion
in ε for the correlation length exponent and the anomalous
dimensions. Furthermore, we use Padé approximants to extract
estimates for the critical exponents at ε = 1.

The rest of the paper is organized as follows. First, we
specify the RG procedure, the employed computer algebraical
tools, and present the full set of three-loop RG functions.
We then determine the fixed-point solutions to order ε3

and calculate the anomalous dimensions and the correlation
length exponent to that order. For the specific cases of
physical interest N = 2,1,1/4,0 we also calculate the Padé
approximants for the universal critical exponents and discuss
the physical applications for quantum phase transitions in
Dirac and Weyl semimetals. Finally, we draw our conclusions.

III. RG PROCEDURE AND TOOLS

We first explain how we set up the three-loop RG analysis
in D = 4 − ε space-time dimensions. The bare Lagrangian
is defined by Eq. (1) upon replacing the fields and couplings
by their bare counterparts ψ → ψ0,φ → φ0,g → g0,λ → λ0.
The renormalized Lagrangian is then introduced as

L = Zψψ̄ /∂ψ − 1

2
Zφ(∂μφ)2 + Zφ2

m2

2
φ2

+ Zφψ̄ψgμε/2φψ̄ψ + Zφ4λμεφ4, (2)

where μ defines the energy scale which parametrizes the RG
flow of the couplings. We have defined the wave-function
renormalization constants Zψ and Zφ which relate the bare and
the renormalized Lagrangian upon the field rescaling ψ0 =√

Zψψ and φ0 = √
Zφφ. The explicit μ dependencies in L

reflect that after introducing the integration over D = 4 − ε-
dimensional spacetime we shift g2 → g2με and λ → λ με .
To simplify the notation in the following we introduce y = g2.
The renormalization constants for the mass term, the Yukawa
coupling, and the quartic coupling are further introduced by

m2 = m2
0ZφZ−1

φ2 , (3)

y = y0μ
−εZ2

ψZφZ−2
φψ̄ψ

, λ = λ0μ
−εZ2

φZ−1
φ4 . (4)

These relations provide the RG scale dependence of the renor-
malized quantities by taking into account the RG invariance
of the bare quantities. We calculate the renormalization-group
constants Zx where x ∈ {ψ,φ,φ2,φψ̄ψ,φ4} up to three-loop
order employing dimensional regularization and the modified
minimal subtraction scheme (MS). To that end, we use sophis-
ticated computer algebra which was established for higher-
loop calculations in high-energy physics, in particular in the
context of standard model of particle physics calculations:
The complete set of Feynman diagrams is generated with the
program QGRAF [42] and further processed with the programs
Q2E and EXP [43,44]. Traces over matrix structures coming
from the Clifford algebra and the tensor reduction of Feynman
integrals are then achieved with FORM [45,46]. The calculation
of Feynman integrals is performed after reduction to master
integrals via integration-by-parts identities. We evaluate the
beta functions and the anomalous dimensions using two
independent setups. In one of them we computed the vertex
functions setting one or two external momenta to zero. In
this case, the loop integrals are mapped to massless two-point
functions that are implemented up to three loops in the code
MINCER [47]. In the second setup we introduce an infrared
regulator for all the propagators as described in Ref. [48].
Here, the loop integrals can be reduced to three-loop tadpole
integrals that can be processed with the help of MATAD [49].
The complete number of diagrams calculated for this model at
the three-loop level is about 1500.

IV. BETA FUNCTIONS

The beta functions for the squared Yukawa coupling y and
the quartic scalar coupling λ are defined as βy = dy/d ln μ and
βλ = dλ/d ln μ. The relation to the renormalization constants
is derived from Eqs. (3) and (4). We work with rescaled
couplings y/(8π2) → y and λ/(8π2) → λ. The beta functions
for the Yukawa and the quartic scalar coupling at three-loop
order read

βy = − εy + (3 + 2N )y2 + 24yλ(λ − y) −
(

9

8
+ 6N

)
y3

+ y

64
{1152(7 + 5N )y2λ + 192(91 − 30N )yλ2

+ [912ζ3 − 697 + 2N (67 + 112N + 432ζ3)]y3

− 13824λ3}, (5)

βλ = − ελ + 36λ2 + 4Nyλ − Ny2 + 4Ny3 + 7Ny2λ

− 72Nyλ2 − 816λ3 + 1
32 [6912(145 + 96ζ3)λ4

+ 49536Nyλ3 − 48N (72N − 361 − 648ζ3)y2λ2

+ 2N (1736N − 4395 − 1872ζ3)y3λ

+ N (5 − 628N − 384ζ3)y4], (6)

where ζz is the Riemann zeta function. Our expressions fully
agree up to two loops with the ones from Ref. [21]. Upon
setting y = 0, the beta function for the quartic coupling also
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agrees with the three-loop results for the real scalar φ4 theory
with Z2 or Ising symmetry [50].

