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One-dimensional symmetry protected topological phases and their transitions
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We present a unified perspective on symmetry protected topological (SPT) phases in one dimension and
address the open question of what characterizes their phase transitions. In the first part of this work, we use
symmetry as a guide to map various well-known fermionic and spin SPTs to a Kitaev chain with coupling of
range α ∈ Z. This unified picture uncovers new properties of old models, such as how the cluster state is the
fixed point limit of the Affleck-Kennedy-Lieb-Tasaki state in disguise, and elucidates the connection between
fermionic and bosonic phases, with the Hubbard chain interpolating between four Kitaev chains and a spin chain
in the Haldane phase. In the second part, we study the topological phase transitions between these models in the
presence of interactions. This leads us to conjecture that the critical point between any SPT with d-dimensional
edge modes and the trivial phase has a central charge c � log2 d . We analytically verify this for many known
transitions. This agrees with the intuitive notion that the phase transition is described by a delocalized edge mode,
and that the central charge of a conformal field theory is a measure of the gapless degrees of freedom.
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I. INTRODUCTION

Topology has established itself as a fundamental principle
in condensed matter physics. For gapped ground states of
local Hamiltonians, topological invariants can label distinct
phases of matter, and these nonlocal order parameters can
be associated with exotic features such as protected edge
states or anyonic excitations [1]. While the classification
of topological phases has been achieved for noninteracting
fermions in arbitrary dimensions [2–6], the extension to
systems of interacting particles is a matter of ongoing work.
For gapped systems in one spatial dimension, however, the
general principles have been elucidated [7–12]. In particular,
it is known that topological invariants require the presence of
an unbroken symmetry in order to be well-defined. These label
so-called symmetry protected topological (SPT) phases.

One-dimensional SPT phases have the curious property
that the physical edges have modes at zero energy. These are
protected by how particular bulk symmetries act anomalously
on the edge [7–11] (in Sec. II and Appendix, we present an
accessible review of the classification of one-dimensional SPT
phases). An archetype is the Haldane phase, realized by the
spin-1 Heisenberg chain with its spin- 1

2 edge modes: the bulk is
symmetric with respect to SO(3), whereas the edges transform
under SU(2). While that particular model is not analytically
tractable, there are a number of exactly soluble fermionic
and spin chains that have been uncovered over the decades
realizing SPT phases. One might wonder whether there are
links between these distinct models. This is the question we
address in the first part of this work, leading to a unification of
various models by relating them to stacks of Kitaev chains [13].

This unified set of models provides a framework for our
second topic: “What characterizes the critical theory between
SPT phases?”. There have been various works studying the
transitions between particular SPT phases [14–24], but it has
proven difficult to make quantitative statements about the
general case [25–27]. The latter works have led to the intuitive
picture that the gapless fields at the transition are in some
sense the delocalized boundary excitations. Our goal is to

quantify this intuition by establishing a relationship between
the number of low-energy degrees of freedom at the transition
and the number of edge modes in the neighboring gapped
phases.

The main outcome of the first part of this paper is that
various SPT models can be related to stacks of Kitaev chains.
The Kitaev chain has a single Majorana zero mode on each
edge, but by stacking multiple copies one can have an arbitrary
number of such modes. In the classification of noninteracting
SPT phases (i.e., topological insulators and superconductors)
[3–5], spinless time-reversal symmetry (TRS) prevents these
Majorana modes from gapping out. Such stacks of Kitaev
chains were an important testing ground to subsequently
uncover the classification of interacting SPTs. In the presence
of interactions, there are only eight distinct phases protected
by TRS, characterized by how fermionic parity symmetry and
TRS are represented on the edge [8,9]. Here we revisit these
stacks. As explained in the main text, for every α ∈ Z, a stack
of α Kitaev chains (α < 0 denoting spatially inverted chains)
is equivalent to a single Kitaev chain with coupling of range
α. With economy of language, we refer to this as the α-chain.

Let us highlight a few of our findings, firstly, on how a stack
of two Kitaev chains, i.e., the 2-chain, is related to well-known
SPT models. This is pictorially represented in Fig. 1, with
details in the main text below. On the one hand, we find
a two-site unitary transforming the superconducting 2-chain
into the Su-Schrieffer-Heeger (SSH) model [28], a particle
number preserving Hamiltonian with a complex fermionic

FIG. 1. SPT models related to the α-chain with α = 2. In the case
of the AKLT model, it is at the level of the ground state, whereas for
the other three models it is at the level of the full Hamiltonian.
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edge mode protected by sublattice symmetry [6]. This mapping
arises naturally when using symmetry as a guide. Such a
guiding principle even uncovers new facts in the case of known
relationships, such as for the nonlocal transformation which
maps the 2-chain to the cluster model [29,30], a spin- 1

2 chain
protected by a Z2 × Z2 symmetry [16]. Despite that mapping
being well-known [16,23,31–34], we uncover through it a
new antiunitary symmetry protecting the cluster model. This
means that the cluster model and the Haldane phase are
protected by the same set of discrete symmetry groups, with a
different microscopic action. Writing down a two-site unitary
transforming one symmetry into the other, we map the cluster
model to a spin chain whose ground state is the fixed point limit
of the Affleck-Kennedy-Lieb-Tasaki (AKLT) [35] state. The
AKLT model is a well-known perturbed spin-1 Heisenberg
chain with an exactly known ground state.

Reconsidering the α-chain also illuminates how the Hal-
dane phase and the stack of four Kitaev chains, i.e., the 4-chain,
are two extremes of a single SPT model. The seminal work
on the interacting classification of SPT phases showed that the
4-chain has many algebraic similarities to the Haldane phase
at the level of symmetries [8]. We show that the interacting
4-chain can locally be rewritten as a spinful Hubbard chain,
protected by sublattice symmetry. In the Mott limit, it is a
spin chain in the Haldane phase. Interestingly, in this limit,
the sublattice symmetry protecting the Hubbard chain is
indistinguishable from spinful TRS. The latter is known to
protect the Haldane phase, but only in the Mott limit (even
when combined with spin rotation symmetry) [36]. Sublattice
symmetry can be seen as a different way of extending the same
spin symmetry to charge degrees of freedom, in which case
our construction shows that the Haldane phase remains stable
despite charge fluctuations.

Other new physics arises from mapping the α-chain to the
generalized spin- 1

2 cluster models [29]. Such a relationship
was observed before [23,31–34], but we use it to uncover
the SPT properties of these spin chains, for example, leading
to spin chains with both symmetry breaking and SPT order.
It is worth noting that despite these spin chains being
mathematically equivalent to the α-chains, their physics is
distinct due to the nonlocality of the mapping. This makes
the set of cluster models useful in its own right (both for
didactic and testing purposes), especially since one can add
perturbations which break the equivalence to fermions yet
leave the SPT properties intact.

In the second part of the paper, we use the α-chain to
explore the transitions between SPT phases (in the presence
of interactions). We observe a direct relationship between the
central charge describing the critical point and the topological
properties characterizing both sides of the transition. We
surmise that such a relationship holds for any topological
phase transition described by a conformal field theory (CFT).
In particular, if we interpolate between a trivial phase and an
SPT phase with d-dimensional edge modes, we conjecture
that the CFT describing the transition has a central charge
c � log2(d). We verify this conjecture for many known
topological transitions, including all CFTs with central charge
c < 1 and certain classes of Wess-Zumino-Witten CFTs. The
conjecture that c � log2 d matches the idea that the gapless
fields at the transition are the long-wavelength-fluctuations of

a delocalized edge mode. Note that if this conjecture holds, it
formalizes the intuition that the central charge measures the
gapless degrees of freedom. Our conjecture can be seen as
a far-reaching generalization of recent work [27], which has
shown that a transition between bosonic SPT phases satisfies
c � 1.

An outline of the paper is as follows: in Sec. II, we present a
brief review of one-dimensional SPTs, focusing on a physical
perspective (with a systematic treatment given in Appendix).
Section III concerns fermionic SPTs where we introduce the
α-chain and its symmetry fractionalization. In Sec. III B, we
illustrate how the 2-chain is the SSH model in disguise, and in
Sec. III C the interacting 4-chain is adiabatically connected
to the Haldane phase. We then turn to bosonic SPTs in
Sec. IV where the generalized cluster models emerge as the
Jordan-Wigner transform of the α-chain, pointing out how
the physics has changed under this nonlocal mapping. This
uncovers new nontrivial symmetries of the cluster model,
which in Sec. IV B leads to identifying its ground state as the
fixed point limit of the AKLT state. Section IV C shows how to
generalize the Kramers-Wannier dualities to these generalized
cluster models, shedding light on their symmetry breaking and
SPT properties. Finally, in Sec. V, we discuss the (interacting)
phase transitions between these models, leading to the general
conjecture which lower bounds the central charge at a critical
point in terms of the edge modes of the gapped phases at both
sides of the transition.

II. SYMMETRY PROTECTED TOPOLOGICAL PHASES

Here, we briefly review the classification of (interacting)
SPT phases in 1D using physical pictures [8–11]. First, we
present the general concept and then illustrate this in the case
of the cluster model and Kitaev chain. For more details, we
refer to Appendix or the aforementioned references.

A. Classification

Consider a gapped one-dimensional system of length N

invariant under a global symmetry group G. The classification
scheme needs the symmetries to be well-defined even when
having open boundaries,1 which for a unitary symmetry U ∈ G

is guaranteed if U = ⊗nUn is a tensor product over sites or
unit cells, referred to as an on-site symmetry. (The case of
antiunitaries, where complex conjugation is defined in some
on-site/unit cell basis, is discussed in Sec. III.) If we assume
U is not spontaneously broken, then for periodic boundary
conditions the ground state must be unique2 and hence invari-
ant under U . However, if we have open boundary conditions,
then the absence of spontaneous symmetry breaking in the
bulk still allows for U to act nontrivially near the edges. We
write this as U = ULUR , which is valid in the ground state
subspace. These effective operators UL,R are exponentially
localized near the boundaries on a length-scale set by the

1In case if one is interested in spatial inversion symmetry, one has
to replace the real-space picture by an entanglement-based approach.

2This is clear if we assume our Hamiltonian is translation invariant.
However, it turns out one does not need translation invariance.
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correlation length. In the thermodynamic limit (N → ∞) of
a gapped phase, UL and UR thus have no overlap. Since the
Hamiltonian is local, this means that UL and UR do not change
the energy of a state in the ground state subspace. We refer
to this as symmetry fractionalization. The same holds for any
other unbroken symmetry V ∈ G, so we can write V = VLVR .
Any group relation between U and V then implies a relation
between the edge symmetries. In particular, {UL,VL, · · · } then
obey the same group relations as {U,V, · · · } possibly up to a
phase factor. In the bosonic case, where UL and UR commute,
both edges completely decouple and the physical symmetry is
then projectively represented on each edge. Such a projective
representation has discrete labels that cannot change smoothly.
Since any nontrivial projective representation has a minimal
dimension >1, it protects degenerate modes on the edge (which
will be clear from the example of the cluster model). Fermions
can have extra structures related to UL and UR not necessarily
commuting, as will be clarified in the discussion of the Kitaev
chain below.

B. Bosonic example: the cluster model

This is a spin chain with three-spin interactions:

HC = −
∑

n

Xn−1ZnXn+1, (1)

where we denote the Pauli spin operators σx,y,z as X,Y,Z. Its
earliest appearance in the literature is in Suzuki’s work on
quantum systems that are dual to two-dimensional classical
dimer models [29] but it was reinvented by Raussendorf
and Briegel in the context of measurement-based quantum
computation [30]. Keating and Mezzadri independently ar-
rived at it as a spin chain dual to free fermions [31] and
Kopp and Chakravarty generated the model through a real
space renormalization of the quantum Ising chain [37]. The
cluster model was discovered to be an SPT phase protected
by Z2 × Z2 by Son et al. [16], and here we give a simplified
treatment of this fact as found in Zeng et al. [38].

If the total number of sites N is even, HC is symmetric
under the Z2 × Z2 group generated by

P1 = Z1Z3Z5 · · · ZN−1

P2 = Z2Z4Z6 · · · ZN. (2)

Let us take open boundary conditions and analyze the edge
modes. Note that the terms in Eq. (1) square to one, such
that the eigenvalues are ±1. Since all terms in H commute,
the ground state subspace will have Xn−1ZnXn+1 = 1 for
all n. Concatenating a list of these, we directly see that
this implies X1Z2Z4Z6 · · ·ZN−2XN−1 = 1, or equivalently
P2 = X1XN−1ZN . So despite P2 being a global operator, it
turns out that in the ground state subspace it merely acts on the
left by P L

2 = X1 and on the right by P R
2 = XN−1ZN . Similarly,

we obtain P L
1 = Z1X2 and P R

1 = XN .
We explicitly see that P L

1 and P L
2 are anticommuting

symmetries, proving that the cluster model has degenerate
edge modes. (Note that symmetry fractionalization generally
only holds in the ground state subspace, whereas here P

L,R
1,2

commuting with the Hamiltonian imply so-called strong zero
modes [39].) Adding terms to Eq. (1) that respect the Z2 × Z2

of P1 and P2 will alter the form of P L
1 and P L

2 but cannot

change their mutual anticommutation: from P1P2 = P2P1

one can derive that P L
1 P L

2 = eiαP L
2 P L

1 , and from P 2
1 = 1

one can show that eiα = ±1, indeed labeling the projective
representations of Z2 × Z2 (see Appendix for details about
symmetry fractionalization). Thus as long as the correlation
length is finite, the edges have well-defined degeneracies.
Hence the cluster model is an SPT phase protected byZ2 × Z2,
however, in Sec. IV, we will see how it relates to a longer-range
Kitaev chain and how that uncovers new topological features
and even a hidden SO(3) symmetry in the ground state.

C. Fermionic example: the Kitaev chain

This is a one-dimensional model of superconducting
fermions [13]:

HK =
∑

n

c†ncn+1 + c†nc
†
n+1 + H.c. (3)

Kitaev drew attention to this model in 2001 for the free
Majorana modes on its edges. To see these, it is convenient to
step away from the representation in terms of superconducting
fermions and note that any fermionic mode can be decomposed
into its real and imaginary part: γ = c + c† and γ̃ = c−c†

i
.

