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Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons
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We examine the magnetic correlations in quantum spin models that were derived recently as effective
low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this
purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for
quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons,
antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground
state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective
spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge
coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge
magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag
nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of
two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain
couplings. The results for the critical exponents are compared also to several recent renormalization-group
calculations for related long-ranged interacting quantum systems.
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I. INTRODUCTION

Graphene-based nanoribbons with zigzag edge termination
are characterized by the presence of an almost flat band of
edge states [1]. The corresponding strongly increased local
density of states allows electron-electron interactions to induce
enhanced magnetic correlations along the edges, as compared
to bulk graphene [2]. In fact, from a broad range of theoretical
studies, a general picture has been promoted that the edge
states along each edge of the zigzag nanoribbon are gapped out
and exhibit a ferromagnetic alignment, thereby forming a pair
of edge superspins that are correlated antiferromagnetically
across the nanoribbon’s transverse extent [3–10]. Even though
recent progress in synthesizing graphene zigzag nanoribbons
and controlling the edge alignment allows us to identify
and better characterize the localized edge states [11–14], a
fully conclusive experimental demonstration of such edge
magnetism is still not generally agreed upon.

The above picture is aggravated by the fact that even within
the most simple theoretical approach to edge magnetism,
based on a local Hubbard model tight-binding description of
graphene nanoribbons, it has been argued that quantum fluc-
tuations, which are neglected in most mean-field-theory based
predictions of the edge magnetism, suppress the ferromagnetic
correlations along the nanoribbon edges [15–19]. For the case
of specific chiral nanoribbons, where zigzag-terminated edge
segments are separated by armchair-terminated steps, it was
also shown within effective quantum spin models for the mag-
netic correlations [20,21] that the antiferromagnetic interedge
coupling leads to a quantum disordered state, characterized by
an exponential decay of the magnetic correlations along the
edges and a finite spin excitation gap [19].

The effective quantum spin models referred to above
can be derived from the parent Hamiltonian (the Hubbard
model on the nanoribbon lattice) via a sequence of controlled
approximations that separate on the microscopic level the
edge states from the bulk states of the nanoribbon in an
optimized Wannier basis (for details on the derivation of the

effective spin model, and the extension to a second-order
treatment within the Schrieffer-Wolff transformation, we refer
to Refs. [20,21]). These effective theories are formulated in
terms of a spin-half Heisenberg model, and the corresponding
lattice geometry is that of an effective two-leg ladder with
extended ferromagnetic exchange interactions along the legs
(each representing one of the nanoribbon edges) and extended
antiferromagnetic interactions between spins on different legs.
While the general form of such spin-ladder models for
graphene nanoribbons has been described previously [3,6,22],
the calculations in Refs. [20,21] provide a systematic way to
evaluate the effective exchange couplings for a given specific
microscopic nanoribbon geometry.

A useful aspect of such effective spin-ladder models is
the fact that they allow us to probe long-ranged magnetic
correlations on significantly larger length scales than those
accessible to direct simulations [18] of the parent Hamiltonian
for chiral nanoribbons in terms of the Hubbard model, so that
even large finite correlation lengths can be quantified [19]. For
the chiral ribbons considered in Ref. [19], the interactions in
the effective spin-ladder model decay exponentially with the
spatial distance between the spins. The effective two-leg ladder
model therefore behaves qualitatively similar to a two-leg
ladder Heisenberg model with only nearest-neighbor ferro-
magnetic leg coupling and antiferromagnetic rung coupling:
any finite value of the rung coupling results in a gapped
quantum disordered state from the formation of dominant rung
singlets [23–25]. For the effective spin models with extended
interactions, the singlets of the spin gapped state extend over
larger spatial regions, quantified by the correlation length [19].

Returning to pure zigzag nanoribbons, it was recently
shown [21] that similarly to the chiral case, effective quantum
spin models with a two-leg ladder geometry can also be derived
for the case of wide zigzag nanoribbons, starting from the
Hubbard model description; cf. the inset of Fig. 1 for an
illustration. In contrast to the case of the chiral nanoribbons,
however, these effective spin models have not been further
analyzed with respect to their magnetic properties.
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FIG. 1. Effective ferromagnetic [J F(r)] and antiferromagnetic
[J AF(r)] couplings for a W = 10 zigzag nanoribbon for the Hubbard
model parameters U = t as a function of the lateral distance r . To
calculate these effective coupling parameters, a finite-size ribbon with
W = 10 zigzag lines and a total of 48 000 lattice sites was considered.
The resulting values for the couplings of distances r � 4 are given
explicitly in Table I. The inset illustrates a W = 10 zigzag nanoribbon
along with some of the effective exchange interactions of the effective
spin-ladder models in terms of the edge magnetic moments. Circles
represent the amplitude of the Wannier functions corresponding to
two of these edge states on the nanoribbon sites (one shown on the
upper, and one on the lower edge).

Here, we study these effective spin-ladder models for
zigzag nanoribbons using large-scale quantum Monte Carlo
simulations [19,26,27]. This allows us to account within
the effective quantum spin model for quantum fluctuations
beyond mean-field theory, while we can also access the large-
distance correlations. As will be discussed in detail below,
the effective spin models for the zigzag nanoribbons exhibit
a relatively weak spatial decay of the intraedge spin-spin
interactions. More specifically, as a function of the lateral
distance r between two spins, the numerically determined
values of the ferromagnetic intraedge exchange interactions
fit well to a power-law asymptotic decay proportional to
1/r2, while the antiferromagnetic interedge interactions decay
faster, approximately proportional to 1/r4 at large values of
r . This results in a qualitatively different magnetic behavior
as compared to the chiral case [19]: we find that the quantum
disordered region, which characterized the ground state of the
effective quantum spin model for chiral ribbons, is reached in
the case of the zigzag effective spin model only upon further
increasing the antiferromagnetic interedge coupling strength
beyond a finite critical value, which defines a quantum critical
point at a rather large value of the interedge coupling strength.

