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Magnetic oscillations measure interlayer coupling in cuprate superconductors
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The magnetic oscillations in YBCO high-temperature superconductors have been widely studied over the last
decade and consist of three equidistant low frequencies with a central frequency several times more intense
than its two shoulders. This remains a puzzle in spite of numerous attempts to explain the corresponding small
Fermi-surface pockets. Furthermore, the ARPES data indicate only four Fermi arcs with bilayer splitting, and
show no sign of such small areas in the Fermi surface. Here we argue that the magnetic oscillations measured
in underdoped bilayer high-temperature superconductors, in particular YBa2Cu3O6+δ , provide a measure of the
interplanar electronic coupling rather than the areas of fine-grain reconstruction of the Fermi surfaces coming
from induced charge density waves. This identification is based on the relative intensities of the different
peaks, as well as their angular dependence, which points to an effective Fermi surface that is larger than
the oscillation frequencies, and is compatible with several indications from ARPES. The dominance of such
frequencies with respect to the fundamental frequencies from the Fermi surface is natural for a strongly correlated
quasi-two-dimensional electronic system where nonlinear mixings of frequencies are more resistant to sample
inhomogeneity.

DOI: 10.1103/PhysRevB.96.165110

I. INTRODUCTION

Magnetic quantum oscillations (MQO) is a traditional and
powerful tool to study the electronic structure of various
metals [1–3]. The first observation of MQO in cuprate high-
temperature superconductors about a decade ago [4] was rather
a surprise given that these are normally taken as indicating a
Fermi surface of a normal metallic state. Since then, MQO have
been used extensively to investigate the electronic structure in
cuprates, both hole-doped [5–8] and electron-doped [9–12]
as well as in various Fe-based superconductors [13–19].
Probably the most striking data are for the underdoped yttrium
barium copper oxide (YBCO) compounds YBa2Cu3O6+δ

([4,20–27], reviewed in Refs. [5–8], where there is one
prominent oscillation peak at frequency Fα ≈ 530T with two
smaller shoulders at F± = Fα ± �Fα , where �Fα ≈ 90T . All
three frequencies in YBCO are much smaller than expected
from closed pockets of any Fermi surface, seen, for example,
from ARPES experiments [28,29].

The completely unreconstructed Fermi surface of YBCO
would consist of one large pocket, almost a square with
smoothed corners, filling about one half of the Brillouin zone
and corresponding to a large frequency ∼104 tesla. Fermi-
surface reconstruction, possibly caused by the pseudogap,
AFM or CDW order, takes place for doping level p < 15%,
resulting in four Fermi arcs, as suggested by ARPES [28,29]
and schematically shown in Fig. 1(b). The scattering by the
AFM wave vector Q = (π/a,π/b), connecting the ends of
Fermi arcs, forms closed FS pockets of area about 6% of
the Brillouin zone, corresponding to MQO frequency about
1.6 kT. The observed magnetic oscillation frequency Fα ≈
530T corresponds to a Fermi-surface cross-section of only 2%
of the Brillouin zone, much less than the size of the pockets

suggested by ARPES, without entering into considerations
such as whether the “Fermi arcs” can actually be closed.
Thus there is a clear inconsistency between the ARPES and
MQO experimental data. An unusual alternative source of
oscillations was proposed in terms of Andreev-type bound
states [30], but the predicted change in oscillation frequencies
with superconducting gap contradicts experiment.