These Hermitian operators are Majorana modes, meaning
they anticommute and square to unity. One obtains the much
simpler HK = i

∑
n γ̃nγn+1. Similar to the reasoning for the

cluster model, the ground state subspace will have γnγn+1 = i.
This means that fermionic parity symmetry P = ∏

i(1 −
2ni) = ∏

(iγ̃nγn), which is a symmetry for any fermionic
system, effectively acts as P = iγ1γ̃N for open boundaries. So
here we see that P = PLPR where PL and PR anticommute.
So now we have a protected twofold degeneracy that is spread
out over both edges. In other words there is a Majorana
zero mode living on each edge, which can be said to be
“
√

2-dimensional” – by definition this means that taking two
such modes gives a 2-dimensional Hilbert space. Because
fermionic parity symmetry cannot be broken,3 this phase is
stable under arbitrary perturbations.

We see that if we only have P symmetry, there are
exactly two phases, characterized by PLPR = ±PRPL. In
the noninteracting classification, this is referred to as the
Z2 invariant of the D class.4 However, the Kitaev chain is
also invariant under spinless time-reversal symmetry T = K ,
where K is the complex conjugation that leaves c and c†

invariant. If we enforce this symmetry, then in the absence
of interactions we are put in the BDI class which is known to
have Z distinct phases characterized by a certain topological
invariant [6]. However, in Sec. III A, we review how in the
interacting case there are only eight phases [40], labeled by
Z8, where the topological invariants are constructed out of
the symmetry fractionalization of P and T [8,9,41]. All the

3By locality one would require that 〈c†i cj 〉 |i−j |→∞−−−−−→ 〈c†i 〉〈cj 〉. Since
the left-hand side is antisymmetric and the right-hand is symmetric,
we require 〈c†i 〉 = 0. Parity symmetry ensures this.

4This requires a particle-hole symmetry, but note that any
fermionic Hamiltonian has a particle-hole symmetry as defined in
the Bogoliubov-de Gennes Hamiltonian. In this paper, we will not
need this language.
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Z noninteracting phases (and the eight interacting ones) are
generated by stacking single Kitaev chains. This uses the
so-called group structure of SPT phases, which we explain
now.

D. Group structure of SPT phases

An important and elegant property of these phases is that
the set of all SPT phases with respect to a given symmetry
group G itself has a group structure. The addition of two
SPT phases is defined by taking the physical stacking of
both chains. This can be applied to both the noninteracting
and interacting classification, but here we give the point of
view relevant for the interacting classification, i.e., using
symmetry fractionalization. For example, let U be some
unitary symmetry for a bosonic chain, then if we have
U = UA

L UA
R for the first chain and U = UB

L UB
R for the

second, then the combined system has UL = UA
L UB

L . This
new symmetry fractionalization will then be a realization of
a possibly different SPT phase. It is not hard to convince
oneself that this operation satisfies all the properties of a
group. Mathematically, in the bosonic setting (where the edges
fully decouple) this new group is called [10] the second group
cohomology group of G with coefficients in U(1), denoted
H 2(G; U(1)), although we do not use this language in this
paper. For example for G = Z2 × Z2, the group of SPT phases
is Z2: this means there is only one nontrivial phase—realized
by the above cluster model—which is its own inverse. Indeed,
if one has a stack of two cluster models, then one can gap
out the edge modes by the symmetry-preserving perturbation
V = (P L

1 )
A

(P L
1 )

B + (P L
2 )

A
(P L

2 )
B

.

E. The subtlety of identifying phases

In the aforementioned, we did not distinguish the symmetry
group from its representation. For example, the cluster model
HC in Eq. (1) has the abstract symmetry groupZ2 × Z2, which
is represented by {I,P1} × {I,P2}. Indeed, in the classification
scheme, one usually fixes the representation and only allows
paths of gapped local Hamiltonians which are symmetric under
that particular representation. Along such a path the symmetry
fractionalization {I,P L

1 } × {I,P L
2 } remains well-defined. The

downside of this definition is that any other model with the
same symmetry but in a different physical implementation
is automatically in a distinct phase. Consider for example
the spin- 1

2 chain of alternating Heisenberg couplings H =∑
n S2n · S2n+1. The leftmost spin S1 is clearly decoupled,

and this edge mode is in fact protected by any perturbation that
preserves π -spin rotation since the edge transforms as a spin- 1

2
whereas the bulk is a singlet. Thus it has the same symmetry
groupZ2 × Z2 but now it is represented by {I,Rx} × {I,Ry} =
{I,Rx,Ry,Rz}, sometimes referred to as the Haldane phase.
According to the usual definition, these two models can not
be connected, despite both having the same properties with
respect toZ2 × Z2. To resolve this, we can introduce a broader
notion of phase equivalence where one allows for paths of
gapped local Hamiltonians where the symmetry group is
preserved, but its on-site representation can vary smoothly. The
symmetry fractionalization and consequent edge modes are
then still protected quantities. In this way, one can, for example,

FIG. 2. Schematically representing the α-chain (4) for α = 0,1,2.
The left black dot denotes the Majorana mode γ , the right one γ̃ .

construct a path between the cluster model and the alternating
Heisenberg chain where P1 and P2 smoothly transforms into
Rx and Ry . In Sec. IV B, we naturally arrive at such a path
purely from symmetry considerations, which moreover also
preserves the other symmetries known to protect the Haldane
phase. The condition that the symmetry remains on-site is
crucial: if this is dropped, everything is trivial [11].

III. TOPOLOGICAL FERMIONIC CHAINS

A. Stacking of Kitaev chains: the α-chain

Here we reconsider the phases that arise by stacking
multiple Kitaev chains. Instead of literally stacking them on
top of one another, it is convenient to rewrite such stacks in
a translation invariant manner. This makes it more natural,
for example, to interpolate between a different number of
chains without keeping systems artificially decoupled from one
another. Figure 2 illustrates the idea: stacking α Kitaev chains
on top of one another is equivalent to coupling the Majorana
modes over a distance α ∈ Z. We call these α-chains, with the
Hamiltonian (where as before γ = c + c† and γ̃ = c−c†

i
)

Hα = i
∑

n

γ̃nγn+α. (4)

Note that H1 = HK and H0 = ∑
n 1 − 2c

†
ncn, the trivial band

insulator. This class of long-range Kitaev chains has been
considered before in a noninteracting context [34]. Their (in-
teracting) SPT properties have been uncovered in the context
of stacks of Kitaev chains [8,9]. Here we first revisit their
SPT nature in an equivalent but slightly different language,
before illuminating how the α-chain maps to other models by
local redefinitions. Nonlocal transformations to spin chains
via a Jordan-Wigner transformation are discussed in Sec. IV.
We first discuss the topological nature of the 2-chain before
discussing the case for general α.

1. Symmetry fractionalization of the 2-chain

For α = 2, the left (right) has Majorana edge modes γ1,γ2

(γ̃N ,γ̃N−1). These can be gapped out by the hermitian perturba-
tion iγ1γ2 (iγ̃N γ̃N−1), but this is not invariant under complex
conjugation T = K . (Note that T γ T = γ and T γ̃ T = −γ̃

since we define c and c† to be invariant.) In fact, T protects
a Kramers pair on the right edge, and PT on the left. To see
this, let us define the fermionic edge modes

cL = 1
2 (γ1 + iγ2)

cR = 1
2 (γ̃N−1 + iγ̃N ). (5)
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TABLE I. The protected edge degeneracies for the α-chains (4).
It also specifies where each symmetry protects a mode: “nonlocal
fermion” means PL anticommutes with PR (as discussed for the Ki-
taev chain in Sec. II), whereas, for example, “T left” means T protects
a Kramers pair on the left edge. Round and square brackets correspond
to inequivalent choices of fractionalizing complex conjugation in the
presence of a nonlocal mode, i.e., for a given choice one only has one
of the two (details in Appendix). Different choices for distinct α still
lead to invariants that distinguish the phases.

total
α P T PT degeneracy

−3 nonlocal fermion left, (right) [left], right 8
−2 fermion on left right 4
−1 nonlocal fermion (left) [right] 2
0 1
1 nonlocal fermion [right] (left) 2
2 right left 4
3 nonlocal fermion [left], right left, (right) 8
4 left, right left, right 4

It follows that T cLT = c
†
L and T cRT = −c

†
R (and oppositely

for PT ). From this, one can derive that

T 2|0〉L = |0〉L
T 2|0〉R = −|0〉R, (6)

where we have defined cL,R|0〉L,R = 0. On first sight, this
seems to contradict T 2 = 1, however, performing the same
calculation for both edges gives T 2(|0〉L ⊗ |0〉R) = |0〉L ⊗
|0〉R (the extra minus sign coming from cLcR = −cRcL). These
properties are summarized in row “α = 2” of Table I.

The fact that any fermionic Hamiltonian has parity sym-
metry P begs the question whether the statement “T (PT )
protects the right (left) edge” has tangible consequences. To see
it is meaningful, consider the Jordan-Wigner transformation,
which can map the 2-chain to a spin model. This nonlocal
transformation involves string operators, which either start at
the left or right edge. If the string originates from the right
edge, then local quantities near this edge will remain local
in the new spin variables, hence T protecting a Kramers pair
implies a nontrivial spin chain protected by T . Oppositely,
starting from the left edge should give a different spin chain,
now protected by PT . In Sec. IV, we see this is, indeed, the
case.

As in the cases discussed above, this can be formulated in
terms of symmetry fractionalization, which is slightly more
subtle for antiunitary symmetries. If we choose a basis for our
low-energy space, then on these basis states T acts as a unitary,
with the fractionalization T = ULUR . Applying it twice, 1 =
T 2 = (T ULT )(T URT )ULUR . This means T ULT UL = ±1,
with T URT UR having the same (opposite) sign if UL,R is
bosonic (fermionic). These signs correspond to the square
of T on the edge modes, as in Eq. (6). In particular, in the
basis defined by cL,R , we obtain UL = γ2 and UR = γ̃N−1

(the derivation and other details are discussed in Appendix),
such that indeed T URT UR = −1, agreeing with Eq. (6). The
approach of previous works [8,9] was equivalent but different,
opting for invariants which for α = 2 would have T square to

−1 on the left edge instead of the right. The above invariants
strike us as more natural considering the physics of Eq. (6)
and the ensuing discussion. Curiously, a recent approach [41]
in terms of fermionic matrix product states does not have a
spatial asymmetry in the fractionalization of T (which suggest
it might be implicitly describing a Jordan-Wigner transformed
chain, cf. Sec. IV).

2. Symmetry fractionalization of the α-chain

Stacks of Kitaev chains have played an important role in
elucidating the classification of interacting SPT phases in
one dimension [8,9] and it was realized that if we enforce
P and T symmetry, there are eight possible phases. These
correspond to α = 0,1, . . . 7 forming the group Z8 under SPT
addition. In particular, Kitaev and Fidkowski [40] have shown
that a stack of eight noninteracting chains can be smoothly
connected to a trivial phase if one allows for interactions, i.e.,
not just quadratic terms. Subsequently, the eight remaining
possibilities have been understood in terms of symmetry
fractionalization, proving their stability against symmetry-
preserving interactions. We summarize the result (derived
in Appendix) in Table I, using the cyclic nature of Z8 to
instead choose the representatives α = −3, − 2, . . . ,4 where
the Hamiltonian (4) shows that negative α is the same as a
left-right inverted |α|-chain. For −3 � α � 3, the low-energy
subspace of one edge is too small to define interaction terms,
hence they have the edge degeneracies we expect from the free
fermion picture. For α = 4, it was first discussed in Ref. [40]
how the perturbation γ1γ2γ3γ4 lifts the fourfold degeneracy
on the left edge of the 4-chain to a twofold degeneracy, which
cannot be lifted further due to time-reversal symmetry.

3. Left-right asymmetry

One peculiar feature of Table I is the spatial asymmetry of
the symmetry protection, which is possible due to the explicit
inversion symmetry breaking of the model (4): swapping left
and right does not leave it invariant, but insteads changes the
sign of α. (We note that it is impossible in bosonic SPT phases
for different edges to be protected by different symmetries,
however, it is possible for them to have different projective
representations on each edge [19].) For α = 4, however, we
see the same symmetries protect each edge, and indeed the
fractional symmetries turn out to be bosonic. This means it
cannot be represented in a free fermion system. In fact, as we
discuss in Sec. III C, it can be seen as a spin SPT phase. Note
that none of these eight phases can be connected by a path
of gapped local Hamiltonians preserving P and T . However,
α ↔ −α are in the same phase according to the alternative
notion discussed in Sec. II, allowing paths which smoothly
change the (on-site) representation of the antiunitary symmetry
from T to PT .

4. O(|α|) symmetry of the α-chain

Here we briefly discuss a symmetry, which will be useful
for what follows. As had first been observed in Ref. [40], a
stack of α decoupled Kitaev chains has an O(|α|) symmetry.
Conceptually, this corresponds to rotating the chains into one
another. On a mathematical level this is easy to see: if α > 0,
we define γ n = (γαn,γαn+1 · · · ,γαn+(α−1)) and similarly γ̃ n,
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since then Hα = i
∑

n γ̃ n · γ n+1. The Hamiltonian is invariant
under the linear action of O(α) on the vectors and this rotation
preserves the hermitian nature and canonical commutation
relations {γi,γj } = 2δij and {γi,γ̃j } = 0.

5. The 2- and 4-chain: SSH and Haldane

In the following two sections, we focus on the cases α =
2 and 4, respectively, uncovering their relationships to other
known and new models. We first summarize some relevant
observations of Fidkowski and Kitaev [8]: firstly, as we have
seen for α = 2, each edge has a single complex fermionic zero
mode. This is the same physics as the Su-Schrieffer-Heeger
(SSH) model [28], whose Hamiltonian and properties we will
soon discuss. Secondly, for α = 4, the aforementioned O(4)
symmetry was realized to have a SO(3) subgroup that acts
projectively on the boundary. Combined with the nontrivial
antiunitary symmetry (cf. Table I), the 4-chain was henceforth
labeled as being in the Haldane phase, a spin SPT phase with
the same algebraic structure. We discuss these statements in
more detail in Secs. III B and III C.

We show that these connections can be made surprisingly
simple and concrete, which we summarize here before going
into detail: in Sec. III B the 2-chain in fact coincides with
the SSH model after a two-site change of basis. Moreover,
this then implies the 4-chain can be seen as a spinful SSH
model. In Sec. III C, we use this to rewrite the interacting
4-chain as a Hubbard model of spinful fermions where in the
Mott limit the charge degrees of freedom are frozen out and
the effective spin- 1

2 model simply has alternating Heisenberg
bonds (without any phase transition). Its ground state is the
fixed point limit of the Affleck-Kennedy-Lieb-Tasaki (AKLT)
[35] state, a canonical example of the Haldane phase. This
leads to a much simplified constructive proof of the 8-chain
being adiabatically connected to a trivial chain.