We determine the critical scaling properties at this quantum
critical point explicitly for a simplified version of the effective
spin model, wherein the antiferromagnetic interedge coupling
is truncated beyond its nearest-neighbor term. In fact, this
more genuine quantum spin model can be seen as a basic spin
model of two antiferromagnetically coupled ferromagnetic
Haldane-Shastry spin-half chains [28–30]. A single ferro-
magnetic Haldane-Shastry chain has a ferromagnetic ground
state, and its thermodynamic properties have been obtained
within a well-known exact solution [30]. In this paper, we

show that the system of two antiferromagnetically coupled
Haldane-Shastry chains features a quantum phase transition
between a low-coupling gapless phase and a strong-coupling
quantum disordered region where dominant singlets form
along the interchain bonds. We determine numerically the
critical properties of the quantum critical point that separates
these two phases, and we compare our estimates for the
critical scaling exponents to recent predictions based on
renormalization-group (RG) calculations performed in the
context of critical O(3) φ4 theories, quantum rotor models,
and quantum nonlinear σ models with power-law interactions
[31–33]. We observe good overall agreement between our
numerically extracted values for the critical exponents and
the RG findings, adding further support to the identification of
the quantum phase transition in the effective spin model from
identifying its universal properties.

The outline of the rest of this paper is as follows: In Sec. II,
we define in more detail the effective quantum spin model that
we consider in our analysis, as well as the quantum Monte
Carlo approach that we use. We present our results for the
phase diagram and the properties of the quantum critical point
in Sec. III, and finally we provide a discussion of our numerical
findings and the relation to graphene zigzag nanoribbons in
Sec. IV.

II. MODEL AND METHOD

In the following, we consider the effective quantum spin
model for zigzag nanoribbons derived in Refs. [20,21], which
maps onto a spin-half Heisenberg model on a two-leg ladder,
described by the Hamiltonian

H = −
∑
i,j

J F
ij (Si,1 · Sj,1 + Si,2 · Sj,2)

+
∑
i,j

J AF
ij Si,1 · Sj,2, (1)

where Si,μ denotes a spin on the ith rung of the two-leg
ladder, which for μ = 1 (2) is located on the upper (lower)
leg. Furthermore, J F

ij > 0 denotes the magnitude of the ferro-
magnetic exchange interaction for spins located on the same
leg, and J AF

ij > 0 is the antiferromagnetic coupling between
spins on different legs. Due to translational symmetry, these
couplings depend only on the lateral distance rij = |i − j |,
i.e., J

(A)F
ij = J (A)F(rij ). The actual values of the coupling

constants, obtained as described in Refs. [20,21], depend
explicitly on the physical parameters of the zigzag nanoribbon
within the Hubbard model description. To leading order,
the ferromagnetic couplings scale proportional to the local
Hubbard repulsion U , and the antiferromagnetic couplings
scale with t2/U , where t denotes the nearest-neighbor hopping
strength. For concreteness, we consider here the case in
which U = t , well within the semimetallic region for the
Hubbard model on a honeycomb lattice, in accord with the
conditions in bulk graphene [2]. In the following, we consider
a zigzag nanoribbon that is sufficiently wide, such that the
edge magnetic moments are well described within the Wannier
function basis [20,21]. We thus choose explicitly a zigzag
nanoribbon with W = 10 zigzag lines (cf. the inset of Fig. 1 for
an illustration), for which we obtained the effective coupling
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TABLE I. Values of the spin exchange couplings for lateral
distances r � 4, as obtained for the effective spin-ladder model for
the W = 10 nanoribbon for U = t .

r J F(r)/t J AF(r)/t

0 0.0196417
1 0.0453914 0.0155852
2 0.0047475 0.0079814
3 0.0014386 0.0028894
4 0.0007365 0.0008942

strengths given in the main panel of Fig. 1 as well as, for
r � 4, in Table I. These are based on a calculation for a
W = 10 nanoribbon with 48 000 lattice sites. Furthermore,
from comparing the results for W = 10 zigzag nanoribbons of
varying sizes, we ensured that the shown values of the effective
couplings are not affected by finite-size effects.

The log-log plot in Fig. 1 exhibits an essentially algebraic
decay of the calculated exchange couplings as a function of
distance for values of r � 5, traced over several orders of
magnitude in the interaction strength. As indicated by the
corresponding fit lines, this large-r behavior is captured rea-
sonably well in terms of asymptotic algebraic decays J F(r) ∝
1/r2 and J AF(r) ∝ 1/r4, respectively. Fitting the couplings to
power-law decays, one obtains estimated exponents of 1.94
and 4.09, respectively. Given the approximative nature of
the coupling constant calculation, we prefer to employ for
further analysis the very close and more natural values of 2
and 4, respectively. We considered also other values of the
nanoribbon width, W = 8 and 12, and also for these ribbons
the above asymptotic algebraic decays do fit the numerical
results similarly well. Based on these algebraic forms, we
can thus use the following explicit form of the longer-ranged
coupling constants in the Hamiltonian H :

J F(r) = JF
1

r2
, J AF(r) = JAF

1

r4
, r > 4, (2)

with the fit parameters JF/t = 0.010 09 and JAF/t = 0.219 72,
while for smaller distances, the values of the interactions for
W = 10 are given explicitly in Table I.

