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We study the concept of entanglement distance between two quantum states, which quantifies the amount of
information shared between their reduced density matrices (RDMs). Using analytical arguments combined with
density-matrix renormalization group (DMRG) and exact diagonalization (ED) calculations, we show that for
gapless systems the entanglement distance has power law dependence on the energy separation and subsystem
size, with αE and α� exponents, respectively. Using conformal field theory (CFT) we find αE = 2 and α� = 4
for Abelian theories with c = 1, as in the case of free fermions. For non-Abelian CFTs αE = 0, and α� is
twice the conformal dimension of the thermal primary fields. For instance, for Z3 parafermion CFT αE = 1
and α� = 4/5. For gapped 1+1 dimensional (1+1D) fermion systems, we show that the entanglement distance
divides the low energy excitations into two branches with different values of αE and α�. These two branches are
related to momentum transfers near zero and π . We also demonstrate that the entanglement distance reaches its
maximum for degenerate states related through nonlocal operators such as Wilson loops. For example, degenerate
ground states (GSs) of 2+1D topological states have maximum entanglement distance. In contrast, degenerate
GSs related through confined anyon excitations such as genons have minimum entanglement distance. Various
implications of this concept for quantum simulations are discussed. Finally, based on the ideas developed we
discuss the computational complexity of DMRG algorithms that are capable of finding all degenerate GSs.
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I. INTRODUCTION

Entanglement-based quantum simulations such as density-
matrix renormalization group (DMRG), tensor product states
(TPS), and multiscale entanglement renormalization ansatz
(MERA) have revolutionized our understanding of low dimen-
sional quantum systems [1–12]. These approaches are built
on the fact that the ground state (GS) of local Hamiltonians
has a significantly lower complexity measured in units of
entanglement entropy (EE) than a generic excited state,
allowing a more efficient data compression [13]. On the
other hand, the entanglement related quantities themselves
have become an essential tool in the characterization of
the GSs and low energy excitations [14–29]. The standard
approach in most quantum simulation algorithms targets a
single energy eigenstate, usually a GS (among possibly several
ones), e.g., through constructing the projection (truncation)
matrices using the reduced density matrix (RDM) associated
with that particular GS. In other words, the standard approach
is nonergodic, and as a result the information about other
potentially degenerate GSs or excited states is partially or
completely lost. This is the main reason why single-state
targeting DMRG cannot necessarily obtain all degenerate GSs.
Nevertheless, having access to all GSs is crucial in studying
topological order, e.g., to obtain modular matrices, or the
fusion rules and braid statistics of anyons [30,31].

Here, we systematically address this problem and discuss
two multiple-states targeting DMRG algorithms capable of
accessing all degenerate GSs. In particular we explore two
metrics for measuring what we will refer to as entanglement
distance between two energy eigenstates, which quantifies the
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amount of information encoded in the targeted state about other
states. We use DMRG, exact diagonalization (ED), analytical
approaches, and, in the case of noninteracting fermions, exact
results for fairly large system sizes to study the behavior of
the entanglement distance in various systems. We show that
the entanglement distance exhibits distinct behaviors in each
of the following classes: (a) gapless, (b) trivial gapped, and (c)
topological gapped states.

II. ENTANGLEMENT DISTANCE

Here we consider two distinct entanglement based metrics
for gauging the distance between a pair of quantum states.
Consider |�〉a and |�〉b, eigenstates of a (local) Hamiltonian
H defined on a connected manifold M which is bipartitioned
into L and R subsystems. The (left) RDM associated with state
a is given by ρ

(a)
L = trR(|�〉a〈�|a). We define

ε1(a,b) ≡ tr
(
ρ

(a)
L − ρ

(b)
L

)2/
trρ(1)

L

2
(1)

as the first measure of entanglement distance, where ρ
(1)
L

denotes the GS’s RDM. The second measure is inspired
by DMRG and TPS quantum simulation algorithms. Let us
consider RDM ρ

(a)
L with dimension DL, and we denote its

eigenvectors and eigenvalues by |v〉l,(a) and λl,(a) respectively.
The set of χa (the so-called bond dimension in TPS) dominant
eigenvalues of ρ

(a)
L form a matrix T

(a)
L whose dimension

is DL × χa and can be used for truncating operators and
states (see Appendix A for more details on the DMRG
method). It acts on a generic DL × DL dimensional operator