It is interesting to keep track of the symmetries in the
case of the 4-chain, since this gives us insights into the
stability of spin SPT phases when deviating away from
the Mott limit (i.e., in the presence of charge fluctuations).
In Sec. III C, we rewrite the interacting 4-chain as a so-
called bipartite Hubbard model, which is known to have an
SO(4) symmetry [42]. This coincides with the SO(4) ⊂ O(4)
symmetry of the noninteracting 4-chain mentioned above,
surviving interactions. However, the SO(3) ⊂ SO(4), which
is realized projectively on its edge, does not correspond to
spin rotation symmetry in the language of the Hubbard model.
Nevertheless, in the Mott limit, this SO(3) does become
indistinguishable from spin rotation symmetry (protecting the
Haldane phase). This is a saving grace: it is known [36] that
the Haldane phase is not stable under charge fluctuations if one
preserves spin rotation symmetry, however, as a by-product of
our construction, we see the Haldane phase is protected by
this other SO(3) symmetry (or a Z2 × Z2 subgroup thereof).
Similarly, we will see the Hubbard chain is protected by
an antiunitary sublattice/particle-hole symmetry, in the Mott
limit coinciding with the usual spinful time-reversal symmetry
protecting the Haldane phase.

This underlines the fact that whether or not a spin SPT
phase is stable under charge fluctuations (i.e., away from the
Mott limit) depends on how the symmetry acts on the charge

FIG. 3. SSH model (9) with fermionic edge modes for λ = 1.

degrees of freedom. In particular, in the Mott limit, the Haldane
phase can equivalently be said to be protected by spinful time-
reversal or fermionic sublattice symmetry: their action being
indistinguishable. It is only away from the Mott limit that the
latter—not the former—continues to protect the phase.

B. The 2-chain is the Su-Schrieffer-Heeger model

We now relate the 2-chain to the Su-Schrieffer-Heeger
(SSH) [28] model. The latter is a fermionic chain with a
U(1) particle conservation symmetry [its Hamiltonian given by
Eq. (9)]. On the other hand, the 2-chain has superconducting
terms, but as has been pointed out above it does have an O(2)
symmetry. Indeed, if γ n = (γ2n−1,γ2n) and γ̃ n = (γ̃2n−1,γ̃2n),
then H2 = i

∑
n γ̃ n · γ n+1. By relabeling some operators, we

should be able to let the SO(2) ⊂ O(2) act as a fermionic
U (1) phase symmetry. Note that this will have to involve
mixing γ and γ̃ , since if c → eiαc and γ = c + c† then
γ → γ cos α − γ̃ sin α. Let us make this more precise for the
interpolation between the 2-chain and the trivial chain:

HSSH = (1 − λ)
∑

n

i γ̃nγn + λ
∑

n

i γ̃nγn+2. (7)

We then define A and B sublattices (i.e., A B A B A B . . .)
and consider the new Majorana operators:

γA,n := γ2n

γ̃A,n := γ2n−1
(8)

γB,n := γ̃2n−1

γ̃B,n := −γ̃2n.

In terms of the complex fermionic operators consisting of
these new Majorana operators [i.e., cA,n = 1

2 (γA,n + iγ̃A,n)],
we obtain

HSSH = 2
∑

n

[(1 − λ) c
†
A,ncB,n + λ c

†
A,n+1cB,n + H.c.]. (9)

This is exactly the Hamiltonian of the SSH model,
schematically shown in Fig. 3. This undergoes a quantum
phase transition at λ = 1

2 and has protected edge modes for
λ > 1

2 . What about the symmetries protecting it? Relabel the
2-chain symmetries as CB := T and CA := PT . From Eq. (8),
we see that the way they act on these new variables is as
follows:

CB cA CB = c
†
A and CB cB CB = −c

†
B, (10)

and similarly for CA. So our antiunitary symmetries are
particle-hole/sublattice symmetries. Despite CB acting as a
commuting antiunitary symmetry on the Fock space Hamilto-
nian, one can check that it acts like an anticommuting unitary
on single-particle Hamiltonians, i.e., this corresponds to the
sublattice symmetry used in the noninteracting classification.
Transposing our knowledge of the symmetry fractionalization
of the 2-chain, we know that for λ = 1, the C symmetries
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fractionalize with CA protecting the fermionic mode on the left,
and CB similarly on the right (and which on general grounds
must be stable until the critical point at λ = 1

2 ). This also tells
us that the noninteracting label Z for the AIII class reduces
to Z4 in the presence of interactions. It is worth noting that
the α-chains are stable under disorder whereas the SSH model
is not (due to it requiring a sublattice symmetry), which is
consistent with Eq. (8) mixing neighboring sites.

1. Identifying the two models

In effect, transformation (8) defines a local unitary U that
maps the 2-chain to the SSH model. Since this unitary only
acts within the unit cells, we know thatH, defined by U = eiH,
also only acts within the unit cells. Hence one can define the
local unitary evolution U (λ) = eiλH which smoothly connects
the models at the level of the Hamiltonian. It gradually deforms
the representation of the antiunitary symmetry from T to CB ,
the crucial fact being that everywhere along this path the
symmetry remains on-site (which for complex conjugation
we take to mean that the basis it is defined in is on-site), which
ensures that the symmetry fractionalization is everywhere
well-defined. This is enough to say both models are in the same
phase, as discussed in Sec. II. The stronger statement that the
unitary acts solely within the unit cells can be interpreted as the
models not merely being in the same phase, but being virtually
identical. To appreciate these facts, contrast it to the Kitaev
chain mapping to the trivial chain under the local mapping
γn → γn−1, which one cannot implement by a local unitary
evolution. Or how the 2-chain can be mapped to the trivial
chain by a local unitary evolution, but such a path cannot keep
the representations of the symmetries to be on-site.

C. The 4-chain as a Hubbard model and the AKLT chain

To gain insight into the interacting 4-chain, we first
show how it can be rewritten as a bipartite Hubbard model,
smoothly connecting to a simple spin chain in its Mott
limit. As we noted above, the 4-chain does not have a
noninteracting representation without accidental degeneracies:
the perturbation γ1γ2γ3γ4 lifts the fourfold degeneracy of the
left edge into a twofold one, which according to Table I cannot
be lifted further if we preserve P and T . So let us consider
HHub = 1

2 (H4 + V + Ṽ ), where

V = U

2

N
4∑

m=1

γ4m−3γ4m−2γ4m−1γ4m (11)

and Ṽ with γ ↔ γ̃ . The key idea is that we should be able to
see the 4-chain as a stack of two SSH chains, or alternatively
as a single SSH model with an extra spin- 1

2 degree of freedom.
To make this more explicit, we first redefine γ2n = γn,↓ and
γ2n−1 = γn,↑ and then perform the transformation shown in
Eq. (8) for each spin sector. We summarize for clarity:

cA,n,↑ = 1
2 (γ4n−1 + iγ4n−3) cA,n,↓ = 1

2 (γ4n + iγ4n−2)
(12)

cB,n,↑ = 1
2 (γ̃4n−3 − iγ̃4n−1) cB,n,↓ = 1

2 (γ̃4n−2 − iγ̃4n).

A       B       A       B       A       B       A       B  

FIG. 4. The bipartite Hubbard chain, Eq. (13), with single
occupancy. For U = 0 this is a double copy of the SSH state (λ = 1)
in Fig. 3. For U → ∞, this reduces to the AKLT fixed point state in
Fig. 5.

In these new variables, we obtain

HHub =
∑
n,σ

c
†
A,n+1,σ cB,n,σ + H.c.

+ U
∑
λ,n

(
nλ,n,↑ − 1

2

)(
nλ,n,↓ − 1

2

)
, (13)

where λ = A,B is the sublattice index. So we see the
interacting 4-chain is in fact a bipartite Hubbard chain,
shown in Fig. 4. We note that this topological chain was
investigated in Ref. [43] using Green’s functions. As long
as U = 0, the edges will prefer single occupancy, giving a
twofold degeneracy on each edge. It can straightforwardly
be argued that the gap of Eq. (13) does not close as we
increase U (see, e.g., the discussion by Anfuso and Rosch
[36]), in the Mott limit giving an antiferromagnetic spin chain

HHub
large U−−−→ 4

U

∑
n SB,n·SA,n+1. Its ground state is simply a

string of disjoint singlets with free spin- 1
2 modes on the edges.

1. Relation to the AKLT model

The AKLT model [35] is given by the spin-1 Hamiltonian
H = ∑

n Sn·Sn+1 + 1
3 (Sn·Sn+1)2. This is known to be in the

same phase as the spin-1 Heisenberg chain, but its ground state
is exactly known. In fact it is the same as the ground state of
the above (large-U ) bipartite Hubbard chain, with an additional
spin-1 projector on every “AB” unit cell. The projection is in a
sense immaterial: it leaves the entanglement spectrum between
the unit cells unchanged, moreover, the projector naturally
disappears under the renormalization group flow as defined
in Ref. [44]. In this sense, one can say that the ground state
of the above Hubbard chain in the Mott limit is exactly the
fixed point limit of the AKLT state. This simple ground state
is naturally in the Haldane phase: while the bulk is invariant
under SO(3) and Tspin (both of which are nonprojective when
applied to the unit cells), the edges transform as spin- 1

2 ’s. The
topological invariants of that projective representation define
the celebrated Haldane phase. However, if we instead look
at the relevant symmetries from the fermionic perspective, a
different story emerges.

2. Hubbard chain protected by sublattice symmetry

As a direct spin-off of Sec. III B, we know the Hubbard
chain is an SPT phase protected by the antiunitary sublat-
tice/particle hole symmetry CA defined in (10), which leaves
the spin degree of freedom untouched. On first sight, this seems
unrelated to the symmetries of the Haldane phase, however in
the Mott limit this reduces to Tspin = eiπSy

K , which is known
to protect the edge modes. Indeed, if S := 1

2c
†
sσ ss ′cs ′ then by

Eq. (10) we see that CA,B are antiunitaries that map S → −S.
(Moreover, for any SPT phase protected by Tspin, globally
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T 2
spin = 1, even if it squares to −1 on-site.) Hence we can say

that in the Mott limit we cannot distinguish between Tspin and
CA (or CB). However, away from the Mott limit, their difference
is essential, as we discuss now.

3. Fragility versus stability of spin SPT phases

In Ref. [36], it was shown that one can adiabatically connect
the Haldane phase to the trivial phase if one allows for paths
with fermionic degrees of freedom (i.e., away from the Mott
limit). This is possible even if one preserves Tspin, which was
interpreted as a sign of fragility of (bosonic) SPT phases with
respect to charge fluctuations. However, here we see there is
no fragility if we replace Tspin by CA. Let us briefly repeat
the reason why the Haldane phase is not stable against charge
fluctuations [45,46] in the presence of Tspin. The reason it is
protected in the Mott limit is because T 2

spin = 1 in the bulk—
since we have an even number of spin- 1

2 s—from which one
can deduce that on the edge it has to square to ±1, giving us
a well-defined discrete invariant. But if every site no longer
has exactly one fermion, we instead have T 2

spin = P , where P

denotes the parity of the number of fermions, from which one
can argue that its square on the edge can be smoothly deformed
from −1 to 1. It is then clear why CA does manage to protect
the edge modes: it always squares to the identity. Hence there
is no fragility with respect to this symmetry.

4. Hubbard chain protected by Z2 × Z2

Instead of time-reversal symmetry, the Haldane phase
can also be protected by rotation symmetry: the global π

rotations Rx = eiπSx and Ry = eiπSy form a Z2 × Z2 group
that fractionalizes as spin- 1

2 representations on the boundaries,
i.e., RL

x RL
y = −RL

y RL
x . However, similarly to above [45,46],

this does not protect the phase under charge fluctuations due
to R2

x = P . As in the previous paragraph, one might wonder:
although Rx and Rz do not protect the SPT phase, there
might be a Z2 × Z2 symmetry of the Hubbard chain, which
in the Mott limit becomes indistinguishable from the above
spin rotation symmetry. Indeed, we introduce two unitary
symmetries R̃x and R̃y which always obey a Z2 × Z2 group
structure and in the Mott limit reduce to Rx and Ry . This
automatically proves they protect the Hubbard ladder for
arbitrary interaction U . We define R̃x and R̃y as the unitary
operators that square to one and act as

R̃x c↑ R̃x = c↓, R̃y

{
cA,σ

cB,σ

}
R̃y =

{
c
†
A,σ

−c
†
B,σ

}
. (14)

Then R̃x maps S → (Sx, − Sy, − Sz) and R̃y maps S →
(−Sx,Sy, − Sz). Hence, for large U , the actions of R̃x and
R̃z are indistinguishable from Rx and Ry . In conclusion, in the
large U limit we can identify the symmetries Rx , Ry , and Tspin

with R̃x , R̃y , and CB , but the latter set protects the Haldane
phase even in the presence of charge fluctuations. (Moreover,
note that CB = R̃yK , extending Tspin = RyK .)

It is known that the bipartite Hubbard model in fact has
a much bigger on-site SO(4) symmetry [42]. In terms of our
original Majorana description in Eq. (11), if we define the
vector γ n = (γ4n−3,γ4n−2,γ4n−1,γ4n) and similarly γ̃ n, then
each element of A ∈ SO(4) simply acts linearly on this vector.

Indeed, H4 = i
∑

n γ̃ n · γ n+1 is rotationally invariant and the
interaction terms are of the form γ1γ2γ3γ4 = εi1i2i3i4γi1γi2γi3γi4

such that V → det(A) V , thus the noninteracting O(4) sym-
metry is broken down to SO(4). The above Z2 × Z2 symmetry
group is a subgroup of this SO(4): one can rewrite the action of
Eq. (14) in terms of matrices which act linearly on the original
Majorana variables, i.e.,

R̃x =
(

σx 0
0 σx

)
, R̃y =

(−I2 0
0 I2

)
. (15)

In addition, we can write these in terms of generators of the
Lie algebra so(4), i.e., R̃x,y = exp (iπS̃x,y), where

S̃x = i

2

(
0 −I2 + σx

I2 − σx 0

)
, S̃y =

(
σy 0
0 0

)
. (16)

Note R̃z = R̃xR̃y = exp (iπS̃z), where iS̃z = [S̃x,S̃y]. These
operators satisfy the angular momentum algebra [S̃a,S̃b] =
iεabcS̃c, generating an SO(3) subgroup of SO(4). Thus there
is the chain of symmetry groups Z2 × Z2 ⊂ SO(3) ⊂ SO(4),
each of which can be said to protect the edge modes. This
agrees with the observation by Fidkowski and Kitaev that
the SO(4) symmetry of the interacting 4-chain has a SO(3)
subgroup, which transforms the edges under a spin- 1

2 repre-
sentation [40]. In terms of the variables of the Hubbard chain
(13), in the Mott limit, the above SO(3) is indistinguishable
from spin rotation acting on the unit cells.