To systematically study the physics of the Hamiltonian
H with the above form of the couplings, it is instructive to
tune the relative strength of the interleg to intraleg couplings
beyond these original values. For this purpose, we introduce
a dimensionless quantity λ, which uniformly rescales all the
interleg couplings as

J AF(r) → λJ AF(r). (3)

Hence, for λ = 1 we recover the original model, while for
larger λ we (artificially) enhance all antiferromagnetic interleg
couplings with respect to the ferromagnetic intraleg couplings.
As will be demonstrated in the next section, the Hamiltonian
H indeed exhibits a quantum phase transition upon varying
the parameter λ, which we referred to already.

Furthermore, we find that the basic physics of the Hamil-
tonian H is reproduced also for a simplified model Hamilto-
nian, which is obtained by truncating the antiferromagnetic
exchange couplings beyond the nearest-neighbor term and
using a simple 1/r2 decay for all ferromagnetic couplings

r � 1. This leads us to an even more genuine spin model with
Hamiltonian

H̃ = −JF

∑
i,j

1

r2
ij

(Si,1 · Sj,1 + Si,2 · Sj,2)

+ JAF

∑
i

Si,1 · Si,2. (4)

For this model, we furthermore define the ratio

g = JAF

JF
(5)

between the two coupling parameters. Similarly to the param-
eter λ in the Hamiltonian H , g quantifies for the Hamiltonian
H̃ the relative strength of the antiferromagnetic interleg
coupling with respect to the ferromagnetic intraleg coupling
strength.

In the limit of JAF = 0 (i.e., g = 0), this model corresponds
to two decoupled spin chains with a ferromagnetic 1/r2

exchange interaction. In the thermodynamic limit, this is
the ferromagnetic Haldane-Shastry model for which an exact
solution has been derived for its thermodynamic properties
[28–30]. This model has a fully polarized, ferromagnetic
ground state. Given the short-ranged character of the interleg
coupling in H̃ , we expect in this case a quantum disordered
phase from the formation of strong rung-singlets in the
opposite limit of large JAF, i.e., for g → ∞, along with a finite
spin excitation gap. Note that due to the explicit ferromagnetic
1/r2 coupling between any two spins within a given leg,
the correlation function decays proportional to 1/r2 even
deep inside the quantum disordered region, as one also finds
explicitly within perturbation theory about the large-g limit.

Any finite value of the antiferromagnetic rung coupling,
g > 0, tends to lock the spins between the two legs into
an antiferromagnetic alignment. However, in contrast to the
case of a purely short-ranged intraleg coupling [23–25],
this locking does not immediately destroy the ferromagnetic
state along each leg due to the long-ranged character of
the intraleg coupling. Instead, as demonstrated in the next
section, a quantum phase transition emerges at a finite value
of g > 0, which separates the weak coupling (low-g) from the
strong coupling (large-g) phase. In this sense, the long-ranged
character of the ferromagnetic intraleg coupling stabilizes
the weak-coupling phase, in contrast to the case of the
conventional two-leg ladder, where any finite rung coupling
drives the system into the gapped rung-singlet regime.

Since for the Hamiltonian H the antiferromagnetic interleg
coupling decays fast with the lateral distance (as compared
to the intraleg couplings), this extended form of the interleg
coupling does not modify the above picture. In fact, as we will
show in the following section, also for H we can identify a
quantum critical point at a finite value of λ. One may indeed
expect this, recalling that quite generally in one-dimensional
systems, power-law interactions decaying faster than 1/r3 lead
to the same critical properties as short-ranged interactions.

Before we turn to the presentation of our results, we
comment on the numerical approach that we used for our inves-
tigation. We analyzed the properties of the model Hamiltonians
H and H̃ using quantum Monte Carlo (QMC) simulations. In
fact, both models are free of geometric frustration, so that
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no QMC sign problem occurs. To efficiently perform the
QMC sampling in the presence of the long-ranged interactions,
we used the stochastic series expansion QMC method for
quantum spin systems with an efficient sampling scheme
[26,27], similar to previous studies for the effective spin
model for chiral nanoribbons [19]. In particular, we simulated
finite two-leg ladder systems with the Hamiltonians H and
H̃ using periodic boundary conditions (PBCs) along the
lateral direction. To reduce the finite-size effects in the QMC
simulations and access more efficiently the behavior of the
effective spin models on large distances, we furthermore
performed an Ewald summation of the long-ranged effective
spin interactions [27]. For a given pair of spins with lateral
distance r , we thus replace the coupling constant for the finite
system with L rungs (i.e., L spins on each leg of the two-leg
ladder, and a total of N = 2L spins) by a summation over all
replica-repeated images. In particular, for the ferromagnetic
couplings in H̃ , we obtain a closed form, since the Ewald
summation leads to

JF

r2
−→

∞∑
k=−∞

JF

(r − kL)2
= JF

π2/L2

sin2
(

r π
L

) = JF

ζ (r)2
, (6)

where the closed form of the above series can be found, e.g.,
in Ref. [27], and we defined

ζ (r) = sin(r π/L)L/π. (7)

One may notice that the above closed form of the ferro-
magnetic coupling for PBCs is also usually considered in
the Haldane-Shastry model for finite chains, and in fact,
ζ (rij ) = sin(rij π/L)L/π equals the chord distance for a
periodic chain with L sites between lattice sites i and j .
In the context of conformal field theory, ζ is often called
the conformal distance (or length), and we will also use this
notation further below. For the couplings in the Hamiltonian
H , we also performed a corresponding Ewald summation, for
which, however, we do not obtain a closed form, and instead
performed the summation numerically.