OL with support on region L, and yields OL = T
(a)
L

†OLT
(a)
L

with a lower dimension, χa × χa . Demanding the correlation
functions of OL to remain nearly invariant after projection
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imposes certain constraints on the lower bound of the bond
dimension, χa . It is generally believed that χa,min ∼ eSL , where
SL is the EE between the two subsystems. Furthermore, by con-
struction, T

(a)
L minimizes the following cost function known

as truncation error: ε
(χa )
2 (a,a) ≡ 1 − tr(T †

Lρ
(a)
L TL). Since ρ

(b)
L

played no role in defining T
†
L(a), one may wonder how the

following quantity behaves [32]:

ε
(χa )
2 (a,b) ≡ 1 − tr

(
T

(a)
L

†
ρ

(b)
L T

(a)
L

)
. (2)

Indeed in general it is not at all clear how efficient T
(a)
L is

in preserving information stored in ρ
(b)
L (e.g., in reproduc-

ing correlation functions). It is quite possible that it may
discard most of dominant eigenvectors of ρ

(b)
L and instead

retain the subdominant ones. We will see that for gapless
systems the low energy excitations exhibit ε1 ∝ 
EαE �α� and
ε

(χ)
2 ∝ 
EβE (χ )�β�(χ) power law behaviors, where � is the left

subsystem size and 
E the excitation energy.

A. Entanglement distance in 1 + 1 dimensional
conformal field theories

We consider conformal field theories (CFTs) in 1+1
dimensional (1+1D) systems of length N . The excited states
can be obtained by primary or descendant fields acting on
the GS (vacuum). The EEs of the GS and excited states are
obtained in Refs. [14,15,33–36]. Here, we are interested in
finding the entanglement distance between the GS and an

excited state associated with an ϒ primary field with conformal
weights h and h̄. To this end, we closely follow the approach
and notations of Ref. [33].

The excited state can be related to GS as |ϒ〉 =
limz,z̄→−i∞ ϒ(z,z̄) |0〉. The wave function of this state
has the following path integral representation: �XY (ϒ) ∝∫
Dφ ϒ[φ(z∞)] e−S(φ) where X (Y ) denotes the coordinates on

the left (right) region, and φ is the local dynamical field whose
Euclidean action is S(φ). Similarly, the RDM associated with
subsystem L is ρϒ

L (XX′) ∝ ∫
DY �XY (ϒ) �∗

YX′(ϒ). After
normalization,

ρϒ
L (XX′) =

∫
Dφ ϒ[φ(z∞)] ϒ∗[φ(z′

∞)] e−S(φ)

Z(1)〈ϒ(z∞) ϒ†(z′∞)〉 . (3)

Now we need to compute ε1(ϒa,ϒb) which requires com-
puting Mab ≡ tr(ρϒa

L ρ
ϒb

L ) first. Similar to the well-established
procedure of evaluating EE of CFT states, this quantity can
be transformed into a path integral. The resulting path integral
is defined on a manifold which is formed of two cylinders on
the right subsystem and a single two-sheeted Riemann surface
which is identical to a single cylinder whose radius is twice
larger than cylinders on the right side. The two submanifolds
are glued at the boundaries. A conformal transformation can
be applied to push the boundaries between L and R subsytems
to infinity, after which we are left with the L subsystem.
Evaluating the path integral on the resulting manifold, we
arrive at the following relation:

F
(2)
ϒaϒa

≡ trρϒa

L ρ
ϒb

L

trρ1
Lρ1

L

= 〈ϒa(0) ϒ
†
a (πx) ϒ

†
b (π )ϒ†

b (π (1 + x))〉cy

22(ha+hb+h̄a+h̄b)〈ϒa(0) ϒ
†
a (2πx)〉cy〈ϒb(0) ϒ

†
b (2πx)〉cy

,

where x = �
N . The two-point correlation

function of primary and descendant fields
on a cylinder is 〈ϒj (w1,w̄2)ϒ†

j (w2,w̄2)〉 ∝
(2 sin(w1−w2

2 ))
−2hj (2 sin( w̄1−w̄2

2 ))
−2h̄j . Plugging this relation

into Eq. (4), we obtain

F
(2)
1ϒb

=
(

cos
πx

2

)2(hb+h̄b)
∼ 1 − hb + h̄b

4
(πx)2 + O(x4).