5. Connecting the 8-chain to the trivial chain

We note that having connected the 4-chain to the Haldane
phase gives an alternative construction of an adiabatic path
from a stack of eight Kitaev chains to the trival phase, which
is considerably less technically involved than the original
construction of Ref. [40]. Interestingly, the path which we
consider here in detail, was already sketched in Ref. [43].
More precisely, one first tunes the 8-chain to a stack of two
decoupled spin chains with alternating (intrachain) Heisenberg
bonds. Now adiabatically turn off the intra-chain couplings
and turn on the inter-chain Heisenberg couplings. This does
not close the gap since it reduces to the four-spin problem
H = t(S1 · S2 + S3 · S4) + (1 − t)(S1 · S3 + S2 · S4), whose
distinct eigenvalues –there are maximally six due to 1

2 ⊗ 1
2 ⊗

1
2 ⊗ 1

2 = 0 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 2– can be obtained after some

algebra, giving the gap
√

3(t − 1
2 )

2 + 1
4 . The resulting phase is

trivial: turning off the interactions leads us to a spinful version
of Hamiltonian (9) with λ = 0.

6. Relation to previous work

As we have already mentioned at the end of Sec. III A,
Fidkowski and Kitaev [40] had observed that the algebraic
properties of the interacting 4-chain resemble those of the
well-known Haldane phase. The new result here is that the
path from the 4-chain to such a spin chain is very simple and
dictated by symmetries, directly leading to a close cousin of
the AKLT model. This concrete path simultaneously raised
and resolved the apparent paradox of the (in)stability of the
Haldane phase with respect to charge fluctuations. We now
point out the work of two other groups on the physics of the
4-chain.
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In 2012, Rosch [45] showed how one can trivialize the
4-chain (seen as superconducting spinless fermions) if one
allows couplings to spinful fermions. More concretely, starting
from a stack of a trivial spin chain and four Kitaev chains, a
path to a completely trivial chain was constructed without
breaking time-reversal symmetry (TRS). Indeed, if we only
preserve TRS in the presence of charge fluctuations, we can
first adiabatically transform our trivial spin chain to be in the
Haldane phase. By the above, we now have a stack of two
Haldane chains, which can clearly be trivialized. Interestingly,
that work defined variables very similar to the above (12)
but did not rewrite the Hamiltonian in terms of it. This is
presumably due to a difference in philosophy: after defining
the new variables, they were not seen as spinful fermions
since the TRS of the original 4-chain does not act as TRS on
these variables. Our approach, however, is to consider (12)
as defining genuine spinful fermions, and conclude that the
Hubbard chain (13) is simply not protected by TRS but instead
by the sublattice/particle-hole symmetry CA.

We also mention the field theoretic work of You et al.
[47,48]. They showed that starting from the 4-chain, one can
define spin operators out of these Majoranas whose effective
continuum action upon integrating out the fermionic degrees
of freedom is the same nonlinear sigma model that is known to
describe the Haldane phase [49]. Note that the work of Anfuso
and Rosch [36] has shown it can be subtle to draw conclusions
about topological properties of a gapped phase after having
integrated out other gapped degrees of freedom if these sectors
were not completely decoupled to begin with. In the work
of You et al. this decoupling is ensured by requiring the
condensation of a particularZ2 gauge field. Without a physical
mechanism to ensure this condensation (unlike the Hubbard
chain (13) which ensures the gauge constraint γ1γ2γ3γ4 = −1
for large U ), one cannot directly transfer insights from the
effective spin chain to the original fermionic one. It can
however give very useful hints, and in Ref. [48] the knowledge
of how to trivialize a stack of two Haldane chains was used
to explicitly construct a path of the interacting 8-chain to the
trivial phase. Nevertheless, although this leads to a natural
construction, to actually confirm the presence of a gap, one
still has to solve a rather complicated problem involving 16
Majoranas, for which exact diagonalization (ED) was used.
This is similar to the original path proposed by Kitaev and
Fidkowski [40], where in addition to ED there was also a
nontrivial analytic argument involving perturbation theory and
the representation theory of SO(8). Hence, to the best of our
knowledge, having rewritten the 4-chain as (13) has led to the
simplest explicit path from the 8-chain to the trivial chain, since
it allows us to directly use the spin chain results. It would be
interesting to see if this approach can be helpful for the general
program laid out in Ref. [48], which elucidates the effect of
interactions on fermionic SPT phases in higher dimensions by
using known results for bosonic SPT phases.

IV. TOPOLOGICAL SPIN CHAINS

A. The α-chains map to generalized cluster models

We now turn to spin SPT phases, focusing on spin
chains which despite being mathematically equivalent to

TABLE II. The α-chain and its Jordan-Wigner transform.

Fermionic α-chain (4) Spin Hamiltonian after Jordan-Wigner (17)

...
...∑

iγ̃nγn−2 −∑
YnZn+1Yn+2∑

iγ̃nγn−1 −∑
YnYn+1∑

iγ̃nγn

∑
Zn∑

iγ̃nγn+1 − ∑
XnXn+1∑

iγ̃nγn+2 −∑
XnZn+1Xn+2

...
...∑

iγ̃nγn+α −∑
X Z · · · Z︸ ︷︷ ︸

α−1

X

the above fermionic α-chains, are physically quite distinct.
To this purpose, recall that in one dimension, the nonlocal
Jordan-Wigner transformation relates fermionic chains to
spin- 1

2 chains (with open boundary conditions) and vice versa:

γn = Z1Z2 · · · Zn−1Xn

γ̃n = Z1Z2 · · · Zn−1Yn. (17)

This transformation is compatible with the property that
under complex conjugation (T = K), we have T γnT = γn

and T γ̃nT = −γ̃n. A priori it is not clear that such a nonlocal
transformation preserves locality of the Hamiltonian. There is
however a simple criterion: a fermionic Hamiltonian is local
if and only if the corresponding spin Hamiltonian is local and
commutes with spin-flip symmetry P = ∏

n Zn. Let us now
consider how Eq. (17) acts on our α-chain (4).

In the simplest case, one can take the 0-chain, which under
Jordan-Wigner (JW) maps to a polarizing field H = ∑

n Zn.
More interesting is the well-known fact that the JW dual
of the Kitaev chain HK , i.e., the 1-chain, is the Ising chain
HI = −∑

n XnXn+1. This illustrates how, despite the JW
transformation not changing the energy levels, the nonlocal
mapping typically changes the physics: here it relates an SPT
phase to a symmetry-broken phase. As a next step, consider
the JW dual of the 2-chain. Compared to the Kitaev chain,
the Majorana operators are now one site further apart and
hence one Z of the JW string is not canceled, leading to
the cluster model HC = −∑

n Xn−1ZnXn+1. This structure
naturally extends to all α-chains as shown in Table II, where
we see that the spatial inversion (α ↔ −α) on the fermionic
side corresponds to X ↔ Y on the spin side.

These generalized cluster models first appeared in the
literature in 1971 as the quantum chains dual to certain
two-dimensional classical dimer models [29] (there referred
to as generalized XY models). In modern times, they have
resurfaced in studies of their phase transitions: first in context
of exact results for their critical entanglement scaling [31] and
more recently concerning conjectures for their conformal field
theories [23,24]. In Sec. V, we return to the topic of these
phase transitions from a different angle. On the other hand, it
seems the physics of these gapped spin chains has been left
relatively unexplored. In particular, it is interesting to check
how the physics of these spin models resembles or differs from
the SPT structure of their fermionic counterparts. We will see
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TABLE III. Symmetry breaking and fractionalization of the spin
chains in Table II with respect to P = ∏

Zn and T = K . “Kramers
pair on left” means the antiunitary symmetry squares to −1 there.

α P T PT total degeneracy

−3 broken Kramers pair: left, right broken 8
−2 left, right 4
−1 broken broken 2
0 1
1 broken broken 2
2 left,right 4
3 broken broken left,right 8
4 left, right left, right 4

these generalized cluster models exhibit rich physics despite
their simplicity.

1. The cluster model (“X ZX”) and the 2-chain

The special case of α = 2, the cluster model, is known [16]
to be in an SPT phase protected by the Z2 × Z2 symmetry
group generated by P1 = ∏

n odd Zn and P2 = ∏
n even Zn.

However, we now show that the mapping (17) between the
2-chain and the cluster model uncovers a hitherto-unknown
symmetry which also protects the model. In Sec. III A, we
saw that the right edge of the 2-chain has a Kramers pair with
respect to T = K , and the left edge with respect to PT . Since
the Jordan-Wigner transformation (17) has its string starting at
the left edge, the leftmost region of the 2-chain and the cluster
model should have the same local physics. We conclude that
the cluster model has a Kramers pair on the left edge with
respect to PT = (

∏
n Zn)K . As discussed in Sec. III A, for a

bosonic system an antiunitary symmetry squares to the same
sign on both edges. Hence, unlike the 2-chain, PT protects
both edges: the Jordan-Wigner transformation (17), which is
highly nonlocal near the right edge, has changed the physics.

To see these statements within the spin language, first
consider that Sec. II implies P = PLPR with PL = Y1X2 and
PR = XN−1YN (where we have used P = P1P2). Secondly, in
Sec. IV C, we show that the fractionalization of T is trivial,
i.e., T = ULUR with UL = UR = 1 when acting on some local
basis of edge states. The latter implies that when acting on this
same basis, PT = VLVR with VL,R = PL,R . Hence, on the left,
PT squares to (PT )VL(PT )VL = −Y1X2Y1X2 = −1, and
similarly on the right. This is summarized in row “α = 2” of
Table III. The fact that PT protects the cluster model explains
why, for example, HC + ε

∑
n Yn still has well-defined edge

modes, as can be verified using perturbation theory or the
numerical density matrix renormalization group (DMRG) [50]
method. This new nontrivial symmetry can guide us to further
insights, which we discuss in Sec. IV B.

2. Symmetry fractionalization of the generalized cluster models

We now ask what the fractionalization is of these symme-
tries, P and T , for any of these generalized cluster models. We
repeat that this is different from the fermionic results in Table I
since the nonlocal nature of the JW transformation mixes the
edge with the bulk. Table III was derived using the analytic
methods introduced in Sec. IV C, and numerically confirmed

with DMRG [50] using the entanglement perspective dis-
cussed in Ref. [51]. Note that the results are in line with what
one would expect based on the Jordan-Wigner transformation:
as discussed before, the Jordan-Wigner transformation whose
string starts from the left end, should map the 2-chain to an
SPT protected by PT . Similarly, starting from the right end
should map it to a spin model protected by T . This is the same
as starting from the left end but taking the spatially inverted
2-chain, i.e., the (−2)-chain, as confirmed by Table III. Also
note that Table I says that—at least in a particular gauge—the
left end of the Kitaev chain (α = 1) is protected by PT . This
corresponds to the fact that the corresponding Ising chain
spontaneously breaks PT = (

∏
n Zn)K , whereas the dual of

the (−1)-chain, H = −∑
n YnYn+1, spontaneously breaks T .

The first symmetry of the resulting table is that like its
fermionic dual, it only depends on α mod 8. The second
symmetry is that swapping the T and PT columns is the
same as changing the sign of α: from Table II, α ↔ −α is
equivalent to X ↔ Y , which is achieved by the antiunitary
operator O = ei π

4

∑
n ZnK , and indeed O T O = PT .

3. Symmetry breaking and/or SPT order

Before discussing generalized cluster models for specific
α, let us observe their overall symmetry breaking and SPT
properties. Every odd α has Z2 symmetry breaking. This is to
be expected: the degeneracy (= 2α) is then not a multiple of 4,
meaning we cannot associate it to bosonic modes on each edge.
Hence there must be a degeneracy even with periodic bound-
aries, which for gapped phases in one dimension is always due
to spontaneous symmetry breaking. In Sec. IV C, we show a
general argument for the absence or presence of symmetry
breaking that is purely self-contained in the spin language.

On the other hand, even α give rise to (purely) SPT phases.
The four inequivalent even-α phases have aZ2 × Z2 structure:
each is its own inverse, and stacking any two nontrivial chains
generates the third. This is to be contrasted with the Z8 of the
eight fermionic SPT phases. The nonlocal JW transformation
does not commute with the procedure of stacking, in the sense
that, for example, a stack of two cluster models does not
correspond to a stack of two 2-chains under JW.

The symmetries of Table III imply that the only new phases
(at least with respect to these symmetries) are α = 3,4, since
the negative α are related to positive α by a symmetry transfor-
mation. In fact, the models related by α ↔ −α are in the same
phase if we allow for paths of gapped local Hamiltonians that
smoothly change the on-site representation of the symmetries,
transforming T into PT (where, again, by “on-site antiunitary”
we mean that the basis for complex conjugation is on-site).
Hence, before turning to the cluster model in more detail in
Sec. IV B, we discuss the physics of α = 3,4.

4. The “X ZZX” cluster model

Interestingly, α = 3 has both symmetry breaking and SPT
order. In particular, we find that the symmetry breaking
order parameter5 is a cluster-type term, Xn−1YnXn+1, such

5Indeed, a state with XYX = ±1 will satisfy XZZX = 1 since
(XnYn+1Xn+2)(Xn+1Yn+2Xn+3) = XnZn+1Zn+2Xn+3.
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that a symmetry-broken sector has the effective Hamiltonian
H± = ±∑

n Xn−1YnXn+1. This still has PT as a symmetry
and it turns out that its symmetry fractionalization is the
same as for α = 2. More generally: for odd 0 < α < 4, the
α-chain spontaneously breaks into a ground state sector which
is in the same phase as the (α − 1)-chain with respect to the
unbroken symmetry (and similarly for negative α). A particular
manifestation is that the symmetry-broken ground state of the
Ising chain is trivial.

5. The “X ZZZX” cluster model

The case α = 4 is again purely an SPT phase [and
similar to the fermionic 4-chain one needs extra terms to
lift accidental degeneracies: the Jordan-Wigner transform of
Eq. (11) gives terms of the form XnYn+1Xn+2Yn+3 + (X ↔
Y )]. If one compares the symmetry fractionalization tables of
the fermionic α-chain (Table I) and the generalized cluster
models (Table III), the only nontrivial line that coincides
is exactly α = 4. Hence one might be tempted to conclude
these two are in the same phase. This is in fact not true,
the fundamental reason being that the “P ” in the fermionic
case is fermionic parity symmetry, which is intrinsic to the
Hilbert space, whereas the “P ” in the spin models is spin-flip
symmetry, which one can explicitly break. More concretely:
there can be no path of gapped local Hamiltonians connecting
the fermionic α = 4 to the bosonic α = 4, even if we allow the
on-site representation of the relevant symmetries to smoothly
change. The difference becomes even more striking: in the
following section, we show how the cluster model is in fact in
the Haldane phase with all its discrete symmetries. Combining
this with Sec. III C, we know there is a path connecting the
fermionic 4-chain to the cluster model (α = 2), which then
proves there cannot be a path to the generalized cluster model
with α = 4.