In the following section, we present our results from QMC
simulations of both model Hamiltonians. Since our QMC
method is a finite-temperature scheme, we monitor the behav-
ior of various physical quantities in the low-temperature region
in order to extract the ground-state behavior, considering
system sizes with typically 20 000 and in some cases up to
32 000 quantum spin-half sites. Furthermore, we use units in
the following such that the nearest-neighbor ferromagnetic
intraleg coupling is set equal to 1, i.e., J F(r = 1) = 1 for H

and JF = 1 for H̃ , respectively. In addition, we use kB = 1.

III. RESULTS

In the following subsection, we show that both models
H and H̃ feature a quantum phase transition between a
gapless phase at weak interleg coupling and the gapped,
quantum disordered phase for strong interleg couplings. In
the next subsection, we then analyze the scaling behavior
at the quantum critical point, focusing on the more genuine
Hamiltonian H̃ , and we compare our results to recent RG
calculations on related quantum systems.

A. Quantum phase transition

In the absence of any interleg coupling, both models con-
sist of two decoupled ferromagnetic Haldane-Shastry chains
[28–30], and each chain has a long-range-ordered ferro-
magnetic ground state. At any finite temperature T , this
ferromagnetic order is destroyed, with a correlation length that
increases exponentially upon decreasing T . Correspondingly,
an isolated ferromagnetic Haldane-Shastry chain exhibits an
exponential divergence of the magnetic susceptibility [30]
upon lowering T . To probe the low-temperature behavior of
the magnetic correlations within each leg of the coupled-
chain systems, in the QMC simulations we measured the
corresponding single-leg susceptibility

χleg = 1

L

∫ 1/T

0
dτ 〈Mleg(τ )Mleg(0)〉, (8)

where Mleg = ∑
i S

z
i,μ denotes the total magnetic moment of

the spins on one of the legs, and where μ = 1 or 2 can be chosen
equally well (within the QMC simulations, we average over
both cases in order to improve the statistics). The above Kubo
integral quantifies the fluctuations of the single leg’s magnetic
moment, with τ denoting the imaginary-time evolution. Here,
we employ the SU(2) symmetry of the quantum spin Hamilto-
nian in order to evaluate the magnetic correlations directly
in the computational (Sz) basis. Physically, χleg quantifies
the linear response in the leg’s magnetic moment Mleg upon
applying a uniform magnetic field along a single leg of the
ladder.

The overall magnetic response of the two-leg ladder models
is obtained from the uniform susceptibility

χuni = 1

N

∫ 1/T

0
dτ 〈M(τ )M(0)〉 = 1

T N
〈M2〉, (9)

in terms of the fluctuations in the total system’s (N = 2L)
magnetic moment M = ∑

i,μ Sz
i,μ. Note that while M com-

mutes with both Hamiltonians, this is not the case for Mleg at
any finite interleg coupling. In physical terms, χuni quantifies
the linear response in the total magnetic moment M upon
applying a uniform magnetic field to all the spins of the system.

In addition to the above quantities, one may also consider
the overall system’s staggered susceptibility

χstag = 1

N

∫ 1/T

0
dτ 〈Mstag(τ )Mstag(0)〉, (10)

where Mstag = ∑
i(S

z
i,1 − Sz

i,2). However, since χstag =
2χleg − χuni, and (as we will also find from explicit calcu-
lations) χleg � χuni at low temperatures due to the antiferro-
magnetic interleg coupling, χstag essentially probes the intraleg
ferromagnetic response, which χleg accesses more directly.
From the point of view of the edge magnetism, χleg, probing
for ferromagnetic correlations within a single leg, may also
appear to be the more natural quantity to consider.

We first consider the evolution of these quantities upon
varying the parameter g for the Hamiltonian H̃ . The left
panel of Fig. 2 shows the low-temperature behavior of the
single-leg susceptibility χleg for a system with L = 8000 and
for different values of g in a region, where we observe a strong
qualitative change in the low-T behavior. Namely, for values
of g < 1.95, the single-leg susceptibility develops a strong
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FIG. 2. Temperature dependence of the single-leg susceptibility
χleg of the Hamiltonian H̃ for different values of g and for L = 8000
(left panel), and for different values of L at fixed g = 1.94 (upper
right panel) and g = 2 (lower right panel).

divergence upon lowering T , similar to the case of an isolated
ferromagnetic Haldane-Shastry model, while for values of
g > 1.96 this divergence is suppressed at low temperatures, and
χleg instead tends to a finite value for T → 0. An exponential
divergence of the magnetic susceptibility, such as that obtained
for a single ferromagnetic Haldane-Shastry chain, is affected
by finite-size effects in QMC simulations [34], so that in the
low-temperature region, one needs to carefully monitor the
behavior of the susceptibility upon varying the system size.
This is shown for the two cases of g = 1.94 and 2 in the two
right panels of Fig. 2. We find that for g = 2, the finite-size data
show a convergent saturation in the low-temperature value of
χleg, while the data for g = 1.94 show a steady increase upon
increasing the system size. This rather drastic change in the
low-temperature behavior of the single-leg response function
upon a weak variation of the coupling ratio g by only a few
percent is indicative of a quantum phase transition of the model
within this parameter region.

We obtain further indication of a change in the ground-state
properties from analyzing the uniform magnetic susceptibility
χuni, for which our QMC results are shown in Fig. 3. From
the temperature dependence of χuni, shown in the left panel of
Fig. 3, we find for values of g < 1.95 a leading linear behavior

FIG. 3. Temperature dependence of the uniform susceptibility
χuni of the Hamiltonian H̃ for different values of g and for L = 8000
(left panel), and for different values of L at fixed g = 1.94 (upper
right panel) and g = 2 (lower right panel).