(4)

Similarly, F
(2)
ϒbϒb

can be obtained using the Wick’s theorem

and ϒb × ϒ
†
b = 1 + � + · · · OPE. According to Ref. [33],

assuming � is the operator with the smallest scaling dimension

� and OPE coefficient C�

ϒbϒ
†
b

, in the x � 1 limit

F
(2)
ϒbϒb

∼ 1 − hb + h̄b

2
(πx)2 + C�

ϒbϒ
†
b

(x2
� ) + · · · . (5)

Combining the above results, the first measure of entanglement
distance becomes

ε1(ϒb,1) ∼ C�

ϒbϒ
†
b

x2
� + c2(hb + h̄b)2x4 + · · · , (6)

where c2 is a constant. Recall that in CFT the excitation
energy is proportional to 2π(hb+h̄b)

N . Thus, the above results
suggest that, for non-Abelian CFTs where � is a nontrivial

primary field, ε1(ϒb,1) ∼ x2
� and is almost insensitive to

E to the lowest order of x and 
E, while for Abelian
CFTs where ϒb × ϒ

†
b = 1, ε1(ϒb,1) ∼ x4
E2 with higher

order corrections. Using exact computations for noninteracting
fermion systems as well as DMRG study of parafermion
chains [37–40], these two distinct behaviors can be verified
(see Figs. 1 and 2). For example, we find 
� = α�/2 = 0.41
for the Z3 parafermion chain, which is extremely close to the
conformal dimension of the thermal operator (
ε = 2/5).

Finding an analytic expression for ε
χ1
2 (1,ϒb) is more

challenging. Instead, we use DMRG to study the behavior
of this quantity in the 1+1D gapless states of free fermions
and the Z3 parafermion chain. (see Figs. 1 and 2). Again,
we observe a power law behavior as a function of energy
separation as well as �/N , but with different (χ -dependent)
exponents.

It is worth mentioning that, away from the critical
point, the entanglement distance vanishes for degenerate
GSs of ZN parafermion chains in the thermodynamic
limit [41].

B. Entanglement distance in noninteracting fermion systems

The entanglement properties of free fermions can be
easily computed using the single-particle correlation matrix
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FIG. 1. The two measures of entanglement distance between the
GS and excited states obtained by creating an electron hole excitation
(c†kF +
kckF

) in gapless 1+1D free fermions with nearest neighbor
hopping t1 = 1 at half-filling, andN = 1000. The blue (orange) color
represents excitations with |
k| < π/2 (> π/2) momentum transfer.
Insets are log-log plots showing the power law behavior for small
� and 
E. (a) ε1 for the two lowest excited states vs �. (b) ε1 for
all electron-hole excited states (� = 50). There are oscillations of
period N /� around the saturation point. (b),(c) Similar quantities
for ε

χ

2 with χ = 26. Both measures for entanglement distance grow
monotonically with �. They also start growing for small 
E and
then saturate and oscillate around the saturation point. The power
law growth of entanglement distance for small � and 
E suggests
αE = 1.9 (1.6), α� = 3.9 (3.9), and β�(26) = 0.86 (0.98) for the blue
(orange) branch, close to our theoretical predictions.

Gij (a) ≡ a〈�|c†i cj |�〉a [42,43]. The RDM has a simple
form, namely ρ

(a)
L = 1

Z
exp (−∑

i,j h
(a)
i,j c

†
i cj ) where ĥ(a) =

ln [(G(a)
LL)

−1 − 1], and G
(a)
LL is the reduced correlation func-

tion (its submatrix). It can be shown that trρ(a)
L ρ

(b)
L =

det [G(a)
LLG

(b)
LL + (1 − G

(a)
LL)(1 − G

(b)
LL)]. Therefore, the second

Renyi entropy of the many-body state |ψ〉a is

S
(a)
2 = − ln tr

(
ρ

(a)
L

)2 = −
∑

l

ln
(
p2

l + (1 − pl)
2
)
, (7)

where pl’s are eigenvalues of G
(a)
LL. Now, we define the

truncation (projection) matrix formed of χa eigenvectors of
G

(a)
LL with largest sl ≡ − ln (p2

l + (1 − pl)2) values. There-
fore, the projected reduced correlation matrix of state |�〉b
is G