V. FIXED POINTS

The three-loop beta functions allow the determination of the
RG fixed points of the system order by order in ε up to order
ε3. Let us start the fixed-point analysis at the one-loop level,
where the beta functions for y and λ give rise to four different
fixed points [51]: the unstable Gaussian fixed point with
vanishing coordinates (y∗,λ∗)0 = (0,0), the unstable bosonic
Wilson-Fisher fixed point (y∗,λ∗)WF = (0,ε/36), and a pair of
fully non-Gaussian fixed points (NGFPs):

(y∗,λ∗)± =
(

1

3 + 2N
ε,

3 − 2N ± s

72(3 + 2N )
ε

)
, (7)

where s = √
9 + 4N (33 + N ). From the pair of NGFPs, the

one with the negative solution is discarded as it has a negative
quartic coupling. Here, we study the stable positive solution
from Eq. (7), which we solve order by order in ε. The
expressions for general N are lengthy at order ε3 and we
refrain from fully displaying them here. Instead, we explicitly
show the universal critical exponents at order ε3 as derived
from the fixed-point solution.

VI. CRITICAL EXPONENTS

The field renormalization constants are defined as the
logarithmic derivatives of the wave-function renormalizations
of the fermion and the boson fields, γx = d ln Zx/d ln μ for

x ∈ {ψ,φ}, and read

γψ = y

2
− 1

16
(1 + 12N )y2 + y

128
{[48ζ3 − 15

+ 4N (47 − 12N )]y2 + 768yλ − 2112λ2}, (8)

γφ = 2Ny + 24λ2 − 5Ny2

2
+ 1

32
[Ny3(21 + 200N

+ 48ζ3) + 960Ny2λ − 2880Nyλ2 − 6912λ3]. (9)

Our expressions agree with the ones from Refs. [21,50] in
the corresponding limits. To obtain the fermion and boson
anomalous dimensions characterizing the critical behavior,
we evaluate these expressions at the NGFP and define ηψ =
γψ (y∗,λ∗), ηφ = γφ(y∗,λ∗) (see below).

Finally, we require yet another renormalization constant,
i.e., the one related to the renormalized mass term. We define
γφ2 = d ln Zφ2/d ln μ. At three-loop order,

γφ2 = − 2 (6λ + Ny2 − 12Nyλ − 72λ2)

− 72λ2(4Ny + 87λ) − 4Ny3(4N − 9 + 3ζ3)

− 3
2Ny2λ(11 − 24N + 120ζ3).

The RG beta function of the dimensionless mass term m̃2 =
μ−2m2 then follows from Eq. (3) and reads βm̃2 = (−2 + γφ −
γφ2 )m̃2. We extract the correlation length exponent at the stable
NGFP (y∗,λ∗) from the relation

ν−1 = θ1 = −dβm̃2

dm̃2

∣∣∣∣
(y∗,λ∗)

= 2 − ηφ + ηφ2 , (10)

where ηφ2 = γφ2 (y∗,λ∗). As our main result, we obtain at order ε3 for the inverse correlation length exponent and the anomalous
dimensions

1

ν
= 2 − (3 + 10N + s)ε

6(3 + 2N )
− 513 − 7587N − 666N2 − 5264N3 − 96N4 + s(171 + 510N + 436N2 + 48N3)

108(3 + 2N )3s
ε2

+ ε3

3888(3 + 2N )5s3
(−227 691(3 + s) + 4N (81(2170s − 128 871) + N (27(−2 238 507 + 554 816s)

+ 2N (585(2414s − 16 143) + N (4N (5 233 698 + N (1 383 001 + 16N (3832 + 54N − 27s) − 24 986s) − 371 936s)

− 3(8 117 973 + 761 116s))))) + 288(3 + 2N )s2(2N (81 + N (1917 + 4N (450 + N (153 + 4N ))))

− N (3 + 4N )(99 + 4N (21 + N ))s + 81(3 + s))ζ3), (11)

ηψ = ε

2(3 + 2N )
+ 180 + 33s + N (3 − 328N + 2s)

216(3 + 2N )3
ε2 +

(
102 519 + 237 519N + 342N2 − 122 020N3 − 11 040N4

7776(3 + 2N )5

− 68 607 + 2 099 304N + 1 629 828N2 + 1 505 352N3 + 89 536N4 + 1248N5

7776(3 + 2N )5s
− 6(1 + N )ζ3

(3 + 2N )4

)
ε3, (12)

ηφ = 2Nε

3 + 2N
+ 27 + 594N + 2916N2 + 88N3 + (9 − 57N + 208N2)s

36(3 + 2N )3s
ε2 +

(
2943 + 47 385N

1296(3 + 2N )5
− 24N (1 + N )

(3 + 2N )4
ζ3

+ 8829 − 24 192N − 1 603 476N2 − 292 200N3 − 300 224N4 − 6112N5 + s(118 926N2 + 115 564N3 + 17 312N4)

1296(3 + 2N )5s

)
ε3.