The situation has been complicated by the subsequent
evidence of at least fluctuating and short-range charge order
in low fields by x-ray scattering [31–34], nuclear magnetic
resonance [35,36], and sound velocity measurements [37].
In the high magnetic fields corresponding to the range
where magnetic oscillations are observed, superconductivity
is gradually suppressed and charge density wave coherence is
stabilized [34]. The measured Hall and Seebeck coefficients
[38–40], treated by the simplified theory without taking into ac-
count magnetic breakdown, strong electronic correlations and
the superconducting flux flow contribution, support additional
Fermi-surface reconstruction. Thus it is tempting, but we argue
misleading, to attempt to explain the observed low-frequency
magnetic oscillations by the appearance of new Fermi surface
pockets coming from reconstruction of the larger Fermi
surfaces by charge density wave order. Different attempts in
this direction vary in details such as inclusion of spin-orbit or
Zeeman splittings [41–45], but it is hard to explain the observed
three-peak frequency pattern of quantum oscillations without
predicting additional frequencies of similar amplitudes from
the charge order. Note that a frequency pattern somewhat
similar to that of YBa2Cu3O6+δ is observed in the closely
related stoichiometric compound YBa2Cu4O8 [46–48], where
there is no indication of a static superstructure. Furthermore,
if very small Fermi-surface pockets really are the origin of
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FIG. 1. The bilayer crystal structure and Fermi surface of YBCO.
(a) The crystal structure in YBCO, producing the bilayer splitting to
bonding (B) and antibonding (AB) electron states and Fermi-surface
parts. (b) The schematically shown in-plane Fermi surface (FS) in
YBCO, seen by ARPES and without fine-grained reconstruction.
The solid green lines show Fermi arcs of bonding FS, and the red
lines show the antibonding FS. The dashed lines show the FS parts
shifted by the vector Q = (π/a,π/b). The dashed and solid lines
together form two closed FS pockets, corresponding to bonding and
antibonding states and responsible for the Fβ ∼ 1.6kT frequency,
about 6% of the Brillouin zone. The most prominent Fα frequency
∼2% of Brillouin zone corresponds to double the difference between
green and red FS pockets, i.e., between B and AB FS pockets,
the area shaded in purple. (c) The illustration of a quasi-2D Fermi
surface with interlayer warping due to 2tz and double bilayer splitting
due to 2t⊥.

the observed Fα , F+, and F− frequencies, they should depend
strongly on doping [49], which does not seem to be the case;
for instance, Fα changes by only 10% when the doping p

almost doubles, from 0.09 to 0.14 [50].
In this paper, we argue that the magnetic oscillations in

these underdoped bilayer high-temperature superconductors
in fact provide a measure of the interplanar electronic coupling
and do not, contrary to widespread belief, correspond to areas
of fine-grain reconstruction of the Fermi surfaces coming
from induced charge density waves. This identification is
based on the relative intensities of the different peaks, as
well as their angular dependence, which points to an effective
Fermi surface that is larger than the oscillation frequencies,
and is compatible with indications from ARPES as to the
fundamental frequency as well as the bilayer splitting. The
dominance of such frequencies with respect to the standard
frequencies from the Fermi surface, whose current observation
is still somewhat controversial, is natural because the nonlinear
mixings of frequencies better survive sample inhomogeneity,
as we show in detail below.

II. MAGNETIC OSCILLATION PRODUCED BY
INTERLAYER HOPPING

A. Qualitative idea

A clue to the origin of the observed tiny MQO frequencies
comes from what are called “slow oscillations” (SlO) in
organic superconductors [51]. In these quasi-two-dimensional
compounds, oscillations can be clearly attributed, after no little
debate, not to new small pockets of the Fermi surface, but to the
mixing of two close frequencies Fβ ± �F , where only
the Fβ frequency corresponds to a Fermi-surface area and
the frequency splitting �F is due to Fermi-surface warping,
whose origin is the interlayer electron transfer integral tz
[51]. Magnetoresistance (MR) oscillations with a much lower
beat frequency Fslow = 2�F = 4tzB/h̄ωc then arise. What
is surprising at first sight is that the amplitude of such
emergent slow oscillations is much higher than those of the
oscillations with the original frequencies Fβ ± �F , because
they are damped neither by temperature nor by long-range
disorder (spatial inhomogeneity, leading to variations of EF

along the sample on the scale much larger than magnetic
length) [51,52] (see Sec. II D below). Even in high-quality
monocrystals of organic metals such long-range disorder has
been shown to make the major contribution to the Dingle
temperature [51]. In the notoriously inhomogeneous cuprates,
such disorder is undoubtedly much stronger, and magnetic
oscillations from closed pockets should be even more strongly
damped compared to the beat frequencies.