(b)
LL = P (a)†

LG
(b)
LLP

(a)
L . The first entanglement distance

in Eq. (1) can be easily computed. However, we make
an indirect measurement of the second metric in Eq. (2)
through ε

χa

2 (a,b) = 1 − S̄(b)/Sb
2 , where S̄(b) is the secocnd

Renyi entropy associated with the projected reduced corre-

lation matrix G
b

LL. It can be numerically verified that for
many-body states the two definitions of ε

χa

2 (a,b) behave
similarly.
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FIG. 2. DMRG results with χ = 20 for the entanglement distance
metrics between the GS and excited states of a critical Z3 parafermion
chain (equivalent to a three-state Potts model) of length N = 100.
These results suggest that αE is approximately vanishing and α� =
0.82, indicating the scaling dimension of the thermal operator must be
around 0.41; both are consistent with our theoretical predictions. Also,
we find that βE(χ ) = χ/20 + 1.3 (� = 30) with a high accuracy (see
Appendix B for more results) and β�(χ ) has a weaker χ dependence.

Figure 1 shows that, for gapless fermions in 1D, the
entanglement distance between |gs〉 and c

†
qckF

|gs〉 increases
quadratically with the excitation energy up to some en-
ergy index threshold equal to N /� and then starts oscil-
lating around the saturation point with a wavelength again
equal to N /�. This behavior can be understood by noting
that in free fermion systems all entanglement measures
are deeply related to quantity Im,n(�) ≡ ∫ �

0 ψ∗
m(x)ψn(x)dx ∝

(1 − ei(pm−pn)�)/(pm − pn), where ψm(x) is the energy eigen-
state with momentum pm = 2πm/N . Apart from its envelope,
Im,n(�) has oscillations of wavelength N /�. For massive
fermions, Fig. 3 shows that we obtain two branches, both
having a scaling behavior in �/N and 
E though with
different exponents. The two branches are distinguished by
the momentum transfer. The branch with lower entanglement
distance and (αE,αx) = (2,4) exponents is related to momen-
tum transfers less than π/2 and the remaining branch contains
states with momentum transfer larger than π/2. Again, such a
ramification is indeed related to a similar behavior in Im,n(�)
for gapped systems. Finally, for the case of the massive Potts
model, Fig. 4 indicates that the entanglement distance saturates
when the subsystem size becomes large compared to the
correlation length. Accordingly, the entanglement distance
provides an alternative way of measuring the correlation
length.

C. Entanglement distance in 2+1D topologically ordered states

It is argued in Ref. [44] that the RDM of the GS with
topological charge a can be obtained through the correspon-
dence between boundary CFT and the bulk wave function,
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FIG. 3. The same plot as Fig. 1 for gapped 1+1D free fermions
with staggered chemical potential μn = (−1)n. The excited states are
bifurcated into two branches distinguished by the momentum transfer.
The power law behavior of the entanglement distance suggests α� =
3.8 (2.2) for the blue (orange) branch.

leading to the relation ρ
(a)
L ∝ P̂a exp(−βeffHCFT)P̂a , where P̂a

is the projector into topological sector with charge a. This
immediately leads us to the following central result:

trρ(a)
L ρ

(b)
L = δab exp[−α� + nB ln (D/da)], (8)

where D = √∑
a d2

a is the total quantum dimension, da is the
quantum dimension of anyon with charge a, � denotes the
boundary length, α is a nonuniversal constant, and nB denotes
the number of boundaries (for cylinder and torus geometries
we usually consider nB = 1 and nB = 2, respectively.) We
have also used the fact that the second Renyi entropy of a 2+1D
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FIG. 4. The same plot as Fig. 2, for a gapped Z3 parafermion
chain in the trivial phase. Both metrics of entanglement distance
saturate when � becomes comparable with the correlation length.

topological state is αL − nB ln (D)/da . We have numerically
verified the predicted orthogonality for the Laughlin states [45]
up to 16 electrons using ED and DMRG methods. Now it is
quite easy to compute ε1:

ε1(a,b) = (
d−nB

a + d
−nB

b

)
. (9)

Hence, degenerate GSs have maximum distance from each
other, and using one of the GSs only for the truncation
matrix causes a severe loss of information. However, in the
next section we show that there is simple resolution of this
issue at the cost of a linear increase of computation time.
We like to emphasize that the entanglement distance of two
degenerate states is maximal for 2+1D topological phases
only when the two states are related by a deconfined anyon
excitation (or a Wilson loop). This is not always the case.
For example, parafermion zero modes or genons [46–51] are
bound to domain walls, and the entanglement distance between
degenerate states related through their actions vanishes.