FIG. 4. Intraleg spin correlations C(r) as a function of the
conformal distance ζ (r) = sin(r π/L)L/π for the Hamiltonian H̃

and for different values of g and for L = 8000 at T = 0.0056. The
dashed line indicates a scaling proportional to ζ−1/2 near the quantum
critical point.

that extrapolates to finite ground-state values. The sudden
drop of χuni that sets in at very low temperatures is in fact
a finite-size effect, as can be seen from a detailed view of the
low-T behavior of χuni for different system sizes in the upper
right panel of Fig. 3 for g = 1.94. In contrast, for g > 1.96,
the low-temperature data show a strong suppression of the
magnetic response χuni, which becomes more pronounced
upon increasing the system size; cf. the lower right panel for
g = 2. The finite-size effects for g = 1.94 (upper right panel)
can also be distinguished from the low-T suppression of χuni

for g = 2 (lower right panel) by a different curvature in the
temperature dependence. Hence, similarly to the single-leg
susceptibility, the uniform susceptibility exhibits a strong,
qualitative change in the system’s behavior in the vicinity of
g ≈ 1.955. Moreover, the vanishing uniform susceptibility for
g � 1.955 indicates the presence of a finite spin excitation
gap 	. In the next subsection, we will quantify the spin gap
by extracting it from the low-temperature data for χuni, and
we will also compare its dependence on the coupling ratio to
predictions from scaling theory.

The above analysis of the thermodynamic response func-
tions provides a strong indication of the presence of a quantum
phase transition in the system described by H̃ . To relate this
observation more directly to the spin correlations within the
legs of the coupled two-leg ladder system, we examine the
correlation function

C(rij ) = 〈
Sz

i,μSz
j,μ

〉
(11)

within a single leg (μ = 1 or 2), which is shown as being
obtained from QMC simulations on an L = 8000 system at a
low temperature of T = 0.0056, and for different values of g

within the transition region in Fig. 4. Here, we furthermore use
the conformal distance ζ (r) = sin(r π/L)L/π to quantify the
lateral separation between the spins. We find again a qualitative
change of the large-distance behavior of C(r) at g ≈ 1.955.
For smaller values of g, the correlation function has a different
curvature from the data for g > 1.955, which furthermore
shows a strong suppression at large r . Moreover, the data for
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FIG. 5. Temperature dependence of the single-leg susceptibility
χleg of the Hamiltonian H for different values of λ and for L = 8000
(left panel), and for different values of L at fixed λ = 3 (upper right
panel) and λ = 4.6 (lower right panel).

g = 1.955 compare well to an algebraic decay proportional
to ζ−1/2, indicated by the dashed line in Fig. 4. Such an
algebraic scaling behavior of the finite system’s correlation
function in terms of the conformal distance is characteristic of
the decay of the correlation function at a quantum critical point,
with an emerging conformal invariance in (1 + 1)-dimensional
quantum systems. Note also that this slow algebraic decay
is distinct from the asymptotic 1/r2 decay in the large-g
region, which stems from the explicit ferromagnetic couplings
decaying as 1/r2.

Summarizing these results, we have obtained an indica-
tion from both two-point correlation functions and global
quantities that the Hamiltonian H̃ exhibits a quantum phase
transition at g ≈ 1.955 between a low-g gapless phase with
long-ranged ferromagnetic correlations along each leg, and
a large-g quantum disordered region with a finite spin
excitation gap. Furthermore, an approximately algebraic decay
of the correlation function is indicative of a quantum critical
point, separating the two different phases. In the following
subsection, we will confirm this basic observation by studying
the properties of this quantum critical point within a more
detailed finite-size scaling analysis.

Before we turn to this scaling analysis of the quantum
critical point, we show that a similar behavior is also obtained
for the Hamiltonian H , for which the interleg interactions
have an extended 1/r4 decay, instead of the nearest-neighbor
interleg coupling in H̃ . In Figs. 5 and 6, we show our QMC
results for χleg and χuni for the model Hamiltonian H . Indeed,
we find a clear indication of a qualitative change in the
system’s properties upon increasing λ, and we estimate a
critical coupling ratio of λc ≈ 3.4. This value is consistent
with the large distance behavior of the correlation function
C(r), shown in Fig. 7, which indicates a quantum critical point
located at λc ≈ 3.425. This plot also contains the correlation
function C(r) for λ = 1, and the corresponding data for the
susceptibilities are shown in Fig. 8. The original effective
spin-ladder model H for λ = 1 is thus localized well within the
weak-coupling gapless phase with long-ranged ferromagnetic
alignment along each leg stabilized in the ground state.

FIG. 6. Temperature dependence of the uniform susceptibility
χuni of the Hamiltonian H for different values of λ and for L = 8000
(left panel), and for different values of L at fixed λ = 2.05 (upper
right panel) and λ = 2.1 (lower right panel).

B. Quantum critical properties

To further examine the quantum phase transition in the
effective quantum spin models, we analyze in this subsection
its critical scaling properties, focusing for this purpose on
the more genuine case of Hamiltonian H̃ . It is convenient
to first summarize some of the main findings from several
recent RG studies of the quantum critical properties of related
one-dimensional quantum systems with an O(3) symmetry
in the presence of long-ranged interaction [31–33]. Some of
these papers also consider the more general case of an O(n)
symmetric interaction [31,33], while Ref. [32] focuses on the
case of n = 1, which is relevant, e.g., for the quantum Ising
model.