To pursue this basic idea, we here extend the theory
developed for the organics to include interplanar couplings
from the underlying bilayer structure of YBCO, illustrated in
Fig. 1. The richer structure that emerges will, in fact, give a
much clearer indication of the origin of the low-frequency
oscillations. In a bilayer structure, there are two types of
interlayer hopping: (i) between adjacent layers separated by
distance d within one bilayer, given by the transfer integral
t⊥ = t⊥(k‖), and (ii) between adjacent equivalent bilayers
separated by distance h, given by the transfer integral tz =
tz(k‖), where k‖ is the intralayer momentum. The resulting
electron energy spectrum is given by [42]

ε±(kz,k‖) = ε‖(k‖) ±
√

t2
z + t2

⊥ + 2tzt⊥ cos[kz(h + d)].

(1)

This electron energy spectrum has, for tz � t⊥, bonding and
antibonding states each with weak kz dispersion and separated
by ∼2t⊥(k‖):

ε±(kz,k‖) ≈ ε‖(k‖) ± t⊥(k‖) ± 2tz(k‖) cos[kz(h + d)]. (2)

The corresponding in-plane Fermi surface, shown schemat-
ically in Fig. 1(b), contains four splitted Fermi arcs shown
by green lines for bonding and by red lines for antibonding
states, in agreement with ARPES data [28,29]. The dashed
lines in Fig. 1(b) denote the Fermi arcs shifted by the vector
Q ≈ (π/a,π/b), which correspond to the reconstructed Fermi
surface due to scattering by AFM or pseudogap ordering.
These dashed lines together with solid lines form two closed
Fermi-surface pockets of slightly different area, which may
produce MQO. According to our proposal, the doubled
difference between the bonding (green) and antibonding (red)
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pockets gives the slow Fα ≈ 530T MQO frequency observed
in YBCO. The two side frequencies come from 3D warping
of these FS pockets, illustrated in Fig. 1(c) and originating
from interbilayer electron hopping tz, corresponding to the
last term in Eq. (2). This interpretation is supported by the
observed angular dependence of the �Fα splitting [24]. Below,
we give a more quantitative and detailed substantiation of our
interpretation.

B. Analytical formula for slow magnetoresistance oscillations

According to Eq. (2), in YBCO there should be at least two
types of splitting of the original frequencies: the larger bilayer
splitting �F⊥ = t⊥B/h̄ωc, where t⊥ = 〈t⊥(k‖)〉 	= 0 and the
angular brackets signify an averaging over in-plane momentum
k‖ on the Fermi surface, and the smaller splitting �Fc =
2tzB/h̄ωc � �F⊥ � Fβ due to the kz electron dispersion,
where we also assume tz = 〈tz(k‖)〉 	= 0. These two splittings
result in four underlying frequencies Fβ ± �F⊥ ± �Fc of
similar amplitudes. The slow oscillations in magnetoresis-
tance, which originate from these four frequencies, result
in a much richer set of frequencies than for the single-
layer structures previously considered, which had only two
Fβ ± �Fc [51,53].

The metallic conductivity along ith axis σi = σii is given
by the sum of contributions from all ungapped pockets β and
over two spin components s:

σi =
∑
β,s

σi,β,s =
∑
β,s

e2gFβDi,β . (3)

At low temperature, each pocket β contributes to the total
metallic conductivity along axis i at low temperature via
the product of a density of electron states (DoS) gF,β =
gβ(ε = EF ) and an electron diffusion coefficient Di,β . Both
contribute to oscillations, since they vary with the magnetic
field Bz perpendicular to the conducting x-y layers as [54] (see
Appendix A for a detailed derivation)

gFβ

g0β

= 1 −
∑
l=±1

2J0

(
2π

�Fc

Bz

)
cos

(
2π

Fβ − l�F⊥
Bz

)
RD,

(4)

where RD = exp (−2π2TD/h̄ωc) is the Dingle factor [55], and

Di,β

D0i,β

= 1 + Bi,β

∑
l=±1

J0

(
2π

�Fc

Bz

)