III. COMPUTATIONAL COMPLEXITY
OF MULTISTATE DMRG

To simulate n (nearly) degenerate quantum states, we first
need to find the optimal truncation matrix TL with dimension
DL × χ that contains information about all n states. The
truncation error associated with the ath reduced matrix is
ε(a) = 1 − trT †

Lρ
(a)
L TL. Let us weight each truncation error by

pa , which may depend on the energy of state a, e.g., pa =
e−βeffEa/Z, or its entanglement or both. For topological states a
reasonable choice can be pa = d2

a /D2. The total weighted cost
function becomes εeff = ∑

a paε
(a), which can be rewritten

as εeff = 1 − trT †
Lρeff

L TL, where ρeff
L ≡ ∑

a paρ
(a)
L . Therefore

the optimal choice for TL minimizes the truncation error
of ρeff

L . Now we can find an estimate for the value of the
effective bond dimension χeff . Intuitively we expect χeff ∼
exp (Seff

2 ) = 1/tr(ρeff
L

2). Moreover, recall that the computation
time of DMRG scales as χ3

eff . The entanglement distance that
we computed previously helps us to estimate this value. Since
the GS of the system (with trivial charge for topological states)
has the lowest EE among all nearby states, the EE associated
with ρeff

L is necessarily larger than that of the GS with trivial
charge. For 1+1D systems, since the entanglement distance
varies linearly as a function of energy separations and thus
vanishes for degenerate states, χeff ∼ χ1 as ρeff has almost the
same EE as the trivial GS. However, for 2+1D topological
states, the situation is quite different. Using Eq. (11) we can
find Seff

2 as

Seff
2 = S2(ρeff) = α� − nB lnD − ln

(∑
a

p2
a

d
nB
a

)
(10)

which is consistent with the result found in [52]. Therefore,

χeff = 1∑
a

p2
a

d
nB
a

χ1.

In the next section, based on the ideas developed above, we
discuss two multistate DMRG algorithms that are helpful
for finding all of the (nearly) degenerate ground states and
give more accurate results for the low energy excitations.
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Furthermore, we verify the above relation by studying a 1/3
Laughlin state.

IV. TWO DMRG-BASED ALGORITHMS FOR OBTAINING
DEGENERATE GROUND STATES

In this section, we discuss two multistate targeting DMRG
algorithms that can be justified using the notion of entan-
glement distance. For an enlightening introduction to the
single-state DMRG algorithm, see Appendix A.

A. Algorithm I

Let us consider n (nearly) degenerate ground states. We
want to find the optimal truncation matrix TL with dimension
DL × χ that contains information about all n states. The
truncation error associated with the ath reduced matrix is
ε(a) = 1 − trT †

Lρ
(a)
L TL. Let us weight each truncation error by

pa which may depend on the energy of state a, e.g., pa =
e−βeffEa/Z, or its entanglement or both. For topological states a
reasonable choice can be pa = d2

a /D2. The total weighted cost
function becomes εeff = ∑

a paε
(a) which can be rewritten as

εeff = 1 − trT †
Lρeff

L TL, where ρeff
L ≡ ∑

a paρ
(a)
L . Therefore the

optimal choice for TL minimizes the truncation error of ρeff
L .