(13)

As a highly nontrivial check we compare our result for 1/ν with the large-N results of the GN model to order 1/N2 [52,53]. We
find that our results perfectly agree with Refs. [52,53] to the corresponding order, as expected.
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VII. METAL-INSULATOR TRANSITION IN GRAPHENE

One of the motivations behind this paper is the improvement
of our understanding of metal-insulator transitions in graphene
and related Dirac materials. The quantum phase transition
from the semimetallic state to the sublattice symmetry-broken
insulating state with charge order—the CDW—belongs to
the 3D Gross-Neveu(-Yukawa) universality class [7,27] for
fermion flavor number N = 2, corresponding to an eight-
component spinor ψ . These components reflect the presence
of two sublattices of the underlying honeycomb lattice A and
B, two inequivalent Dirac points in the Brillouin zone at K and
−K , and two spin species (↑,↓). The order-parameter field is
a spin singlet corresponding to a staggered density state with
alternating charge densities on the different sublattices. Con-
densation to a nonvanishing vacuum expectation value 〈φ〉 �= 0
spontaneously breaks the Lagrangian’s chiral symmetry and
induces a finite gap in the energy dispersion. The quantum
critical behavior of this transition for N = 2 has previously
been accessed by different approaches, most recently by
higher-order perturbative and nonperturbative RG calculations
and Majorana quantum Monte Carlo simulations: For the
purely fermionic Gross-Neveu model expanded in D = 2 + ε

dimensions the RG functions are known to order ε4 and for
ε = 1 yield an inverse correlation length exponent 1/ν ≈
0.931 after resummation [24], while the most sophisticated
nonperturbative functional RG calculation gives a value of
1/ν ≈ 0.994(2) [26]. Novel lattice methods have managed to
access the question avoiding the sign problem, but predicting
a rather different value of 1/ν ≈ 1.20(1) [29]. We show a
numerical evaluation of Eq. (11) for N = 2 order ε3 in Table I.
We note that, e.g., for the inverse correlation length exponent,
the prefactor of the order ε3 term is larger than the one
for the order ε2 term. To obtain an estimate for the critical
exponents at ε = 1, we first directly evaluate the series as given
in Table I at ε = 1 which gives ν−1(ε = 1) ≈ 0.960,ηψ (ε =
1) ≈ 0.0404, and ηφ(ε = 1) ≈ 0.667. Further, we employ the
Padé approximant [2/1] to obtain ν−1

[2/1] ≈ 1.048 for ε = 1. The
corresponding Padé approximants for the fermion and boson
anomalous dimensions are ηψ[2/1] ≈ 0.0740 and ηφ[2/1] ≈
0.672, respectively. Due to the considerable size of the order
ε3 contribution the values from the direct substitution and the
given Padé approximants are spread over a sizable interval.
We interpret this as a measure for the theoretical uncertainties.

VIII. SPINLESS FERMIONS ON THE
HONEYCOMB LATTICE

Another much studied case is the one of spinless fermions
on the honeycomb lattice, which also undergo a metal-insulator
transition for strong repulsive interactions. It corresponds to
the universality class which is realized for N = 1 in our
model. Recent sign-problem free Monte Carlo studies [29–32]
and functional RG approaches [27] give improved estimates
on ν−1,ηφ , and ηψ (see Table II). Again, for our order ε3

estimates at ε = 1, we employ direct substitution of ε = 1 and
obtain ν−1(ε = 1) ≈ 1.099,ηψ (ε = 1) ≈ 0.0773 and ηφ(ε =
1) ≈ 0.439. The corresponding Padé approximants [2/1] for
ε = 1 are ν−1

[2/1] ≈ 1.166,ηψ[2/1] ≈ 0.102, and ηφ[2/1] ≈ 0.463.

TABLE II. Chiral Ising universality in D = 3: inverse correlation
length exponent 1/ν and anomalous dimensions ηφ and ηψ for bosons
and fermions, respectively. In this paper, we provide results within
the (4 − ε) expansion to order ε3.