B. The cluster state is the AKLT fixed point limit

The previous section showed that there are two
sets of symmetries protecting the cluster model HC =
−∑

n Xn−1ZnXn+1: firstly, a pair of commuting unitary
symmetries squaring to one (P1 and P2), and secondly, an
antiunitary symmetry that squares to one (PT ). For the SPT
phase to survive, one needs to only preserve one of these
sets. There is another well-known bosonic SPT phase with the
same algebraic properties: the Haldane phase. As encountered
in Sec. III, it is an SPT phase protected by either the group
of π rotations, which in the bulk square to one (generated by
Rx = eiπSx and Ry = eiπSy ) or by the time-reversal symmetry
that squares to one (Tspin = RyK).

This similarity is in fact not accidental: the cluster state
is actually in the Haldane phase! For this to be a meaningful
statement, we first need to perform a change of basis so that
the symmetry operators map to each other:

P1 → Rx, P2 → Ry, PT → Tspin. (18)

Note that this is possible because the operators share the same
group properties. It turns out that after this change of basis,
the spin cluster ground state is actually mapped exactly to
the fixed point limit of the AKLT state encountered before,
sketched in Fig. 5: each oval denotes a unit cell such that

FIG. 5. The AKLT state with dashed lines denoting spin singlets.
The AKLT state has spin-1 projectors on the gray ovals [35],
disappearing in the fixed point limit [44].

it has a linear representation of rotation and time-reversal
symmetry. The dashed lines denote spin singlets on the bonds,
with unconstrained spin- 1

2 ’s on each edge, protected by the
projective representations of the bulk symmetries.

1. Identifying symmetries

More exactly, let us start with our spin- 1
2 cluster Hamil-

tonian HC = −∑
n Xn−1ZnXn+1. Note that although this is

translation invariant, the symmetry P1 is not, so if we want a
new basis where this symmetry acts as Rx , then we need to
artificially work with unit cells of two spins. We now define a
unitary operator U , which is a tensor product over these unit
cells, acting in each cell as follows:

|↑↑〉 U−→ |s〉 := 1√
2

(|↑↓〉 − |↓↑〉),

|↑↓〉 U−→ |x〉 := 1√
2

(|↑↑〉 − |↓↓〉),
(19)

|↓↑〉 U−→ −|y〉 := i√
2

(|↑↑〉 + |↓↓〉),

|↓↓〉 U−→ i|z〉 := i√
2

(|↑↓〉 + |↓↑〉).

The labels |s,x,y,z〉, which we define on the right-hand side
of Eq. (19) imply their symmetry properties, e.g., |y〉 goes
to minus itself under Rx or Tspin, but is invariant under
Ry . Note that the unitary U is naturally determined by the
symmetry considerations of (18): if we, for example, apply
P1 on the left-hand side of Eq. (19), then this is equivalent
to applying Rx on the right-hand side. More concretely, its
defining characteristics are UP1U

† = Rx , UP2U
† = Ry and

U (PT )U † = Tspin, accomplishing (18). Moreover, note that
this can be done smoothly, similar to as we discussed in
Sec. III B.

2. The resulting Hamiltonian

Having used symmetries to obtain the relevant change
of basis, we can now see how it affects the cluster model.
Curiously, the unitary has the effect of factorizing the Hamilto-
nian, e.g.,6 −X1Z2X3 becomes Y2Y3, and −X2Z3X4 becomes
X2X3. Thus the Hamiltonian in this basis is a sum of disjoint
operators, which moreover turn out to be projectors:

U HC U † =
∑

n

(X2nX2n+1 + Y2nY2n+1)

= −
∑
bond

(|s〉〈s| − |z〉〈z|). (20)

6More precisely, X2n becomes X2n and Z2n−1X2n becomes −X2n−1.
Similarly, X2n−1 ⇒ Y2n−1 and X2n−1Z2n ⇒ −Y2n.
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The ground state of this is the state with a singlet |s〉 on each
bond connecting the unit cells as in Fig. 5. As mentioned
in Sec. III C, it is obtained from the original AKLT state by
a block-spin RG flow which does not change the bipartition
entanglement spectrum [44]. An alternative way of checking
that the cluster state and the fixed point limit of the AKLT
state are the same is by comparing their matrix product
state description.7 As an aside, note that the cluster state is
translation invariant, but its symmetries have a two-site unit
cell. The change of basis swaps this: the AKLT state (Fig. 5)
has a two-site unit cell, but its symmetries are on-site.

3. Consequences

This mapping can teach us a few things: for example, the
Haldane phase is also known to be protected by link inversion
symmetry, which is lattice inversion about the center of a
bond. So we can conclude that the cluster state is similarly
protected by such a symmetry.8 Moreover, it is known that
the AKLT state is symmetric under continuous spin rotation.
The fact that the cluster ground state must also have an
SO(3) symmetry is a priori surprising, given its definition.
Similarly, this implies the 2-chain and the SSH model (λ = 1),
whose O(2) symmetry we already discussed in Sec. III, has a
ground state with SO(3) symmetry. Note that this is completely
unrelated to the symmetries we discussed in Sec. III having
to do with rotating the Kitaev chais into one another: that
concerned symmetries of the Hamiltonian, whereas this SO(3)
is an emergent symmetry in the ground state. [It is worth
pointing out that one can adiabatically turn on the Z2nZ2n+1

component in (20) without affecting the ground state, until
one reaches an SO(3)-symmetric Hamiltonian: the alternating
Heisenberg chain we have encountered before in Sec. II and
III C.] In the other direction, the cluster state has been mainly
investigated in the context of its power for measurement-based
quantum computation. It was only later that it was realized
that the AKLT state [52] and more generally the Haldane
phase [53,54] offer a similar resource. Our mapping makes
this more direct, and illustrates how by identifying symmetries
one can construct natural maps that relate seemingly different
models. Note that both the cluster state and the AKLT state
have been generalized to 2D, both of particular interest to
measurement-based quantum computing, and it would be of
interest to see to what extent this kind of symmetry-guided
mapping can generalize.

4. Identifying X ZX, AKLT, SSH, and the 2-chain

In Fig. 1, we summarize a few of the mappings related to
the 2-chain. In particular, we complete the circle by noting that
if we use the JW transformation to map back our spin model
in the new basis to fermions, we obtain the SSH model. Let

7The MPS matrices for either state are I,X,iY,Z. For the cluster
state, this is in the basis | ↑↑〉,| ↑↓〉,| ↓↓〉,| ↓↑〉. For the fixed point
limit of the AKLT state this is in the |s〉,|x〉,i|y〉,|z〉 basis.

8It is, however, a bit unnatural: one inverts the lattice of unit cells
but not the unit cells themselves; moreover there is a −1 factor for
every unit cell in state | ↑↑〉. Example: |↓↑,↑↑〉 ⇒ −|↑↑,↓↑〉. Usual
lattice inversion does not protect the SPT phase.

us take this step by step: starting with the linear interpolation
between the trivial chain and cluster model,

H = (1 − λ)
∑

n

Zn − λ
∑

n

Xn−1ZnXn+1 (21)

then under Eq. (19) this maps to the alternating spin-
1
2 XY -chain (which moreover continuously connects to the
alternating Heisenberg chain):

UHU † = (1 − λ)
∑
n odd

(XnXn+1 + YnYn+1)

+ λ
∑
n even

(XnXn+1 + YnYn+1). (22)

Note that with respect to the unit cells which group together
(2m − 1,2m), this is trivial for λ < 1

2 and in the Haldane phase
for λ > 1

2 . After the usual Jordan-Wigner map (17), Eq. (22)
coincides with the SSH model as shown in Eq. (9). Remember
that the SSH model is protected by the sublattice/particle-hole
symmetries CA,B as defined in (10). One can check that CA on
the fermionic side (which protects the left edge) maps to Tspin

on the spin side (which protects both edges), and similarly
CB (which protects the right edge) maps to PTspin (which
protects nothing). Again, we see that the JW transformation
changes the physics. Note that Fig. 1 does not contain the
connection between the interacting 4-chain and the AKLT state
as discussed in Sec. III C, which implies that the fermionic
4-chain can be adiabatically connected to the cluster model.

5. X ZZZX is not in the Haldane phase

Similarly, one can subject the generalized cluster model
with α = 4 (which is also symmetric under P1, P2 and T ) to
the same mapping (19). We then obtain

H =
∑
n even

(XnZn+1Zn+2Xn+3 + YnZn+1Zn+2Yn+3). (23)

This is now a spin chain with the same discrete symmetries
as the Haldane phase, i.e., Rx,Ry , and Tspin, yet it is in a
different symmetry class. It is protected by Tspin—like the
Haldane phase—but also by Rx,y,zTspin—unlike the Haldane
phase. Moroever, it is not protected by just the π -spin rotations.
In particular one can derive RL

x = X1Z2Y3 and RL
y = Y1Z2X3,

which clearly commute. This shows it is very different from the
fermionic 4-chain, despite both on first sight sharing a similar
symmetry fractionalization in Tables I and III. This illustrates
the physical subtleties of the Jordan-Wigner transform.

C. Kramers-Wannier dualities for the
generalized cluster models

The generalized cluster models are all exactly soluble in
terms of fermions, however, often it can be cumbersome to
extract the relevant information in the spin language. Here,
we present a way of extracting the physics we have discussed
so far—directly in the spin language. Many properties simply
drop out, such as the occurrence of spontaneous symmetry
breaking (only) for α odd and the symmetry fractionalization
of the topological phases. Concretely, we show how any of the
generalized cluster models can be mapped to a trivial spin chain
using a type of Kramers-Wannier transformation. The original
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transformation [55] is a duality of the quantum Ising chain
which relates the symmetry-broken phase to the trivial phase
and vice versa. Here we generalize this mapping, which in
particular will show that for periodic boundary conditions the
ground state is unique for α even and twofold degenerate for α

odd, implying symmetry breaking. Note that before repeating
the original mapping, we first treat the case where α is even
since it is in fact simpler.

1. α even

For clarity, we take the cluster model (i.e., α = 2) but the
argument extends. Define the new spin operators X̃n = Xn and
Z̃n = Xn−1ZnXn+1. These indeed obey the Pauli algebra. Then
HC = −∑

n Xn−1ZnXn+1 = −∑N
n=1 Z̃n. Clearly, the ground

state is unique! Note that for open boundary conditions, Z̃1

and Z̃N would not appear in the Hamiltonian, giving the
correct edge degeneracies. In fact, this allows for a slightly
different derivation of the symmetry fractionalization, e.g.,
P1 = ∏

odd Z = ∏
odd Z̃ = Z̃1 = XNZ1X2, which we already

knew. However, it also allows to calculate other fractionaliza-
tions such as that of T = K: because in this case the mapping
preserves complex conjugation and the ground-state subspace
condition Z̃2�n�N−1 = 1 is also real, one easily obtains that
T = K ′, where K ′ is complex conjugation in the low-energy
subspace, i.e., T is trivial for the cluster state.

2. α odd

Inspired by the above, one might similarly define Z̃n =
XnXn+1 for H = −∑

n XnXn+1, but then there is no choice
of X̃n that satisfies the Pauli algebra. However, if we redefine
Z̃N = XN for the last site, then choosing the domain-wall
operators X̃n = Z1Z2 · · ·Zn gives the correct algebra. For
periodic boundary conditions, we obtain

HI = −
N∑

n=1

XnXn+1 = −
N−1∑
n=1

Z̃n −
N−1∏
n=1

Z̃n. (24)

Now the ground state is clearly twofold degenerate.
This constructions works for all odd α by extend-
ing Z̃n = XnZ · · · ZXn+α and Z̃N = XNZ1 · · · Zα−1, which
indeed defines a consistent Pauli algebra with X̃n =∏n

k=1 XkZ · · · ZXk+α−1. The Hamiltonian is again of the form
of Eq. (24) with a twofold degeneracy. Note that for open
boundary conditions, the harmless product term drops away
and α − 1 terms disappear from the sum, giving a 2α-fold
degeneracy for these pure models.

V. TRANSITIONS BETWEEN TOPOLOGICAL PHASES

A. Goal: predicting properties of transitions between
topological phases

We now investigate the transitions between one-
dimensional SPT phases. We are guided by the question
“given two topological phases, can one predict the universal
properties of the critical point between them?”. Here we are
interested in the situation where there is a direct transition, i.e.,
no intermediate phase, with the critical point being described
by a conformal field theory (CFT). The examples we will
discuss show that this is in fact a common situation, although

we do not enter the discussion of whether this is more (or less)
generic than first-order transitions or intermediate phases.

By first using the above α-chain model as a representative
testing ground, we arrive at a general conjecture, which
formulates a partial (affirmative) answer to the above question,
which we then check in other cases. The conjecture relates the
central charge of the CFT—which counts the gapless degrees
of freedom at the critical point—to the topologically protected
edge zero modes in the neighboring gapped phases.

1. Central charge

At this point, let us make some general comments about
the concept of central charge. We are interested in phase
transitions, which are described by conformal field theories
[56] –a situation not uncommon in 1 + 1 dimensions. These
encode the long-distance physics of the model, such as the
asymptotics of correlation functions, and they are character-
ized by certain universal numbers. One of the most important
numbers, relevant to all CFTs, is the central charge c > 0. It
is sometimes said to be a measure of the gapless degrees of
freedom. There are at least three reasons for that. Firstly, for
small but finite temperatures T , the specific heat C is linearly
proportional to the central charge c, more precisely C ∝ cT .
Secondly, if one stacks two decoupled CFTs, the central charge
is additive. Thirdly, there is Zamolodchikov’s c theorem [57],
which says that under renormalization group flows, the central
charge can only decrease. The latter is consistent with the
idea that renormalization removes (high-energy) degrees of
freedom. The central charge of a CFT is one of its most
crucial pieces of information. In fact under certain conditions
of unitarity and minimality, all CFTs with 0 < c < 1 have been
classified, and for any such c there are only a finite number of
CFTs possible.9 On the other hand, while a lot is known about
CFTs with c � 1, it is not known how many exist and which
numbers characterize them.