Thus, at each step of DMRG or related methods, we need to
find n lowest energy eigenstates and combine them properly to
build the effective RDM and use it to achieve TL for truncation.
Fulfilling this requirement, we are guaranteed to find all ground
states in later steps. Otherwise, even for fairly large values of
bond dimension χeff , the information about n − 1 states will
leak out at a rate depending on the entanglement distance,
and there is no guarantee that the single-state DMRG can
recover all degenerate states in the later steps. Now, we need
to find an estimate for the value of the effective bond dimension
χeff . Intuitively we expect χeff ∼ exp (Seff

2 ) = 1/tr(ρeff
L

2). The
entanglement distance that we computed previously helps us to
estimate this value. Since the ground state of the system (with
trivial charge for topological states) has the lowest EE among
all nearby states, the EE associated with ρeff

L is necessarily
larger than that of the ground state with trivial charge. For
1+1D systems, since the entanglement distance varies linearly
as a function of energy separations and thus vanishes for
degenerate states, χeff ∼ χ1 as ρeff has almost the same EE as
the trivial ground state. However, for 2+1D topological states,
the situation is quite different. As we demonstrated previously,

trρ(a)
L ρ

(b)
L = δab exp[−α� + nB ln (D/da)], (11)

where D = √∑
a d2

a is the total quantum dimension, da is the
quantum dimension of an anyon with charge a, � denotes the
boundary length, α is a nonuniversal constant, and nB denotes
the number of boundaries (for cylinder and torus geometries
we usually consider nB = 1 and nB = 2, respectively.) Using
Eq. (11) we can find Seff

2 as

Seff
2 = S2(ρeff) = α� − nB lnD − ln

(∑
a

p2
a

d
nB
a

)
. (12)
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FIG. 5. Comparing the results of the single-state DMRG with
the first multistate DMRG algorithm discussed in the paper for
the lowest energy eigenvalues. We consider a Laughlin state at
1/3 filling, torus geometry, with Ne = 12 electrons and Ly = 15
circumference. We have considered Haldane’s V1 pseudopotential
[53] for the interaction term. We have implemented center-of-mass
momentum conservation mod Ne, thus the three topological sectors
have the same total momentum (mod Ne). The single-state DMRG
with χ = 150 finds only one of the three degenerate ground states
(enlarging bond dimension does not help in finding more states). On
the other hand, the first multistate DMRG algorithm finds all three
degenerate ground states for both χ = 150, and χ = 450. Although
the ground-state energy of χ = 150 is nonzero and larger than its
true value, the excitation energies (Ei − E0) are estimated well.
Furthermore, we see that the first multistate DMRG with χoff = 450
gives a ground-state energy close to zero (and that of the single-state
DMRG method targeting one ground state), consistent with our
theoretical expectations [see Eq. (13)].

Therefore,

χeff = 1∑
a

p2
a

d
nB
a

χ1. (13)

Note that in this expression for χeff we must include de-
confined anyons only. Figure 5 shows how this modified
DMRG achieves the correct ground-state degeneracy (GSD)
for Laughlin states. We would like to mention that, although
similar methods have been used in the past to find the low
energy excitations as well as ground-state degeneracy, we add
an important flavor to it: namely, we increase the system by a
specific number related to the topological order of that phase
at each step of the infinite DMRG. Without this seemingly
simple modification, there is no guarantee of finding all of the
degenerate states, as one can verify for a simple Hamiltonian.
For 2D topological states, the number of sites added must be
equal to the size of the unit cell in the thin torus pattern of that
phase. This is something which was missed in the previous
studies, and its importance can be understood as follows. The
mentioned multistate DMRG algorithm requires finding all
degenerate ground states at each step of DMRG, e.g., via the
Lanczos method. This increases the computation time unless
we optimize the procedure by modifying the wave-function
transformation and Lanczos algorithm to use n initial vectors
or a linear combination of them. Second, for the case of
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topological states (e.g., Laughlin states at filling 1/m on
torus geometry), the GSD is finite (m-fold degenerate for 1/m

Laughlin state) only if the total system size has certain length
(multiples of m for 1/m Laughlin state), otherwise it can grow
polynomially in the system size (or more precisely, given by
the quasihole counting of that state). As a result, the required
bond dimension to keep the truncation error small explodes,
and the quantum simulation becomes intractable after a few
steps. Therefore, in order to resolve this severe limitation, we
must increase the system size during the infinite DMRG steps
such that the GSD remains constant. For example, we must add
m or multiples of m sites at each step of the infinite DMRG
for Laughlin states at 1/m filling. Therefore, the dimension
of the Hilbert space and operators will keep growing until
the mth site is added, after which we truncate the operators
and states to reduce their dimensions down to χeff . For the
finite DMRG part, we no longer have this issue because the
system size if fixed. Thus, one site can be added and removed
since the total system size is fixed. Furthermore, in order to
reduce the number of iterations in diagonalizing the superblock
Hamiltonian, we suggest utilizing the Arnoldi method instead
of the Lanczos method and use all of the degenerate wave-
functions states from the previous step as the initial vec-
tors spanning the Krylov subspace (multistate wave-function
transformation).