For a quantum system in 1+1 dimensions, with a spatially
long-ranged interaction that decays proportional to 1/r1+σ

with the spatial distance r , such as an n-component quantum
rotor model, the long-ranged nature of the interactions is
important in order to stabilize a nontrivial transition. For
example, short-ranged interacting quantum rotor models do

FIG. 7. Intraleg spin correlations C(r) as a function of the
conformal distance ζ (r) = sin(r π/L)L/π for the Hamiltonian H

and for different values of λ and for L = 8000 at T = 0.0056. The
dashed line indicates a scaling proportional to ζ−1/2 near the quantum
critical point.
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FIG. 8. Temperature dependence of the uniform susceptibility
χuni (main panel) and the single-leg susceptibility χleg (inset) of the
Hamiltonian H for λ = 1 for different values of L.

not exhibit quantum phase transitions for n > 2 in 1+1
dimensions [31,35]. Of particular interest in the current
discussion is the case σ = 1, n = 3. In the relevant region of σ

(for 2/3 < σ < 2), the critical exponents at the quantum phase
transition differ from the mean-field values due to the effects
of quantum fluctuations, and they have been approximately
obtained as expansions in ε = 3σ/2 − d [31,32]. Here, d

denotes the spatial dimension, and 3σ/2 is indeed the upper
critical dimension. In particular, within the ε expansion,
Ref. [31] obtains from a one-loop calculation the result

ν = 1

σ
+ n + 2

n + 8
ε + O(ε2) (12)

for the critical exponent ν, which characterizes the divergence
of the order parameter correlation length. Another recent work
[32] reports 1/ν = σ − ε

3 + O(ε2) for the special case of n =
1. This is in accord with the above result for σ = 1, the case
of interest here, but differs from it in the general case (cf.
Ref. [32] for further discussion). From Eq. (12), we thus obtain
an estimate of ν ≈ 1.227 for σ = 1 and n = 3. Reference [32]
furthermore reports a two-loop order result for the dynamical
critical exponent z for σ = 1, d < 2 in the O(n) case,

z = 1

2
+ (n + 2)(12 − π2)

16(n + 8)2
ε̃2 + O(ε̃3), (13)

where ε̃ = 2 − d, based on earlier RG calculations [36]. For
the case of interest here (d = 1 and n = 3), this provides
an estimate of z ≈ 0.505. This value is also consistent with
the RG results in Ref. [33]. It may be worthwhile to point
out that within mean-field theory, a value of zMF = σ/2 < 1
results for σ < 2, already reflecting the fact that due to the
long-ranged nature of the spatial interactions, correlations
in the temporal direction are weaker than in the spatial
direction (in contrast to a dynamical critical exponent of 1,
which is obtained for many quantum critical spin models with
only short-ranged interactions) [31]. For σ = 1, this gives a
mean-field value of zMF = 1/2. With respect to the anomalous
exponent η that characterizes the spatial decay of the order
parameter correlation function G(r) at the quantum critical
point, different definitions are used in the literature. Here, we

follow the standard notation, with

G(r) ∝ 1/rd+z−2+η (14)

at criticality [35]. According to Refs. [31,33], the value of
η in the relevant region of σ for our study is fixed to η =
2 − σ , so that for d = σ = 1 we obtain G(r) ∝ 1/rz. Again,
for d = σ = 1, this form agrees with the findings in Ref. [32]
(in their convention, G(r) ∝ 1/rd−1+η and they obtain the
relation η = z for σ = 1 and n = 1). Another useful result
reported in Refs. [31,32] for the case σ = 1 of interest here is
the relation

γ /ν = 1 (15)

between ν and the order parameter susceptibility exponent
γ , which we can access in our model by the single-leg
susceptibility χleg. Combined with the value of η = 2 − σ ,
this relation follows from the general scaling relation γ =
ν(2 − η). In the following, we compare these RG results to our
QMC estimates of the critical exponents, based on a finite-size
scaling analysis of the numerical data.

For this purpose, we first briefly review the general
finite-size scaling theory near a quantum critical point. In
particular, for a quantity A that in the thermodynamic limit
at T = 0 scales as A ∝ δgφA with the relative deviation
δg = |g − gc|/gc from the quantum critical point at gc, the
corresponding finite-size scaling form in the critical regime
reads

A(L,T ,g) ∝ L−φA/ν FA(δg L1/ν,T Lz), (16)

in terms of a scaling function FA. To probe the critical
properties near gc based on finite-temperature simulations,
one performs low-temperature simulations for different system
sizes L, scaling the inverse temperature 1/T ∝ Lz. One can
then perform the scaling analysis in terms of a single scaling
variable, since the second argument, T Lz, of FA then takes on a
constant value. Based on the above estimate for the dynamical
critical exponent z, we set the simulation temperature to
T = TL, where TL scales as 1/TL = 2Lz in order to reach
the quantum critical scaling regime near gc (below we also
determine an estimate of z that compares well to the RG
predictions). From Eq. (16), we see that the rescaled data
sets of A(L,TL,g)LφA/ν for different system sizes L, when
plotted as functions of g, exhibit a crossing point at g = gc.
Furthermore, one obtains a data collapse upon plotting the
rescaled values of A(L,TL,g)LφA/ν for different system sizes
as functions of δg L1/ν for g near gc. These standard analysis
techniques will now be used in order to estimate gc as well as
the critical exponents for the Hamiltonian H̃ in the following.