2. Transition between SPT and trivial phase

For clarity, let us state the conjecture now and give some
conceptual motivation. In Sec. V B, we then illustrate how
would one naturally arrive at this conjecture by investigating
transitions in the α-chain model, both with and without
interactions.

Conjecture. Consider the transition between a trivial phase
and an SPT phase with a d-dimensional protected edge mode
(on each edge). If the transition is described by a CFT, then its
central charge c is lower bounded by log2 d.

The intuitive picture is the following. An SPT phase
has well-defined edge modes, which are localized up to the
correlation length ξ . As long as the edges cannot communicate
with one another and the relevant symmetries are preserved,
then the modes cannot be gapped out. Hence there are
only two ways of trivializing the system: either there is a
discontinuous change (signaling a first-order transition) or
the edge modes become delocalized such that those of the

9More precisely, 0 < c < 1 fixes a finite list of possible scaling
dimensions for so-called primary operators. Which subsets of these
dimensions are realized in any particular CFT can vary.
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left and right edges can overlap and hybridize. The latter
requires ξ → ∞, corresponding to a continuous transition.
Hence, at the transition, we expect the delocalized edge modes
and their long-wavelength fluctuations to become the bulk
gapless fields. Since d is a measure of the former whereas
the central charge c is a measure of the latter, we arrive at
a relationship. Note that the logarithm ensures this bound is
additive when considering two decoupled chains, similar to the
central charge. Moreover, if one introduces a coupling between
two such chains, d can only decrease, again similar to c. One
can only give a lower bound since there might always be extra
gapless fields present.

3. Transition between different SPT phases

On first sight, allowing transitions between two nontrivial
SPT phases seems a more complicated problem. We now argue
how this is not the case, by using the group structure [9,10,40]
of SPT phases. Suppose one has a path in parameter space
between SPT A and SPT B, possibly with critical points along
the way. Everywhere along this line, one can stack with the
inverse of SPT B. Note that due to SPT B being gapped, this
cannot affect a CFT describing a critical point, although now
the gapped phases have been reduced to the previous case.
Hence the following is true.

Corollary. Consider the transition between two SPT phase
characterized by symmetry fractionalizations ρA and ρB .
If it is described by a CFT, then its central charge c is
lower bounded by log2 dim ρAρ−1

B (where dim represents the
quantum dimension for a single edge).

In Sec. V B, we show how to arrive at the above conjecture
by investigating (free and interacting) transitions between the
SPT phases we have discussed earlier in this paper. Moreover,
this leads to certain predictions for interacting phase diagrams,
which we confirm by DMRG. In Sec. V C, we test our conjec-
ture for the critical points between so-called golden chain SPT
phases—generalizations of the Kitaev chain—and the trivial
phase, which in fact realize all unitary minimal CFTs with
0 < c < 1. Some examples of known topological transitions
for bosonic systems, including Wess-Zumino-Witten models,
are discussed in Sec. V D.

B. Transitions between the α-chains: free and interacting

1. The c = 1
2 CFT

The critical point between the Kitaev chain and the trivial
chain is well-known to be described by a nonchiral massless
Majorana field in the continuum limit [56,58,59]. This defines
the unique10 unitary CFT with central charge c = 1

2 . Aside
from c, other important information characterizing a CFT is the
list of scaling dimensions (specifying the power-law decay of
correlation functions) of so-called primary fields (generating
all other fields of the theory). The c = 1

2 CFT has five

10It is unique if one counts local and nonlocal primary fields
together, e.g., see (7.20) in Ginsparg’s notes [60]. (For some boundary
conditions, nonlocal fields contribute to the finite-size spectrum.) If
one chooses the labeling “local” versus “nonlocal” to be part of the
CFT data, there are multiple c = 1

2 CFTs (see main text).

such nontrivial primaries (σ,μ,ψ,ψ̄,ε with respective scaling
dimensions 1

8 , 1
8 , 1

2 , 1
2 ,1) [60]. In this (fermionic) realization of

the CFT, the local operators are the Majorana fields ψ,ψ̄ and
the mass term ε, whereas the nonlocal σ and μ are string order
parameters for, respectively, the nearby topological and trivial
phases.

Under Jordan-Wigner, we map to the critical Ising chain.
This is described by the same CFT, but—similar to the gapped
case—the nonlocal transformation has changed the physics
[58,59]. In particular, the Ising order parameter field σ is
now local. Nevertheless, the central charge is unchanged.
In fact, one can argue in elementary terms that the Jordan-
Wigner transformation always preserves the central charge.
Indeed, it does not change the entanglement structure in the
computational basis, and for a CFT, this fixes the central charge
[61]. More exactly, if S is the entanglement between a region
of size L and the rest of the system, then c = limL→∞ 3 S

log L
.

2. Transitions between two different α-chains

If one interpolates between the α0-chain and the α1-chain,
H = (1 − λ)Hα0 + λHα1 , then it is straightforward to show
that the single-particle spectrum is gapped everywhere, except
at λ = 1

2 , where the single-particle spectrum has |α0 − α1|
linear crossings through the Fermi surface. Each crossing can
be linearized to give an effective Majorana field. In other
words, the CFT is a direct sum of |α0 − α1| copies of a single
Majorana CFT. In particular c = |α0−α1|

2 . The fact that this
only depends on the difference is consistent with the argument
we gave for the transition between any two SPT phases being
reducible to the transition between an SPT phase and the trivial
phase. The fact that the transition is described by a stack of
Majorana CFTs is also intuitive from Fig. 2: for example,
H = H0 + H2 can be pulled apart into two decoupled critical
Kitaev chains. Note that in case α1 = 0, the above can be
rewritten as c = log2 d, since the noninteracting α0-chain has
d-dimensional protected edge modes with d = 2|α0|/2.

3. Transitions between generalized cluster models

Unlike the fermionic case, the bosonic critical theories are
not simply stacks of a single critical chain. To be more precise,
the local primaries are not just obtained from the local pri-
maries of a single chain. This makes physical sense: the reason
for the critical theories on the fermionic side being stacks, is
due to the (additive) group structure of SPT phases. In Sec. IV,
we already saw how this group structure is not preserved
under the Jordan-Wigner transformation. More concretely,
one should not expect the topological transition between the
cluster model and the trivial phase to be described by a stack
of symmetry breaking Ising transitions. Instead, the transition
between two generalized cluster model with respective α = α0

and α1 is naturally described by the bosonized description
of |α0 − α1| massless Majorana fields. This is referred to as
the Wess-Zumino-Witten (WZW) SO(|α0 − α1|)1 field theory
with central charge c = |α0−α1|

2 . Lahtinen et al. [23] performed
finite-size scaling on these spin models and found perfect
consistency with the field theory predictions. From now on we
will only focus on the central charge of the transitions, hence
we can go back and forth between the bosonic and fermionic
language without any further disclaimers.
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FIG. 6. Phase diagram for the noninteracting Hamiltonian (25).

4. Phase diagrams in the absence of interactions

So far, we have only discussed the transitions that arise
due to the linear interpolation of any two α-chains. Let us
briefly discuss the case of multiparameter phase diagrams.
The key point is that the intuition from the one-dimensional
phase diagrams discussed before, extends to the more general
case. Let us, for example, look at the phase diagram for

Hferm = H0 + J1H1 + J2H2 or
(25)

Hspin =
∑

n

(Zn − J1XnXn+1 − J2Xn−1ZnXn+1).

Note that these two Hamiltonians map to each other under
the Jordan-Wigner transformation, hence they have the same
phase diagram and the same central charges at the transitions.
The analytical result is shown in Fig. 6, where the labels are
in black for the spin variables, and in red for the fermionic
ones (without repeating “trivial,” which is the same in both
variables). We recognize the three phases corresponding to
the three Hamiltonians that appear in Eq. (25), i.e., the trivial
phase, the Kitaev chain and the 2-chain. More importantly,
we see the central charges exactly correspond to the log2 d

formula. For example, by the group structure of SPT phases,
the transition between the 2-chain phase and the Kitaev phase
should be the same as the Kitaev phase to the trivial phase, for
which we predict c = log2 d = log2

√
2 = 1

2 .
The more general insight is that if one starts from a gapped

phase which is adiabatically connected to the α0-chain, then the
phase transition to a gapped phase connected to the α1-chain
will generically have a central charge c = |α0−α1|

2 . Similar
phase diagrams have been obtained before [23,24,33,62]. We
will be interested in what happens to such phase diagrams in
the presence of interactions.

5. The effect of interactions on the transitions

Let us now consider the effect of interactions when going
from one α-chain to the other. In fact, some of the interacting
transitions between different stacks of Kitaev chains were
already discussed in the seminal work of Fidkowski and Kitaev
[40]. In particular, they discussed how in the noninteracting
case, the transition between the 4-chain and the trivial phase
has c = 2—as we arrived at above—which in the presence of

V

0 1
J1

c = 3
2

Kitaev
chain

Haldane
with charge
fluctuations

FIG. 7. Phase diagram for the interacting Hamiltonian (26).

interactions reduces to c = 1. This is natural from Sec. III C
where we identified the interacting 4-chain with the alternating
spin- 1

2 Heisenberg chain. More precisely, it shows that for
strong interactions, the phase transition between the 4- and
0-chain is exactly given by the spin- 1

2 Heisenberg chain. This
well-studied model is known to have c = 1 (more completely
it is described by WZW SU(2)1, or equivalently as a Luttinger
liquid with K = 1

2 ). At the same time, we know that for the
gapped 4-chain itself, interactions reduce the edge degeneracy
from d = 4 to 2. This suggests that the degrees of freedom at
the transition are linked to the degrees of freedom on the edge
in the gapped SPT phase.

Having looked at α = 4, we now consider the cases of
α = 1,2,3 (which by the symmetries discussed in Sec. III cover
all the cases of the Z8 inequivalent SPT phases). One does not
expect the central charges of the transitions from the Kitaev
chain or the 2-chain to the trivial phase to change, as these
CFTs are well-known to be stable against interactions. Less
is known about the CFT describing the transition between the
3-chain and the trivial chain, which in the free case has c = 3

2 .
However, since interactions do not affect the three Majorana
modes on its left edge, i.e.,11 d = 2

√
2 (such that the total

degeneracy is d2 = 8), one might expect its transition also
to remain unchanged. To test this hypothesis, let us consider
the transition between the Kitaev chain and the interacting
4-chain (which by the group structure of SPTs also describes
the transition between the 3-chain to the trivial phase):

Hferm = H4 + J1H1 + V. (26)

Here, V is the interaction term introduced in Eq. (11). As
discussed in Sec. III C, H4 + V is equivalent to the alternating
spin- 1

2 Heisenberg chain with charge fluctuations. Figure 7
shows the resulting phase diagram we obtain using infinite
DMRG (iDMRG) [63], where the central charge is extracted
from entanglement scaling [61,64,65]: the system is tuned
to criticality, where for each bond dimension χ there is an
optimal infinite matrix product state approximating the ground
state with an effective correlation length ξ and bipartition
entanglement S, obeying the scaling relationship S = c

6 log ξ .
Note that one can define the duality transform γn → γ5−n and
γ̃n → γ̃−n, which switches H1 ↔ H4 and leaves V invariant.
Hence the critical line shown in Fig. 7 exactly corresponds to
the self-dual coupling J1 = 1, which is useful for entanglement
scaling since one can exactly tune to the transition.

11Note that a noninteger d is to be interpreted as “if one has n such
edges, it asymptotically has the Hilbert space dimension dn.”
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TABLE IV. Phase transitions from the α-chain to the trivial chain.
The first set of columns give the central charge and the degeneracy
d of a single edge in the absence of interactions. The second set of
columns is in the presence of T -preserving interactions.

free interacting

α central charge c log2 d central charge c log2 d

−3 � · · · � 3 |α|
2

|α|
2

|α|
2

|α|
2

4 2 2 1 1

We summarize our findings in Table IV. We see that in
all these cases the central charge at the transition is given by
the number of Majorana modes in the SPT phase, weighted
by a factor of 1

2 . More concisely, this is log2 d, where d is
the degeneracy of a single edge. We expect this relationship
to hold for the transitions between these phases, even with
more complicated Hamiltonians. However, more generally,
we can have models where log2 d is not even rational, whereas
the central charge always is (at least for the CFTs so far
encountered in these contexts). Nevertheless, we will see that
even in those cases, log2 d provides a lower bound, which in
many cases is in fact very close to the true value of c.

6. Implications for interacting phase diagrams

Before testing the conjecture that c � log2 d for other
types of SPT phases, we first check its validity in more
complicated phase diagrams than those involving direct in-
terpolations between two (possibly interacting) α-chains. Let
us first consider an interacting version of Hamiltonian (25),
adding an interaction which in spin language corresponds to
1
2

∑
n ZnZn+1 or in fermionic variables 1

2

∑
n γ̃nγ̃n+1γnγn+1.

The resulting phase diagram in Fig. 8 was mapped out using
iDMRG, identifying each phase in terms of its entanglement
properties [51]. The central charge at the critical points was
extracted using entanglement scaling [61,64,65] as explained
above. We see that we obtain the central charges we expect
based on the protected edge degeneracies. In addition, a first-
order transition appears between the two Ising phases, which
are only distinguished by (un)broken translation symmetry.

central charge

c = 1
2

c = 1
2

c = 1

Jc

2

1

0

−1

−2

−2 −1 0 1 2
Jx

FMx

Kitaev
chain

AFMx

trivial

cluster (Haldane)
2 -chain (SSH)

first order

FIG. 8. Phase diagram for the Hamiltonian (25) in the presence
of the interactions described in the main text.
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cluster
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FIG. 9. Phase diagram for the spin model (27), which does not
correspond to any fermionic model if hy = 0. The central charges can
be predicted from our conjecture and are confirmed by iDMRG.

Secondly, let us consider the spin Hamiltonian

H =
∑

n

(−Xn−1ZnXn+1 − JyYnYn+1 + hyYn). (27)

For hy = 0, this is equivalent to the free-fermion model which
interpolates between the 2-chain and the (−1)-chain, hence
c = 3

2 at the transition. However, for hy = 0, the model has no
Z2 symmetry and is hence not dual to any fermionic model.
In this case we only have our conjecture to fall back on. Since
hy = 0 explicitly breaks the symmetry which was originally
spontaneously broken for large Jy , we can conclude that the
large Jy phase is now trivial. On the other hand for small
Jy (and hy), we are in the cluster phase, which is still a
well-defined SPT phase protected by PT = (

∏
n Zn)K . In

particular, each edge mode has a degeneracy d = 2, such
that for hy = 0 we expect that at the critical point c = 3

2
reduces to c = log2 2 = 1. This is confirmed in Fig. 9, which
was obtained using the methods described in the previous
paragraph.