B. Algorithm II

The second algorithm we discuss for obtaining the nearly
degenerate ground states (as well as low-lying excitations)
combines ideas from White’s DMRG and Wilson’s nu-
merical RG (NRG) methods [54]. Interestingly, NRG does
not explicitly break ergodicity since truncation matrices are
obtained from a subsystem Hamiltonian instead of RDMs.
However, except for certain systems it usually provides an
unsatisfactory estimate of the ground-state energy. On the
other hand, White’s DMRG estimates energy very well but
cannot keep track of all degenerate states. Now let us consider
T DMRG

L with dimension DL × χDMRG obtained from the RDM
in the usual way, and T NRG

L with dimension DL × χNRG

that is obtained by putting lowest χNRG eigenstates of left
Hamiltonian HL together. The truncation matrix is obtained
via the concatenation of these two truncation matrices,
TL = [T DMRG

L T NRG
L ], followed by orthogonalization of the

two submatrices to enforce the T
†
LTL = 1 constraint. The

computation cost of this is same as that of DMRG with χ =
χDMRG + χNRG. This method can obtain all degenerate states
of 1+1D systems. For example, consider a Z3 parafermion
chain with six domain walls and JFM = hPM = 1 and JPM =
hPM = 0.1eiπ/10 whose GSD = 27. The ground-state energy
for these parameters can be obtained using the single-state
DMRG with χDMRG ∼ 5. However, we just obtain one ground
state even if we consider χDMRG = 80. Nonetheless, with our
second multistate DMRG, χDMRG = 10 and χNRG = 10 are
sufficient to obtain all degenerate states. (see Fig 6). It is worth
noting that, even within the single-state DMRG algorithm,
one can find N ground states among possibly more degenerate
ground states of ZN parafermion chains by implementing ZN

symmetry. Yet, the remaining degenerate ground states (see

0 10 20 30 40
-180

-175

-170

-165

-160

-155

E

Single-state DMRG 

2  multi-state DMRG 

FIG. 6. Comparison of the results of the single-state DMRG with
the second multistate DMRG algorithm introduced in this paper for
the lowest energy eigenvalues. In this case there is a Z3 parafermion
chain of lengthN = 90 with six domain walls leading to (GSD) = 27.
Again single-state DMRG cannot find all ground states even with
χtot = 80, while the second multistate DMRG can easily find all 27
states with χtot = 20.

Fig. 6 for example) cannot be obtained in the single-state
DMRG.

Note added. After the completion of this work, we became
aware of a recent related work on ε1(a,b) in the 1+1D CFTs
[55] with results similar to ours.
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APPENDIX A: A BRIEF REVIEW
OF THE SINGLE-STATE DMRG ALGORITHM

The basic idea behind the DMRG approach is the singular-
value decomposition (SVD) of the ground state. Consider
a quantum system partitioned into L and R subsystems
with Hilbert spaces of dimensions DL and DR , respectively.
The ground-state wave function is a DLDR dimensional
vector which can be reshaped into a DL × DR dimensional
matrix, �ij , where i = 1, . . . ,DL and j = 1, . . . ,DR . Using
single-value decomposition, state � can be represented as
� = U�1/2V T, where U (V ) is a unitary matrix formed of
juxtaposing the eigenstates of ρL = ��† (ρR = �T�∗) and
� is a diagonal matrix formed of eigenvalues of ρL or ρR . It is
easy to show that ρL and ρR are indeed the RDMs associated
with the left and right subsystems respectively. Similarly, the
EE associated with the chosen partitioning is S = −tr� ln �.
For local gapped Hamiltonians, the SVD (a.k.a. Schmidt
decomposition) of the ground state is much less complex than
a generic excited state: namely, most of the diagonal elements
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FIG. 7. DMRG results for ε
χ

2 in a critical Z3 parafermion chain of N = 100 total length measured at � = 30 for three different values of
bond dimension, χ . These results suggest that βE(χ ) = χ/20 + 1.3 (� = 30) with a high accuracy.

