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Screening and plasma oscillations in an electron gas in the hydrodynamic approximation
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A hydrodynamic theory of screening in a generic electron gas of arbitrary dimensionality is given that
encompasses all previously studied cases and clarifies the predictions of the many-body approach. We find
that long-wavelength plasma oscillations are classical phenomena with quantum-mechanical effects playing no
explicit role. The character of the oscillations is solely dictated by the dimensionality of the electron system
and its equation of state in the neutral limit. Materials whose excitations are described by the Dirac dispersion
law—such as doped graphene or a Weyl semimetal—are no exception to this rule.
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I. MOTIVATION

An interacting electron gas in the presence of a uniform
positively charged background (the jellium model) is one of
the paradigms that has shaped our understanding of the physics
of bulk metals, doped semiconductors [1–3], and of various
two-dimensional systems [4]. It provides a reasonable approx-
imation to real materials, correctly describing the ground-state
properties, screening, and the excitation spectrum. In the long-
wavelength limit, the excitations have the character of classical
plasma oscillations [5], implying that their long-wavelength
properties can be derived from a macroscopic theory [6].

In the usual electron gases the excitation energy is quadratic
in the wave vector [E(q) = h̄2q2/2m, where q = |q| and m is
the effective electron mass]. For graphene, however, the low
energy excitations obey the Dirac dispersion law

E(q) = h̄vF q, (1)

where vF ≈ c/300 is the limiting (Fermi) velocity [7]. There
also are three-dimensional “Weyl materials” that exhibit this
dispersion relation [8].

The idea that long-wavelength plasmons correspond to
classical plasma oscillations is challenged by the example
of graphene: While the functional dependence of the plasma
frequency on the wave vector �(q) agrees with classical
expectations, the spectrum features an explicit dependence
on Planck’s constant h̄ and a nonclassical dependence of the
plasma frequency on doping [9]. Nonclassical behavior is also
predicted whenever the excitations obey Eq. (1), implying that
the plasma oscillations of a Dirac plasma [system of electrons
or holes obeying the dispersion law (1) in the presence of
neutralizing background] can only be understood as a quantum
effect, even in the long wavelength limit [10].

In this paper we will resolve the conceptual puzzle of
nonclassical behavior discovered in Refs. [9,10]. Despite the
appearance of h̄ in the plasma frequency and the nonclassical
dependence on doping, the long-wavelength properties of
plasma oscillations will be derived from hydrodynamics; the
microscopic nature of the electron plasma only enters through
the material parameters of the theory.

Our analysis is modeled after Bloch’s hydrodynamic
generalization of the semiclassical Thomas-Fermi (TF) model
of a neutral atom [11]. The application Bloch specifically had
in mind was to explain the stopping power. Later Bloch’s

equations were employed to describe a small metal particle
represented by an electron gas confined within a sphere [12],
and photoabsorption and the collective charge oscillations
of a TF atom [13]. A formulation similar to Bloch’s has
been given by Fetter [14] who related the hydrodynamic
and many-body predictions regarding screening and plasmons
in three- and two-dimensional electron gases with parabolic
dispersion laws. Our analysis recovers Fetter’s findings as
special cases.

To be definite we focus on a d-dimensional gas of electrons
(the theory for the holes is the same) in the presence of a
neutralizing background charge of uniform number density
nd ; the practically relevant cases are a bulk system (d = 3), a
layer (d = 2), and a wire (d = 1). We start by summarizing the
static long-wavelength screening properties of the electron gas,
followed by the hydrodynamic generalization of the theory for
electrons obeying the parabolic dispersion law, and conclude
with an even more general theory which accommodates
the Dirac dispersion law (1); this is where our central
results lie.

II. STATIC SCREENING

The total potential ϕ(r) felt by an electron of charge e

at position r is due to the external potential ϕext(r) and to
the potential caused by the net local charge of the remaining
electrons of number density n(r) and neutralizing background
of density nd :

ϕ(r) = ϕext(r) + e

κ

∫
[n(r′) − nd ]

|r − r′| ddr ′, (2)

where κ is the background dielectric constant. In thermody-
namic equilibrium the electrochemical potential

μ = ζ (n) + eϕ(r) (3)

is fixed at a constant value ζ (nd ) so that n = nd and ϕ =
0 (for ϕext = 0). Here ζ (n) is the chemical potential of the
electrons (whose temperature dependence is for brevity not
displayed) in the absence of the perturbing potential ϕ(r). In
the presence of a weak external potential ϕext, Eqs. (2) and (3)
[when μ = ζ (nd )] can be linearized about n = nd and ϕ = 0.
In terms of n(q), ϕext(q), and ϕ(q), the Fourier transforms of
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δn(r) = n(r) − nd, ϕext(r), and ϕ(r), respectively, the outcome
can be written as