C. All minimal CFTs as transitions between SPT phases

Here we test our conjecture for two known types of
generalizations of the Kitaev chain: firstly for so-called
parafermionic chains, and secondly for anyonic chains with
SU(2)k statistics (also called golden chains). In the latter
case, the critical theories describing the phase transition to
the trivial phase in fact capture all unitary minimal CFTs
with 0 < c < 1. Our conjectured bound is confirmed in each
case, which moreover only underestimates c by less than one
percent.

1. Parafermions

Instead of Majorana modes, one can consider (N � 2)-
parafermionic operators γa , which satisfy

γ †
a = γ N−1

a , γ N
a = 1, and γaγb = ei2π/Nγbγa. (28)

For N = 2, we recover the Majorana algebra. Analogously to
the Kitaev chain, these can form an SPT phase [66] with an
edge degeneracy d = √

N . There is only a direct, second-order
transition to a trivial phase when N = 2,3,4, described by
so-called parafermion CFTs [67]. Their central charges are
summarized in Table V, confirming our conjecture. The last
column shows the difference between the central charge and
our lower bound. Curiously, for N = 3, we have c = 4

5 = 0.8
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TABLE V. The central charges for the N -parafermion CFTs at
the critical point between trivial phase and SPT phase with edge
mode d = √

N . Comparison to the conjectured lower bound log2 d .
Expressions for c obtained from Ref. [67] and for d from Ref. [66].

N central charge c log2 d
c−log2 d

c

2 1
2

1
2 0

3 4
5 log2

√
3 ≈ 0.7925 ≈0.0094

4 1 1 0

and log2 d = log2

√
3 ≈ 0.7925, such that our lower bound is

saturated within one percent.

2. Golden chains: Fibonacci and SU(2)k anyons

A different generalization of Majorana modes is obtained
by interpreting them as non-Alian anyons obeying the SU(2)2

fusion rule12 γ × γ = 1 + ψ , i.e., two Majorana modes define
a fermionic mode which can be empty (1) or filled (ψ). For
any k � 2, one can consider non-Alian anyons obeying a
so-called SU(2)k fusion rule, and analogously to the Kitaev
chain they can form an SPT phase [68] where the edge
mode has the quantum dimension13 of the underlying anyons,
given by the Beraha numbers d = √

Bk+2 = 2 cos π
k+2 . (These

models are referred to as golden chains, since for k = 3,
we obtain Fibonacci anyons where the quantum dimension
equals the golden ratio ϕ = 2 cos π

5 = 1+√
5

2 .) For each k,
there is a direct continuous transition to the trivial phase
[69]. Interestingly these transitions give rise to all central
charges 0 < c < 1 possible for unitary minimal CFTs. Our
lower bound is confirmed in each case, and we again find that
it captures the true value of c within one percent. The situation
is summarized in Table VI.

D. Testing the conjecture at known bosonic SPT transitions

In this section, we review some known phase transitions
between bosonic SPT phases and the trivial phase, and
compare their central charges to our conjectured lower bound.
Firstly, we focus on the case with discrete symmetries, and
afterwards on SU(N ) spin chains. It is worth noting that work
on the former has led to a different constraint on the central
charge of a phase transition between SPT phases, which is also
a corollary of our conjecture, as we will discuss.

1. SPT phases protected by Zn × Zn

In recent work by Tsiu et al. [27], bosonic SPT phases
protected by a Zn × Zn symmetry were constructed. These
have degenerate edge modes with d = n, and there is a direct

12The SU(2)k fusion rules on 0, 1
2 , · · · , k

2 are given by j1 × j2 =
|j1 − j2| + · · · + min (j1 + j2,k − j1 − j2), so for k = 2, we have
1
2 × 1

2 = 0 + 1 and 1 × 1 = 0. Here, 1
2 is identified with the Majorana

anyon and 0 (1) with an empty (filled) fermionic mode.
13For example, for the topological phase of Fibonacci anyons,

stacking N open chains gives rise to a F2N+1-fold degeneracy (where
Fn denotes the nth Fibonacci number).

TABLE VI. The central charges for the unitary minimal CFTs
at the critical point between trivial phase and SPT phase of SU(2)k
anyons with edge mode d = 2 cos π

k+2 . Comparison to the conjectured
lower bound log2 d . Expressions for c and d obtained from Ref. [69].

k central charge c log2 d
c−log2 d

c

2 1
2

1
2 0

3 7
10 ≈0.6942 ≈0.0082

4 4
5 ≈0.7925 ≈0.0094

5 6
7 ≈0.8495 ≈0.0089

...
...

...
...

k 1 − 6
(k+1)(k+2) log2 (2 cos π

k+2 ) 0 � c−log2 d

c
< 1

100
...

...
...

...
∞ 1 1 0

continuous transition to the trivial phase if n = 2,3,4. These
transitions obey our conjecture, as shown in Table VII.

Moreover, in the same article, it is proven that the critical
point between any bosonic SPT phase and the trivial phase
must always have a central charge c � 1. This also follows
from our conjecture, since a bosonic SPT phase can only have
an integer dimension for its edge mode (to see this, note that
the edge mode of a bosonic SPT phase transforms under a
projective representation of a symmetry group). Hence d � 2
such that c � log2 d � 1.

2. SU(N) spin chains

In the work of Nonne et al. [17], SPT phases protected
by SU(2M)—or more correctly [70], PSU (2M)—were con-
structed. These are natural generalizations of the AKLT
model (which corresponds to M = 1), where each edge has
a degeneracy d = (2M)!

M!M! . The natural expectation for the
critical theory describing the phase transition to the trivial
phase, is the so-called Wess-Zumino-Witten (WZW) field
theory for the group SU(2M) with respect to some level
k = 1,2, . . . , referred to as WZW SU(2M)k . It is sufficient
to verify our lower bound for the case k = 1, since this has the
smallest central charge, with c = 2M − 1. This is a nontrivial
check of our conjecture, since d blows up exponentially with
M . One can use the Stirling approximation to show that
log2 d � 2M − 1

2 log2 M for all M > 0 (which also gives the
asymptotic expression for large M). This indeed lower bounds
the central charge if M � 4. The remaining cases M = 1,2,3
can be checked by hand, as shown in Table VIII. Note that the

TABLE VII. The central charges for the CFTs at the critical point
between trivial phase and SPT phase protected by Zn × Zn with edge
mode dimension d = n. Comparison to the conjectured lower bound
log2 d . Expressions for c and d obtained from Ref. [27].

n central charge c log2 d
c−log2 d

c

2 1 1 0

3 8
5 log2 3 ≈ 1.585 ≈0.0094

4 2 2 0
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TABLE VIII. The central charges for WZW SU (2M)1, which
likely describe the critical point between trivial phase and the SPT
phase protected by SU (2M) with edge mode d = (2M)!

(M!)2 (see main
text). Comparison to the conjectured lower bound log2 d . Expression
for d obtained from Ref. [17].

M central charge c log2 d
c−log2 d

c

1 1 1 0
2 3 log2 6 ≈ 2.59 ≈0.14
3 5 log2 20 ≈ 4.32 ≈0.14
4 7 log2 70 ≈ 6.13 ≈0.12
...

...
...

...
M c = 2M − 1 log2

(2M)!
(M!)2 ∼ log2 M

4M
(M large)

...
...

...
...

∞ ∞ ∞ 0

above Stirling approximation also shows the relative difference
between c and log2 d goes to zero as M → ∞.

Reference [17] did not discuss the transition from the above
SPT phase to the trivial phase. Instead it considered the transi-
tion to a spontaneously dimerized phase, which was suspected
to be described by WZW SU(2M)2—in direct generalization
of the case of the AKLT model. If one would explicitly break
translation symmetry, then there is either a direct transition
to the trivial phase, or a new intermediate phase. In case
of the former, one would expect on general grounds [71,72] that
the critical point would flow to WZW SU(2M)1—extending
the case of the AKLT model [73]. Since it is known [74] that
obtaining reliable entanglement scaling for models with these
large symmetry groups requires large-scale numerics explicitly
incorporating the non-Abelian symmetries, we do not attempt
a numerical verification of this here.

More generally, it is known that there are N − 1 distinct
topological phases protected by PSU(N ) symmetry [70].
Except for the aforementioned case, these are all chiral if
N > 2 –i.e., they are not left-right symmetric. For a given
N , all these phases can be generated by stacking copies
of a chiral chain with an edge mode on the left (right)
transforming under the fundamental (conjugate) representa-
tion of SU (N )—although inter-chain couplings are needed
to remove accidental degeneracies. A Hamiltonian for such
a single generating chain (with d = N ) was constructed by
Roy and Quella [75] and the transition to the trivial phase
(in the form of a dimerized phase with explicit translation
symmetry breaking) was argued to be described by WZW
SU(N )1 (with c = N − 1) [72,75]. Again our conjecture is
confirmed, although now our lower bound log2 d is much less
tight—it only grows logarithmically with N , whereas c grows
linearly. We note that the analysis of Roy and Quella agrees
with complementary approaches, such as the work by Rao et al.
[22] reporting an SPT phase with SU(3) symmetry and a phase
transition to the trivial phase described by WZW SU(3)1.

VI. CONCLUSION

In the first part of this work, we showed how various SPT
models can be related to the α-chain by using symmetries

as a guide. This gives a unifying picture of known models,
identifying the SSH model with a stack of two Kitaev chains,
and the cluster model with a close cousin of the AKLT chain.
These two set of models moreover map to each other by the
nonlocal Jordan-Wigner transformation, which more generally
relates the α-chain to the generalized cluster models. This
offers several open questions, such as whether the emergent
SO(3) symmetry we saw for the cluster model generalizes
to other values of α, and whether the generalized cluster
models are also connected to shorter-range higher-spin models
(like the cluster model being adiabatically connected to the
alternating spin- 1

2 Heisenberg chain, which on its turn connects
[76] to the spin-1 Heisenberg chain).

Our approach shed light on the topological Hubbard chain
which connects the stack of four Kitaev chains to a spin chain in
the Haldane phase. This model illustrates that if we reinterpret
the Haldane phase to be protected by, for example, fermionic
sublattice symmetry, rather than time-reversal symmetry, it is
stable against charge fluctuations. This constructions also lead
to a simpler path from the 8-chain to the trivial phase. It is
an interesting issue whether this symmetry-guided approach
can be applied more generally to the program laid out in
Ref. [48], where fermionic SPT phases are understood in terms
of bosonic ones.

In the second part, we studied the phase transitions between
SPT phases, in particular leading to the conjecture that the
central charge c at the transition between the trivial phase
and an SPT phase with edge modes of dimension d is lower
bounded by log2 d. This opens up a number of important
questions. Firstly, it is desirable to better understand the
curious relationship we found between the central charge
cm of the minimal model M(m + 1,m) (for any m � 2)
and the Beraha [77] numbers, namely 4cm ≈ Bm+1. Secondly,
aside from numerically studying the phase transitions which
we discussed in the context of the PSU(N ) spin chains in
Sec. V D, it would be interesting to check our conjecture for the
SO(2M + 1) SPT phases defined in Ref. [78]. Since these have
edge modes with dimension d = 2M , we obtain the nontrivial
conjecture that c � M when transitioning to the trivial phase.
In fact, the transition to a dimerized phase is known [79,80]
to have c = M + 1

2 , such that the c theorem [57] suggests an
upper bound for the transition to the trivial phase, obtaining
the tight condition M � c � M + 1

2 . More generally, if no
counter-example to our conjecture is to be found, it would be
very valuable to find a proof—likely offering insights into the
structure of CFTs. In particular, it would offer a formalization
of the intuitive idea that the central charge measures the
relevant degrees of freedom. Moreover, it would constitute
the first step towards a general understanding of topological
phase transitions in one dimension, whose concepts might aid
the same task in higher dimensions.
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APPENDIX: THE PRINCIPLES OF SYMMETRY
FRACTIONALIZATION IN 1D

Consider a gapped one-dimensional system of length
N invariant under a global symmetry group G. The total
Hilbert space has a tensor product structure H = ⊗nHn with
an on-site Hilbert space dimension dim(Hn) = d (possibly
after blocking). The abstract symmetry group G acts via
an (anti)linear representation ρ : G → U (dN ) on the Hilbert
space, where U (dN ) are the dN × dN unitary matrices. We
work in the setting where the symmetry is on-site, which means
that there exists an (anti)linear representation ρn : G → U (d)
such that for all g ∈ G, ρ(g) = ⊗nρn(g). In the case of an
antiunitary symmetry, this means that the basis in which we
define complex conjugation has to be compatible with the
tensor product structure. Note that such on-site symmetries
are automatically well-defined if we have open boundary
conditions, which is essential for our approach. Since we
will be interested in faithful representations (which means
G ∼= ρ(G)), we will in fact identify G with its representation.
In other words we can say “take U ∈ G,” where U is some
unitary operator.

1. Each symmetry fractionalizes

Consider a bosonic system with open boundaries. In
Sec. II, we have argued that any unitary symmetry U ∈ G

can effectively be written as U = ULUR , where UL,R are
exponentially localized near the boundary. This means that in
the thermodynamic limit, UL and UR have no overlap. We now
argue that this means that UL,R are separately symmetries, at
least in the ground state subspace (however, if U = ULUR

holds even for excited states—as is the case for strong
zero modes—then the following argument applies to the full
Hamiltonian). Decompose the Hamiltonian H = HL + HR

where HL has no overlap with UR and HR has no overlap with
UL. This is possible due to the locality of the Hamiltonian.
(Note that HL will have overlap with HR .) Due to the tensor
product structure of the symmetry, we can also choose HL

and HR such that U is a symmetry of each individually.
This means 0 = [U,HL] = [ULUR,HL] = [UL,HL]UR . Since
UR is invertible, this means [UL,HL] = 0. The fact that UL

has no overlap with HR also means [UL,HR] = 0. Hence
[UL,H ] = [UL,HL + HR] = 0. Similarly, [UR,H ] = 0.

2. Projective representation on the edge

The previous paragraph showed that bulk symmetries
U,V ∈ G define edge symmetries UL,VL,UR,VR . We now
discuss what relations hold for these edge operators, working
in the bosonic setting—later we mention what changes in
the fermionic case. Suppose, for example, that the original
symmetries U and V are commutative, i.e., UV U−1V −1 = 1,

then ULVL = eiαVLUL. To see this, note that

1 = (ULUR)(VLVR)
(
U−1

L U−1
R

)(
V −1

L V −1
R

)
= (

ULVLU−1
L V −1

L

) (
URVRU−1

R V −1
R

)
. (A1)

Since the two factors act on disjoint regions, each must be
proportional to the identity: ULVLU−1

L V −1
L = eiα . This proves

the above claim. More generally, any group relation that holds
in G, also holds for the edge symmetries up to a phase
factor. This means the edge transforms under a projective
representation of G.