of the eigenvalue matrix � are negligible, leading to a lower
EE for the ground state. This allows us to use an efficient
principal component analysis by keeping eigenvalues larger
than a threshold, λth. Let us assume the number of eigenvalues
satisfying this condition is χ . Accordingly, instead of U (V ) we
must use TL (TR) which contains the χ dominant eigenvectors
of ρL (ρR). We also have T

†
LTL = 1 and a similar relation

for TR . So, TL (TR) is a projection (truncation) operators that
can project ground state and operators defined in the L (R)
subsystem to the subspace spanned by important eigenstates
of the density matrices. For example, we expect � = T

†
L�T ∗

R

to contain almost all of the information stored in �, e.g.,
we can use it to find the correlation function, entanglement,
ground-state energy, etc. Therefore, the error of calculating
these quantities with respect to � decays exponentially by
increasing χ .

In practice, since we do not know the wave function a priori
and thus we cannot find the truncation matrices, we need to find
an efficient way of achieving them. DMRG provides one way
of reaching this goal, though in most 2+1D systems the bond
dimension, χ , has an exponential dependence on the system
width (due to the area law EE in real space), hence we can only
simulate narrow systems. The DMRG algorithm finds TL and
TR by iteration. Instead of considering the whole system of N
sites (where the dimension of local (onsite) Hilbert space is d),
in the nth step of iteration, DMRG partitions the system into
three subregions: left, middle, and right with n, N − 2n, and
n sites respectively. Then it assumes region M is decoupled
from the rest and also L and R regions interact with each
other directly as if they are neighbors and attached (obviously
these assumptions generate some errors and DMRG needs
to fix them in later steps). For small n we can use ED to
find the ground state(s) exactly and no truncation is needed.
The Hamiltonian of the L and R regions can in general be
written as

HLR = HL(n) ⊗ 1R + 1L ⊗ HR(n) +
∑

i

giO
i
L(n) ⊗ Oi

R(n),

(A1)

where gi are coupling constants. As soon as the Hilbert space
dimensions of the L or R regions exceed χ , we start truncating
operators by TL(n) and TR(n) obtained as described above,

after which we obtain

HLR = HL(n) ⊗ 1R + 1L ⊗ HR(n)

+
∑

i

giOL
i
(n) ⊗ OR

i
(n), (A2)

where OL
i
(n) = T

†
L(n)Oi

L(n)TL(n), and there is a similar

expression for OR
i
(n). The truncated operators are χ × χ

dimensional. In step n + 1, DMRG adds one site to the
left and one site to the right, after which the dimension of
the left (and also right) region is dχ . Again, we construct
the total Hamiltonian, find its ground state and obtain the
truncation matrices for steps n + 1, TL(n + 1), and TR(n + 1).
Then we use the truncation matrices to truncate the operators
once more, after which their dimensions reduce to χ × χ

again. This way, the dimension of operators is kept constant
instead of growing exponentially with n. This procedure
of adding sites followed by truncations is repeated until
n = N /2. So far, we assumed that only n + n sites in the
L and R regions interact, and therefore |�〉L,n;M,N−2n;R,n =
|�〉L,n;R,n ⊗ |�〉M,N−2n, which except for gapped 1+1D
systems is not a good approximation. In order to improve
this assumption, DMRG uses the so-called sweeps, where
region M disappears and in step n the left region contains
n sites and the right region contains the remaining N − n

sites. The truncation matrices and operator representations
for (L,n) and (R,N − n) from previous iterations are used.
Then we construct the total Hamiltonian, find the ground
state, and use them to update TL(n) and TR(N − n) as well as

operators OL
i
(n) and OR

i
(N − n). After a few sweeps across

the system, the algorithm converges and the ground-state
energy, correlation functions, etc., can be obtained with a high
accuracy for large enough values of χ . One criterion is that χ

must be the order of maxn(eS(n)) at least, where S(n) is the EE
associated with n sites in the left.

APPENDIX B: MORE RESULTS
FOR THE CRITICAL Z3 CLOCK MODEL

In Fig. 7, we present more results for ε
χ

2 measured at � = 30
for a critical Z3 parafermion chain of N = 100 sites. Using a
polynomial fit, one can easily verify the expression in the cap-
tion of Fig. 2 of the main text: βE(χ ) = χ/20 + 1.3 (� = 30).
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