ϕ(q) = ϕext(q) + e

κ
n(q)fd (q), (4)

∂ζ

∂nd

n(q) + eϕ(q) = 0, (5)

where fd (q → 0) � q1−d is the Fourier transform of 1/r ,
which for the relevant cases is given by

f1(q) ≈ 2 ln
1

qa
,qa � 1, f2(q) = 2π

q
, f3(q) = 4π

q2
, (6)

where a is the wire radius. Elimination of n(q) from Eqs. (4)
and (5) establishes that ϕ(q) = ϕext(q)/εd (q), thus giving the
static dielectric function:

εd (q) = 1 + e2

κ

∂nd

∂ζ
fd (q) (7)

which is determined by the thermodynamic density of states
∂nd/∂ζ and the dimensionality of the electron system which
enters through fd (q). The d �= 1 expression for the dielectric
function can be equivalently rewritten as

εd (q) = 1 +
(

qs

q

)d−1

, qs �
(

e2

κ

∂nd

∂ζ

)1/(d−1)

, (8)

where q−1
s is the Debye screening radius of the electron

gas. Long-wavelength (q � qs) perturbations are completely
screened, while their short-wavelength counterparts (q � qs)
are unaffected. For d = 3 or d = 2 Eq. (8) reproduces the
well-known results [2,4]. In the d = 1 case one has ε1(q) ≈
1 + (2e2/κ)(∂n1/∂ζ ) ln(1/qa).

III. DYNAMICAL SCREENING

When the electrochemical potential is not constant across
the system there will be a net force exerted on the electrons

F = −∇μ = −∇(ζ + eϕ) (9)

causing them to move (in layer or wire geometry, there are also
confining forces normal to the surfaces constraining motion in
those directions; the effect is to reduce the dimensionality of
the differential operators here and below). Following Bloch
[11] this is described by treating the electrons as charged ideal
liquid characterized by the local position- and time-dependent
number density n(r,t) and velocity u(r,t) fields, which are
related by the continuity equation

∂n

∂t
+ ∇ · (nu) = 0. (10)

Since the electron velocities are significantly slower than
the speed of light, the effects of retardation are neglected
from the outset so that Eqs. (2) and (4) continue to hold except
that the potentials and density acquire time dependence.

A. Parabolic dispersion law

When the underlying particles of the liquid exhibit a
parabolic dispersion law E(q) = h̄2q2/2m, the equation of

motion is Newton’s second law mdu/dt = F or

m

(
∂u
∂t

+ (u · ∇)u
)

= −∇(ζ + eϕ). (11)

By multiplying both sides by the electron density n and
introducing the pressure p and density of bulk forces f

∇p = n∇ζ, f = −en∇ϕ, (12)

Eq. (11) can be brought into the standard form of the Euler
equation of hydrodynamics [15]

mn

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + f. (13)

1. Spectrum of plasma oscillations

The small density oscillations can be understood by
linearizing Eqs. (10) and (11) about the equilibrium state
n = nd and u = 0. To first order in δn and u, the continuity
equation (10) and the equation of motion (11) become

∂δn

∂t
+ nd∇ · u = 0 (14)

m
∂u
∂t

= −∇
(

∂ζ

∂nd

δn + eϕ

)
. (15)

Differentiating Eq. (14) with respect to time and employing
Eq. (15) the velocity field u can be eliminated with the result

∂2δn

∂t2
− nd

m
∇2

(
∂ζ

∂nd

δn + eϕ

)
= 0. (16)

Going over to the Fourier representation and employing the
Coulomb law ϕ(q) = (e/κ)n(q)fd (q) [Eq. (4) with ϕext = 0]
turns this into an ordinary differential equation

d2n(q)

dt2
+ �2

d (q)n(q) = 0. (17)

This describes a harmonic oscillator with frequency �d (q)

�2
d (q) = s2q2 + nde

2

κm
q2fd (q) (18)

s2 = nd

m

∂ζ

∂nd

≡ 1

m

∂p

∂nd

, (19)

where s is the adiabatic speed of sound in the neutral e = 0
limit [15]. �d (q) is the spectrum of the plasma oscillations of
the d-dimensional electron gas with a parabolic dispersion law.
Equation (18) can be re-written in terms of the static dielectric
function εd (q) (7) as �2

d (q) = s2q2εd (q) thus implying that
short-wavelength q � qs density oscillations are soundlike,
�d (q) = sq, while in the long-wavelength q � qs limit the
second term in Eq. (18) dominates and one has classi-
cal plasma waves with �d �=1(q) � (nde

2/m)1/2q(3−d)/2 and
�1(q) ≈ (2n1e

2/κm)1/2q ln1/2(1/qa) in agreement with the
many-body calculation [10]. The well-known d = 3 version
of Eq. (18) is �2