N = 2 1/ν ηφ ηψ

This paper (Padé [2/1]) 1.048 0.672 0.0740
(2 + ε), (ε4, Padé) [24] 0.931 0.745 0.082
Functional RG [26] 0.994(2) 0.7765 0.0276
Monte Carlo [29] 1.20(1) 0.62(1) 0.38(1)

N = 1 1/ν ηφ ηψ

This paper (Padé [2/1]) 1.166 0.463 0.102
Functional RG [26] 1.075(4) 0.5506 0.0645
Monte Carlo [31] 1.30 0.45(3)

N = 1/4 1/ν ηφ ηψ

This paper (Padé [2/1]) 1.419 0.162 0.162
Functional RG [56] 1.410 0.180 0.180
Conformal bootstrap [36] 0.164 0.164

IX. EMERGENT SUPERSYMMETRY
IN TOPOLOGICAL SUPERCONDUCTORS

For N = 1/4, the field content of the GNY model presented
here is compatible with supersymmetry and an emergent
supersymmetry scenario at the boundary of a topological phase
that has been discussed in Ref. [54]. In this case a superscaling
relation 1/ν = (D − η)/2 with η = ηψ = ηφ is satisfied [55]
at the quantum critical point to all orders [56]. Estimates for
the critical exponents have been calculated with RG methods
[18,56] as well as with the conformal bootstrap [35,36] (see
Table II). Within our calculations, we find that the superscaling
relation is exactly satisfied order by order for D = 4 − ε up
to three loops and for the Padé approximant [2/1] which gives
ν−1

[2/1] ≈ 1.419 and η[2/1] ≈ 0.162. For the Padé approximant
[1/2], we observe a violation of the superscaling relation. We
interpret this as a hint towards a superior behavior of the
Padé approximant [2/1] over [1/2] for this model and order
of the expansion, and then adopt this approximant also for the
neighboring values of N , as listed in Table II.

X. DISORDER-DRIVEN TRANSITION
IN WEYL SEMIMETALS

Another application concerns the replica limit N → 0
which is believed to describe the transition from a relativistic
semimetallic state to a diffusive metallic phase in a 3D Weyl
semimetal. At one-loop order this unusual limit also gives rise
to a NGFP which is nontrivial in both couplings (y∗,λ∗)+ =
(ε/3,ε/36). Beyond one-loop order, the limit N → 0 suffers
from the lack of multiplicative renormalizability of the model
and contributions from evanescent operators [15,24]. A previ-
ous four-loop expansion of the purely fermionic Gross-Neveu
model in D = 2 + ε has shown very large four-loop coeffi-
cients in comparison with the three-loop terms [24]. Here, we
circumvent this problem by considering the GNY model in
the same limit which allows us to provide three-loop estimates
for the critical exponents of this disorder-induced transition.
Our order ε3 estimates, with direct substitution of ε = 1,
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yields ν−1(ε = 1) ≈ 1.673 and ηψ (ε = 1) ≈ 0.167. The Padé
approximants are ν−1

[2/1] ≈ 1.610 and ηψ[2/1] ≈ 0.191.

XI. CONCLUSIONS

We have studied the Gross-Neveu-Yukawa model at three-
loop order in D = 4 − ε space-time dimensions and have
extracted the solution of the stable non-Gaussian fixed point
and the corresponding critical exponents to order ε3 for
arbitrary number N of fermion flavors. The model is believed
to govern the universal critical behavior in a number of
quantum phase transitions in interacting or disordered Dirac
fermions that are of current interest, and we provided estimates
for the correlation length exponent and anomalous dimensions
based on Padé approximants for our three-loop series. Our
calculation fully reproduces the previous two-loop results [21]
at all N , and the three-loop Ising model results [50] at N = 0.
For a single-component fermion, corresponding to N = 1/4
in our notation, our values of the exponents agree to all
orders of the calculation with the scaling relation dictated by
the supersymmetry that emerges in this limit. Finally, while
the comparisons of the values of the critical exponents from
different methods, i.e., Monte Carlo simulations, conformal

bootstrap, perturbative and nonperturbative RG approaches,
and our epsilon expansion, agree to a reasonable degree,
additional efforts within all these approaches are required
to resolve the remaining differences. Potential sources of
discrepancies are that (1) field-theoretical approaches are not
evaluated at a sufficiently high loop level or are not suitable
for the evaluation at a non-Gaussian fixed point when gapless
Dirac fermions are included, (2) numerical approaches need
to improve their extrapolation to the leading quantum critical
behavior and/or include corrections to scaling, and (3) the
lattice model and the continuum models do not lie in the same
universality class.

In the future, it will also be interesting to study closely
related field theories describing other patterns of symmetry
breaking in the presence of fermions [51], e.g., the antiferro-
magnetic transition in the Hubbard model on the honeycomb
lattice, to compare the results with the large-scale Monte Carlo
simulations [57–59].
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