3. Gauge symmetry and classes

The phase factors of such a projective representation
can have an arbitrariness to them. The defining relation-
ship U = ULUR is invariant under the gauge transformation
UL → eiβUL and UR → e−iβUR . However, the above eiα is
unchanged. We say the phase defined by ULVLU−1

L V −1
L is

gauge invariant. On the other hand, if U 2 = 1, then U 2
L = eiγ ,

which transforms under the previous gauge transformation as
U 2

L = ei(2β+γ ). In particular, one can (partially) fix the gauge
of UL by choosing U 2

L = 1. To each projective representation,
one can associate its gauge-invariant phase factors. We say
two projective representations belong to the same class if these
factors are the same. For example, all half-integer projective
representations of SO(3) belong to the same class. The set
of these classes itself forms a group (for example, one can
add two classes by multiplying their phase factors), which
is mathematically denoted by H 2(G; U(1)) and is called the
second group cohomology group with coefficients in U(1).
For example, H 2

grp(SO(3); U(1)) = Z2, corresponding to the
two distinct classes of half-integer and integer spins. In case
G is finite, it is also referred to as the Schur multiplier of G.

4. Topological invariants and protected edge modes

The above shows that to each gapped symmetry-preserving
Hamiltonian, we can associate a list of phase factors to its
edges. If one has two different Hamiltonians, each with its
own set of phase factors (i.e., each is associated to a class of
projective representations), then if these phase factors cannot
be smoothly deformed into one another, these Hamiltonians
must be in distinct phases. This happens if these phase factors
can only take discrete values. Consider, for example, G =
Z2 × Z2 generated by U and V . We have already encountered
the invariant ULVL = eiαVLUL. Since also U 2 = 1, then U 2

L is
a phase factor and hence [U 2

L,VL] = 0. This means ei2α = 1,
such that the projective representations of G = Z2 × Z2 are
labeled by ULVL = ±VLUL. Such a discrete invariant cannot
change smoothly and thus labels distinct phases. Note that a
nontrivial projective representation always has a dimension
>1 (otherwise everything would trivially commute). In this
way nontrivial phase factors are also linked to degenerate
edge modes. More concretely, a d-dimensional projective
representation protects a d-dimensional edge mode.

Not all distinct classes of projective representations define
different phases. For example, the projective representations of
G = Z × Z are characterized by a continuous phase ULVL =
eiαVLUL. In other words, the distinct classes of projective
representations are labeled by H 2

grp(Z × Z; U(1)) = U(1):
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there are infinitely many, but they are all smoothly connected.
However, a finite-dimensional unit cell is symmetric with
respect to a finite group G or a compact Lie group G, in
which case H 2

grp(G; U(1)) is discrete.14 So for the case of finite-
dimensional on-site Hilbert spaces, the classes of projective
representations are characterized by discrete invariants, i.e.,
they label distinct SPT phases with protected edge modes.

5. Antiunitary symmetries

A similar procedure works for an antiunitary symmetry
T = UK , where U is an on-site symmetry and K is complex
conjugation defined in a tensor product basis. If one chooses
a basis for the low-energy degrees of freedom (necessarily
living on the edge since the bulk is gapped), which factorizes
between left and right, then one can define a new notion of
complex conjugation, K̃ , with respect to this factorized basis.
If we restrict ourselves to these basis states, the same argument
goes through as before, i.e., the symmetry will effectively act as
T = ULUR . Allowing for phase factors and superpositions, the
expression becomes T = ULURK̃ in the low-energy subspace.

If the original symmetry satisfies T 2 = 1, then

1 = T (ULURK̃)

= T ULT 2URT 2K̃

= T ULT T URT ULURK̃2

= (ULUL)(URUR), where O := TOT . (A2)

Since the two factors act on disjoint regions, ULUL = eiκ .
Note that this phase factor is invariant under U → eiαU .
Moreover, we see that U−1

L = e−iαUL, and since any operator
commutes with its inverse, we have that UL and UL commute.
Hence the product ULUL must be real. We conclude that
the projective representations of T 2 = 1 are labeled by
ULUL = ULUL = ±1. Alternatively, one could have defined
the invariant ULK̃ULK̃ = ±1, and in fact for bosonic systems
(ULT )2 = (ULK̃)2 (which can be proven using T = T −1 =
K̃U−1

R U−1
L ) so the choice is irrelevant. The latter choice might

seem more natural, since ULK̃ can be said to be an antiunitary
operator living on the left edge, but the fermionic case (which
we address soon) shows that the other invariant is preferable.

To confirm that this invariant is independent of our choice
of (factorized) basis, note that any other choice leads to a
complex conjugation K̃ ′ = WLWRK̃W−1

R W−1
L . Each effective

complex conjugation, K̃ and K̃ ′, leads to a fractionalization
T = ULURK̃ = VLVRK̃ ′. Substituting the above expression
for K̃ ′, one obtains UL = VLWLK̃W−1

L K̃ up to a phase factor
which does not affect the argument. Using this one can indeed
straightforwardly show that (ULT )2 = (VLT )2, again using the
trick that T = T −1.

6. What changes for fermions

So far, we have used the fact that if UL and UR act on disjoint
regions, then they commute. This clearly need not be the case
for fermionic systems. This means that for each symmetry

14If G is a compact Lie group, then H 2
grp(G; U (1)) ∼= H 2

sing(G;Z),
which is well-known to be ∼= Zβ ⊕ T with β ∈ N and T finite.

we can now have an extra phase factor: ULUR = ±URUL.
Equivalently, this encodes whether UL is bosonic or fermionic,
i.e., ULP = ±PUL, where P is fermionic parity symmetry.
A (projective) representation with this extra structure is called
graded [8].

There is an important subtlety. In order to have a well-
defined symmetry fractionalization of an antiunitary symme-
try, T = ULURK̃ , it is important that K̃ is chosen with respect
to basis that factorizes over the edges. If this can be done, then
the above proof directly applies to show the gauge invariance
of ULUL, even if UL is fermionic. However, fermionic chains
can have a nonlocal fermionic mode that is spread out over
both edges and hence such a basis does not exist. The best
one can do is a decomposition H = (HL ⊗ HR) ⊕ Hnonlocal,
where dimHnonlocal = 0,2. This corresponds to respectively
having an even or odd number of Majorana modes per edge.
The definition of K̃ then depends on the basis one chooses in
Hnonlocal, which can possibly change the value of ULUL. This
simply means the antiunitary symmetry protects the nonlocal
mode (e.g., this is the case for the Kitaev chain, which is
dual to the statement that the degeneracy of the Ising chain
is protected by the spontaneously broken PT symmetry).
Despite ULUL not being gauge-invariant in that case, one
can still use it to label distinct phases, even if one does not
make consistent gauge choices—this will be illustrated in the
example of the α-chain, which we soon compute. Nevertheless,
if one so prefers, one can consistently fix the gauge by requiring
that the nonlocal basis vectors are chosen to be an eigenstate
of PL (where P is fermionic parity symmetry). Equivalently
this means K̃PLK̃ = P −1

L . Note that this condition on K̃ is
independent of the gauge choice for PL.

One might wonder how what changes if we switch between
the two possible gauge choices. To this purpose, we can
label the gauge by β, i.e., K̃PLK̃PL = (−1)β . One can
straight-forwardly prove that if PLPR = PRPL, then β = 0,
confirming that the subtlety of fixing β only arises in the
presence of a nonlocal mode. In the latter case, one can
show that K̃PRK̃PR = (−1)β+1, i.e., fixing this gauge is
equivalent to choosing an edge, matching the fact that after
a Jordan-Wigner transformation (which also chooses an edge)
one obtains a spin chain where these subtleties do not arise.
Suppose now that T = ULURK̃ in a gauge labeled by β, then
one can change the gauge by choosing K̃ ′ = PLPRK̃ . One can
show that the new fractionalization, T = VLVRK̃ ′, satisfies
VLV L = (−1)β+af ULUL, where a (resp. f ) denotes whether
PL (resp. UL) is fermionic. Similarly, the same identity holds
for the right-hand side if we replace β → β + a. [Useful
intermediate results to prove this, are PLT PLT = (−1)β+f

and PLUL = (−1)(a+1)f ULPL, which both straightforwardly
follow from the trick of rewriting PL = PP −1

R and T = T −1 =
K̃U−1

R U−1
L .]

Another subtlety is that instead of the invariant (ULT )2 one
could consider (ULK̃)2. However, one can show that (ULT )2 =
±(ULK̃)2, where the sign corresponds to UL being bosonic
(plus) or fermionic (minus). Hence if one is merely interested
in counting and distinguishing phases, the choice is irrelevant.
However, in Sec. III A, we have argued that the former choice
is more natural in terms of the physics. For example, it leads
one to the conclusion that the 2-chain is protected by PT

on the left-hand side, which is indeed given substance by the
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Jordan-Wigner transformation (with its string starting at the
left end) mapping the 2-chain to a spin chain protected by PT

(and not T ).

7. Symmetry fractionalization of the α-chain

The α-chain is a fermionic system with an antiunitary
symmetry T = K . From the above discussion, one can make
an educated guess about the number of phases it has: there is
an invariant for whether or not the fractionalization of P is
fermionic (i.e., there are an odd number of Majorana modes
per edge) and then two invariants for whether or not T protects
something on the left or right. In summary, we are interested in
obtaining for each α-chain the following phase factors (where
T = ULURK̃):

PLPR = (−1)aPRPL, (A3)

T ULT UL = ULUL = (−1)b, (A4)

T URT UR = URUR = (−1)c. (A5)

Note that if one is given b, then the invariant c is equivalent
to the information of whether or not UL,R is fermionic. In-
deed, 1 = T 2 = T ULURK̃ = (T ULT )(T URT )ULUR , hence
the fractionalization being bosonic or fermionic is equivalent
to (ULT )2 having, respectively, the same or opposite sign as
(URT )2. One can rephrase this as ULUR = (−1)a+bURUL, and
also ULP = (−1)a+bP UL. Note that as discussed above, the
values of b and c depend on the choice of complex conjugation
in case of a nonlocal fermion (i.e., a = 1). One can encode this
choice in β = 0,1 where PLK̃PLK̃ = (−1)β . Nevertheless,
we will see a,b,c successfully distinguish all eight phases
even if one mixes choices of β.

A priori one might also expect PT to give extra invariants.
However, we now show that its fractionalization is fixed by
the above information. If we write PT = VLVRK̃ , then

(PT )VL(PT )VL =
{

T URT UR if a = 0
(−1)β+1T ULT UL if a = 1

. (A6)

This is straightforward to derive. Firstly, note that VL = PLUL

(up to an irrelevant sign), hence

(PT )VL(PT )VL = PT PLULPT PLUL

= PT PLT T ULT PPLUL

= (−1)β+b+c+a(b+c)PP −1
L T ULT ULPPL

= (−1)β+b+c+a(b+c)+aT ULT UL, (A7)

where we have used that PLT PLT = (−1)β+b+c and
ULPPL = (−1)a(b+c)PPLUL.

We now explicitly derive the expressions for PL,R and UL,R

for the α-chain (where for notational convenience we choose
α positive). One may easily ascertain that up to an irrelevant
sign

PL =
∏

1�n�α

γn PR = iα
∏

0�n<α

γ̃N−n. (A8)

This is a direct consequence of P = iN
∏

γ̃nγn and the fact that
for all 1 � n � N − α, in the ground-state subspace γ̃nγn+α =
i. To factorize the low-energy Hilbert space made up by these

TABLE IX. The phase factors characterizing the symmetry
fractionalization of P and T as defined in Eq. (A3) and derived
from Eqs. (A8) and (A11). If the result depends on the gauge choice
PLK̃PLK̃ = (−1)β , we show it in parentheses. In that case, the value
in round (square) brackets corresponds to β = 0 (β = 1). Note that
these three columns correspond to the first two columns in Table I.

α a b c

0 0 0 0
1 1 0 (0) [1]
2 0 0 1
3 1 (0) [1] 1
4 0 1 1
5 1 1 (1) [0]
6 0 1 0
7 1 (1) [0] 0

modes as much as possible onto the edges, let us define

cL
1 = 1

2 (γ1 + iγ2) cR
1 = 1

2 (γ̃N−1 + iγ̃N )

...
... (A9)

cL
a = 1

2 (γ2a−1 + iγ2a) cR
a = 1

2 (γ̃N−2a+1 + iγ̃N−2(a−1)),

where a = �α/2�. If α is odd we have the extra nonlocal mode
c = 1

2 (γα + iγ̃N−α+1). We now define K̃ as complex conju-
gation in the basis of these fermionic modes. Equivalently,

K̃
(∼)
γ n K̃ = (−1)n+1

(∼)
γ n . (A10)

One can ascertain that in this gauge we have PLK̃PLK̃ = 1,
i.e., β = 0 (the other gauge would correspond to changing
(−1)n+1 → (−1)n). Comparing Eq. (A10) to the action of T ,
i.e., T γnT = γn and T γ̃nT = −γ̃n, we see that

UL =
∏

1�even n�α

γn, UR =
∏

0�odd n<α

γ̃N−n. (A11)

The above explicit symmetry fractionalizations allow us to
read off the invariants a,b,c, as summarized in Table IX. As an
example, consider α = 3 such that UL = γ2. Then ULUL =
γ2(−γ2) = −1, hence b = 1.

From our earlier discussion (and characterization) of how
the symmetry fractionalization of T depends on the choice
of basis, we can also directly obtain the values for the gauge
choice PRK̃PRK̃ = 1 (i.e., β = 1 if a = 1). When b or c

depend on this choice, we show it in parentheses, where value
in round (square) brackets corresponds to β = 0 (β = 1).
Note that one can also directly calculate it in the basis where
PRK̃PRK̃ = 1 by redefining K̃ → PLPRK̃ , in which case the
sign in Eq. (A10) changes from (−1)n+1 to (−1)n. For example,
UL is now given by the product of odd Majorana modes instead
of even ones.

This information is represented in the main text in
Table (I). There we have inserted an extra column specifying
the symmetry fractionalization of PT , which can be derived
from that of P and T as mentioned before. Note that changing
the gauge choice is equivalent to swapping the T ↔ PT and
“left” ↔ “right” in Table I. This allows one to directly see
which values are gauge-independent.
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