3(q) = s2q2 + 4πn3e
2/κm; the discussion

of the relationship between hydrodynamic and many-body
approaches as well as an analysis of various limiting cases
can be found in many places [2,6,14,16]. The d = 2 version
of Eq. (18), �2

2(q) = s2q2 + (2πn2e
2/κm)q, was derived by

Fetter [14].
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The macroscopic theory explains how the plasmon spec-
trum depends on the space dimensionality of the electron
system [17] which the many-body approach tends to obscure.
In the long-wavelength limit the density gradient term of
Eq. (15) can be neglected, and the rest simplifies to m∂u/∂t =
eE where E = −∇ϕ is the electric field (or the part in plane or
along the wire) acting in the electron system. Combining this
with the time derivative of the linearized continuity equation
(14) leads to a simplified version of Eq. (16)

∂2δn

∂t2
+ nde

m
∇ · E = 0. (20)

For d = 3 one can directly substitute Gauss’s law ∇ · E =
4πeδn/κ which then predicts that the classical plasma fre-
quency is �3(q → 0) = (4πn3e

2/κm)1/2. This line of reason-
ing fails for d = 2 or d = 1 because E entering Eq. (20) is only
a projection of the total three-dimensional electric field onto
the d-dimensional space of the electron system, while Gauss’s
law involves all components of the electric field. In such a
situation we proceed by going over to the Fourier representa-
tion and directly employing the Coulomb law (4) (with ϕext =
0): (∇ · E)(q) = −(∇2ϕ)(q) = q2ϕ(q) = (e/κ)q2fd (q)n(q).
Then the classical plasma frequency is �d (q → 0) =
(nde

2q2fd (q)/κm)1/2 → (nde
2/κm)1/2q(3−d)/2 (d �= 1) or

�1(q → 0) ≈ (2n1e
2/κm)1/2q ln1/2(1/qa).

2. Dynamical dielectric function

Next we evaluate the dynamical (frequency ω and wave
vector q dependent) dielectric function of the system, εd (ω,q)
[3]. We substitute ϕext(q) = ϕext(ω,q)e−iωt into Eqs. (4) and
(16), and seek the total potential ϕ(q) and density n(q) in
the form of a driven oscillation: ϕ(q) = ϕ(ω,q)e−iωt and
n(q) = n(ω,q)e−iωt , respectively. This affects Eq. (4) only
minimally, adding an ω dependence to the Fourier transforms
of the potentials and the density,

ϕ(ω,q) = ϕext(ω,q) + e

κ
n(ω,q)fd (q), (21)

while Eq. (16) becomes

ω2

q2
n(ω,q) = nd

m

(
∂ζ

∂nd

n(ω,q) + eϕ(ω,q)

)
. (22)

Elimination of n(ω,q) from Eqs. (21) and (22) establishes
that ϕ(ω,q) = ϕext(ω,q)/εd (ω,q), thus giving the dynamical
dielectric function:

εd (ω,q) = ω2 − �2
d (q)

ω2 − s2q2
. (23)

The d = 3 and d = 2 versions of Eq. (23) were given
previously in Refs. [2,18], and [14], respectively. As in
the many-body approach, the zero of the dielectric function
determines the plasmon spectrum, εd (�d,q) = 0. The pole
of ε3(ω,q) at ω2 = s2q2 may be thought of as a remnant of
particle-hole excitations of the neutral e = 0 system [18]; the
same holds for general d. This interpretation is supported
by the facts that the pole of the dielectric function is an
indicator of the onset of absorption, plasmons are known to
decay into particle-hole excitations, and that the hydrodynamic
approximation treats all the excitations as density oscillations.
In the ω = 0 limit the dielectric function (23) reduces to its

static counterpart (7). In the q = 0 limit one finds εd �=3(ω,0) =
1 and ε3(ω,0) = 1 − 4πn3e

2/κmω2, a textbook result [6].

B. Dispersion law with limiting velocity

While the continuity equation (10) still applies to the Dirac
plasma, Euler’s equation (13) does not apply because it is based
on Newton’s second law, which does not hold for massless
excitations (1). The formalism appropriate for treatment of
this case is developed in relativistic hydrodynamics [15] which
we now adopt (substituting the speed of light c with the
Fermi velocity vF ). We emphasize that the electron liquids
in materials with limiting velocity are not Lorentz invariant
with vF playing a role of the speed of light c.