In our system, the order parameter quantifies the ferromag-
netic alignment within each single leg, and the corresponding
susceptibility is given in terms of the single-leg susceptibility
χleg, which we examined already in the previous section. Here,
we consider in more detail its finite-size scaling. Using the RG
prediction of γ /ν = 1, we indeed observe a crossing point in
a plot of the rescaled finite-size data χleg/L

γ/ν as a function
of g, cf. Fig. 9. We observe a sharp crossing of the finite-size
data for sufficiently large values of L � 500. Only the data for
the smallest shown system size, L = 100, exhibit the presence
of further corrections to scaling. This crossing plot allows us
to obtain a refined value of gc ≈ 1.9536. Furthermore, from
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FIG. 9. Crossing point analysis of the single-leg susceptibility χleg.

a corresponding data collapse plot of the data for L > 1000,
we obtain the estimates gc = 1.9536(2) and ν = 1.46(2); cf.
Fig. 10. In agreement with the above RG-based estimate
(ν ≈ 1.227), our result for ν is larger than the mean-field
value [31] νMF = 1 for σ = 1. Our numerical value for ν

extends beyond the RG-based estimate, which, however, was
extrapolated from only the linear-order expression in ε. It
would of course be valuable to have more accurate RG
analytical estimates for ν to compare with.

To directly access the long-distance intraleg correlations,
we measured in the QMC simulations the correlations between
spins on the same leg at the largest accessible distances (under
PBC) for a given system length L. By averaging over the
values of the correlations at l distances around the maximum
distance L/2 for a given lattice size L, we obtain a better
statistics on this quantity, which we denote by CL/2, and
where we used a value of l = 0.01L. Based on Eq. (14) with
d = 1, at criticality CL/2 scales as 1/Lz+η−1 with the system
size L. A corresponding data collapse plot, using our above
estimate of ν, is shown in Fig. 11, and it allows us to infer
a value of z + η = 1.506(7) and a value of gc = 1.9536(1),
which matches well with the above estimate. Furthermore,
we observe a corresponding crossing point in the rescaled
data, cf. Fig. 12. When combined with the relation η = 2 − σ ,
we obtain from this analysis a value of z = 0.506(7). Note
that this result is also in accord with the overall algebraic

FIG. 10. Data-collapse plot for the single-leg susceptibility χleg.

FIG. 11. Data-collapse plot for the long-distance correlations CL/2.

decay of C(r) near the quantum critical point observed in
Fig. 4.

We can furthermore obtain a separate estimate of the dy-
namical critical exponent z by performing finite-temperature
simulations within the quantum critical region top g = gc.
This is particularly convenient since we actually use a
finite-temperature QMC simulation method. In particular, we
consider for this purpose the Binder ratio for the single-leg
magnetic moment,

B = 〈(Mleg)4〉
〈(Mleg)2〉2

. (17)

For finite temperatures within the quantum critical region atop
the quantum critical point, this dimensionless quantify (φB =
0) scales as

B(L,T ,gc) = FB(T Lz), (18)

so that a corresponding data collapse plot allows us to estimate
the value of z given our above estimate for gc. Such a collapse
plot for the Binder ratio is shown in Fig. 13, and we obtain
from this an estimate of z = 0.518(2), which agrees with the
above value given the statistical uncertainty.

Finally, we examine the scaling of the spin excitation gap 	

in the quantum-disordered phase close to the quantum critical

FIG. 12. Crossing point analysis of the long-distance correlations
CL/2.
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FIG. 13. Data-collapse plot for the Binder ratio B from simula-
tions at finite temperatures atop the estimated quantum critical point.

point. We obtain an estimate for 	 from a fit of the low-
temperature susceptibility χuni to the leading low-T expression
for an activated behavior, χuni ∼ e−	/T . We performed a linear
regression of the corresponding linear temperature dependence
of −T ln χuni, using the data for χuni for T < 0.02, in order
to estimate 	 for values of g close to gc. This procedure is
shown in the inset of Fig. 14, based on the L = 8000 data.
Furthermore, near the quantum critical point, the spin gap is
expected to scale as

	 ∝ (g − gc)zν . (19)

In the main panel of Fig. 14, we show our results for 	

in the vicinity of the quantum critical point, along with a
fit to this scaling form, based on a value of zν ≈ 0.739, as
extracted from our above estimates for the two involved critical

FIG. 14. Softening of the spin excitation gap 	 in the quantum
disordered region near the quantum critical point. Circles are QMC
estimates of the 	, and the solid line is a fit to the quantum critical
scaling form, 	 ∝ (g − gc)zν , with zν = 0.739, and gc = 1.9536
(indicated by the dashed line). The inset shows the low-temperature
behavior of the uniform susceptibility χuni for the L = 8000 system
along with linear extrapolations (dashed lines) for temperatures
T < 0.02 in order to extract the gap 	 as the extrapolated value
of −T ln χuni at T = 0.

exponents. The scaling form fits the numerically estimated g

dependence of the gap rather well. The weakly larger value
of 	 extracted for the point closest to gc, as compared to the
scaling form, indicates finite-size corrections near criticality.
These are anticipated, however, given that our QMC estimates
for 	 are based on finite-system (L = 8000) data. Overall, our
numerical analysis thus confirms the presence of a quantum
critical point with an emerging scaling behavior for the
effective spin model H̃ , separating a gapless low-g phase from
the gapped large-g quantum disordered regime.