The central object of the theory is the energy-momentum
tensor of the liquid

T ik = wuiuk − pgik, ui = γ

(
1,

u
vF

)
, (24)

where w is the heat function density, ui is the velocity
vector, γ = (1 − u2/v2

F )−1/2, and gik is the metric tensor
with components: g00 = 1, gii = −1 (i �= 0), and gik = 0
otherwise. The equations of motion of the liquid are the
statements that the divergence of the energy-momentum tensor
T ik is due to the bulk force density f i [15,19]:

∂T ik

∂xk
= f i, f i =

(
f · u
vF

,f
)

, (25)

where xi = (vF t,r) is the position vector. Evaluation of the
temporal i = 0 component of Eq. (25) gives the energy balance
equation

∂

∂t
(wγ 2 − p) + ∇ · (wγ 2u) = f · u (26)

which can be employed to bring the spatial i �= 0 component
of Eq. (25) into a useful form

wγ 2

v2
F

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + f − u

v2
F

∂p

∂t
− u(f · u)

v2
F

.

(27)

Equations (26) and (27) were given previously [20]. The latter
is a generalization of the standard Euler equation to the case
of a generic dispersion law, which also makes it possible to
precisely state the range of applicability of Eq. (13). For slow
motions, u � vF , one can set γ = 1 and the last two terms
in the right-hand side of (27) can be neglected. Since the
heat function density w is the sum of the energy density
ε and pressure p,w = ε + p [15], the chemical potential
is the derivative of the energy density, ζ (n) = ∂ε/∂n, and
the pressure and chemical potential are related as ∂p/∂n =
n∂ζ/∂n, Eq. (12), one has w = nζ (n), and Eq. (27) becomes

ζ (n)

v2
F

n

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + f, u � vF . (28)

This resembles the Euler equation (13) except that the
counterpart of mass m is now the density-dependent com-
bination ζ (n)/v2

F that parallels Einstein’s equivalence rela-
tionship E = mc2 between mass and energy. The limit of a
parabolic spectrum, Eq. (13), can now be recovered by writing
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ζ = mv2
F + ζint(n) and neglecting in the left-hand side of

(28) the “internal” part of the chemical potential ζint [which
does contribute into the pressure gradient, Eq. (12), on the
right-hand side].

The analysis of small oscillations for a generic dispersion
law differs from the parabolic case only in that the role of the
Euler equation (13) is played by its generalization (27). Since
the oscillations are perturbations about the n = nd, u = 0
state, the outcome can be written out without additional
calculations by replacing the electron mass m by ζ (nd )/v2

F

whenever the mass is encountered in the previously given
formulas [21]. This has no effect on the static screening
properties accumulated in Eqs. (6)–(8) but modifies the
dynamical predictions. Specifically, the spectrum of the plasma
oscillations (18) generalizes to

�2
d (q) = s2q2 + nde

2v2
F

κζ (nd )
q2fd (q) (29)

with the expression for the speed of sound (19) modified to

s2 = v2
F

(
∂p

∂ε

)
n=nd

. (30)

This is a counterpart of the expression for the speed of sound
in a relativistic liquid with vF playing the role of the speed
of light c [15]. For the Dirac plasma the equation of state is
p = ε/d and the speed of sound is s = vF /

√
d .

Equations (29) and (30) in combination with the expression
for the dynamical dielectric function (23) accumulate the basic
information regarding screening and plasma oscillations in
a generic d-dimensional electron gas in the hydrodynamic
approximation. Even though a modification of the standard
hydrodynamics [15] is necessary to accommodate for the
possibility of the Dirac dispersion law (1), at no point
was quantum mechanics employed: to order q2 quantum-
mechanical effects do not explicitly enter the expression for

�2
d (q) (29). In the long-wavelength limit the second term in

(29) dominates and one finds

�d �=1(q → 0) �
(

nde
2v2

F

κζ (nd )

)1/2

q(3−d)/2 (31)

�1(q → 0) �
(

n1e
2v2

F

κζ (n1)

)1/2

q ln1/2

(
1

qa

)
. (32)

One can make Planck’s constant h̄ “reappear” in these equa-
tions by looking at a model for the electron gas. For example,
at zero temperature the chemical potential of the electron gas
(1) of degeneracy g and density nd is ζ (nd ) � h̄vF (nd/g)1/d

(neglecting the effects of exchange and correlation), and then
the dependence of the plasmon frequency on the density and
Planck’s constant h̄ is given by

�d (q → 0) ∝
(

n
1−1/d

d e2vF g1/d

κh̄

)1/2

(33)

which agrees with and explains the results of the many-body
calculation for this model [10]. We hasten to mention that
in graphene’s case (d = 2) the equivalence of hydrodynamic
and many-body plasmon spectra of this model has already
been noticed [22]. We emphasize that the conclusions (29)
and (30) are not limited to zero temperature or a specific
model of the electron gas: They are completely general with the
system-specific information encoded in the equation of state
ζ (nd ). The hydrodynamic approach is inherently limited to
long-wavelength low frequency phenomena. It complements
the powerful but somewhat abstract methods of the many-body
theory, highlighting the macroscopic origin of the effects in
question.
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