IV. DISCUSSION

In the preceding section we observed, based on quantum
Monte Carlo simulations combined with a finite-size scaling
analysis, that both of the effective spin-ladder models that
we considered here exhibit a quantum phase transition be-
tween a gapless, weak interleg coupling regime with a finite
ferromagnetic polarization within each leg, and a gapped,
strong interleg coupling quantum disordered phase. While
the regime of strong interleg coupling is dominated by the
formation of rung-based singlets, similar to the two-leg ladder
with short-ranged interactions [23–25], the weak-coupling
phase is in fact more appropriately understood in terms of
two antiferromagnetically coupled superspins, each forming
along one of the legs. In this sense, the basic picture of edge
magnetism in graphene nanoribbons is apparently appropriate
for the effective quantum spin model in the relevant parameter
region for sufficiently wide zigzag nanoribbons. Note that due
to the bipartite nature of the coupling geometry, Marshall’s
theorem implies that for any finite ladder (i.e., finite L), the
ground state is a global spin singlet (S = 0) [37,38]. This
corresponds to the fact that for any finite (zigzag) nanoribbon,
the ground state within the Hubbard model description is a
singlet due to Lieb’s theorem [39].

There are thus two distinct phases in the thermodynamic
limit, which are both in accord with the singlet nature of the
finite-system ground state. The situation in the effective spin-
ladder model is in fact closely related to more familiar cases
such as, e.g., the Heisenberg model on the square lattice bilayer
[40–46]: there, the system realizes a quantum disordered
phase for strong interlayer coupling, and an antiferromagnetic
phase with finite sublattice polarizations for weak interlayer
coupling. However, and in contrast to the bilayer case, (i)
the two polarized sublattices of the effective ladder systems
considered here are well separated from each other in real
space, and (ii) direct, long-ranged ferromagnetic intraleg
couplings are required in order to stabilize the weak-coupling
phase, given the reduced dimensionality of the effective
spin-ladder systems.

We found that the coupling parameters of the effective spin-
ladder model derived from the Hubbard model description
for the width W = 10 zigzag nanoribbon [20,21] are located
in the corresponding effective quantum spin model well within
the weak-coupling region. The quantum disordered region is
reached only upon artificially enhancing the interleg coupling
beyond the quantum critical coupling strength. For even
wider nanoribbons, the antiferromagnetic interleg couplings
of the effective ladder model will be further reduced [20,21],
so that also for such nanoribbons the effective spin model
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FIG. 15. Temperature dependence of the single-leg susceptibility
χleg (main panel) and the uniform susceptibility χuni (inset) of the
effective quantum spin model for a W = 6 zigzag nanoribbon at
U = t for different values of L.

resides within the weak-coupling regime. This is in contrast
to the previously considered case of chiral nanoribbons, for
which the effective spin models had a quantum disordered,
spin-gapped ground state [19]. One may ask whether instead
the ground states of the spin-ladder models for narrower
zigzag nanoribbons, with W < 10, for which the antiferro-
magnetic interleg coupling is indeed larger, reside within
the gapped, quantum disordered regime. In fact, previous
numerical studies of the extremely narrow W = 2 zigzag
nanoribbon, performed directly within the Hubbard model
description, clearly identified a gapped quantum disordered
ground state [15,16]. Motivated by the observation of a
quantum phase transition in the effective spin models for the
W = 10 nanoribbon, we performed quantum Monte Carlo
simulations also for the effective spin-ladder model for a
W = 6 zigzag nanoribbon (again for U = t), even though
such a ribbon may already be too narrow for the effective
spin model derivation to still be applicable [21]. For the result-
ing effective spin-ladder model for the W = 6 nanoribbon,
we obtain a ratio of J AF(r = 0)/JF = 6.141 between the
nearest-neighbor antiferromagnetic interleg coupling and the
long-ranged ferromagnetic intraleg tail, which is significantly
larger than the corresponding ratio of 1.95 for the W = 10
nanoribbon. Figure 15 shows the temperature dependence of
both the uniform susceptibility and the single-leg susceptibility
of the effective spin-ladder model for the W = 6 nanoribbon
as obtained from the QMC simulations, exhibiting that this

effective spin-ladder model indeed has a gapped, quantum
disordered ground state. From the temperature dependence
of the uniform susceptibility, we estimate a corresponding
spin gap of 	 ≈ 0.3 J F(1) = 0.014t , in terms of the Hubbard
model hopping strength (we also considered explicitly the case
of W = 8, for which we find the ground state to be located
within the gapless, weak-coupling region). Even though the
truncated effective spin model derivation will be less accurate
for such a narrow ribbon, the above result shows that indeed
both phases may in principle be accessed in effective spin-
ladder models for zigzag graphene nanoribbons.

Anticipating the fact that the effective quantum spin models
describe the correlations among the edge magnetic moments
in graphene nanoribbons within a controlled but nevertheless
approximate framework, we are not in a position to discern,
based on our findings, whether edge magnetism is indeed
stabilized in wide graphene zigzag nanoribbons, at least in
the ground state. For this purpose, various additional effects
may also have to be considered, such as electronic interactions
beyond the local Hubbard repulsion [10], extended hopping
terms in the kinetic energy, as well as exchange anisotropies
deriving, e.g., from graphene-to-substrate couplings [47]. The
above findings nevertheless represent a plausible scenario
for stable edge magnetism on wider zigzag nanoribbons,
at least within the effective spin model for the most basic
Hubbard model description. It would be worthwhile to extend
beyond our investigation toward analyzing also the low-energy
spin dynamics and its evolution across the quantum phase
transition, which is feasible, e.g., with quantum Monte Carlo
methods. Moreover, the real-time out-of-equilibrium behavior
of such effective spin models with long-ranged interactions
can be probed in order to examine the quantum nature of the
spin response, and the evolution of the relevant time scales of
the magnetic fluctuations [19] both within the weak-coupling
regime as well as upon crossing the quantum critical point.
Such a study could be performed using advanced numerical
methods for quantum systems with long-ranged interactions
[48], and this is also left for future investigations.
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