× cos

(
2πFβ − l�F⊥

Bz

)
RD. (5)

Substituting Eqs. (4) and (5) into Eq. (3) one obtains four types
of oscillating terms: (i) the first harmonics, of first order in RD

and oscillating rapidly at frequencies ∼Fβ ; (ii) the second
harmonics with amplitude ∼R2

D and frequency ∼2Fβ ; (iii)
“ultraslow” oscillations

σUSlO(Bz) ∝ J 2
0 (2π�Fc/Bz)R

2
D (6)

with frequency ∼2�Fc; and (iv) “Slow” oscillations with
frequency ∼2�F⊥:

σSlO(Bz) ∝ J 2
0

(
2π

�Fc

Bz

)
cos

(
4π

�F⊥
Bz

)
R2

D. (7)

(a)

(b)
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FIG. 2. Predicted magnetic oscillations in quasi-2D conductor
with bilayer splitting. (a) The Fourier transform of magnetic os-
cillations given by Eq. (7) at four different Dingle temperatures
πTD/h̄ωc(Bz = 1 T) = 1 (dashed black line), 3 (solid blue line),
5 (dotted red line), and 7 (dash-dotted green line). Insert shows
the initial function σSlO (1/Bz) at πTD/h̄ωc(Bz = 1 T) = 3. (b) The
Fourier transform of conductivity in Eq. (7) at TD = 0 but in the
finite field intervals 20 T < Bz < 100 T (solid black line), 20 T <

Bz < 65 T (dashed green line), 25 T < Bz < 65 T (dash-dotted blue
line), and 30 T < Bz < 65 T (dotted red line).

The Fourier transform (FT) of this magnetic-field dependence
of σSlO (Bz) is shown in Fig. 2. It closely resembles the ex-
perimental data in YBCO [5,6,24]. There are three equidistant
harmonics, and the amplitudes of the side peaks relative to the
central decrease both with the Dingle factor RD and with a
reduction of the field interval available in experiment.

C. Temperature dependence of slow magnetoresistance
oscillations

At finite temperature T , the conductivity tensor is

σ (T ) =
∫

dε [−n′
F (ε)] σ (ε), (8)

where the derivative of the Fermi distribution function n′
F (ε) =

−1/{4T cosh2 [(ε − μ)/2T ]}, and σij (ε) is the component of
the electron conductivity tensor at energy ε. Usual magnetic
oscillations come from the first-order terms in the Dingle
factor, such as gFβ(ε)/g0β , which oscillate rapidly as a function
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of energy ε:

σ1(ε)

σ0
∝ 2J0

(
4πtz

h̄ωc

)
RD

∑
±

cos

(
2π

ε ± t⊥
h̄ωc

)
, (9)

where σ0 is the nonoscillating part of conductivity. Substituting
Eq. (9) into Eq. (8) and performing the integration over ε, one
obtains the well-known result that at finite temperature the
MQO are damped by the factor

RT = (2π2kBT /h̄ωc)/ sinh(2π2kBT /h̄ωc), (10)

which gives

σ1(μ)

σ0
∝ 2J0

(
4πtz

h̄ωc

)
cos

(
2π

μ ± t⊥
h̄ωc

)
RDRT

= 2J0

(
2π�Fc

Bz

) ∑
l=±1

cos

(
2π

Fβ − l�F⊥
Bz

)
RDRT .

(11)

The slow oscillations come from the product of oscillating
quantities, such as (gFβ (ε)/g0β)2, which for the bilayer-splitted
electron dispersion in Eq. (2) in the second order in RD gives

σ2(ε) ∝ 4J 2
0

(
4πtz

h̄ωc

)
cos

(
2π

ε − t⊥
h̄ωc

)
cos

(
2π

ε + t⊥
h̄ωc

)
R2

D

= 2J 2
0

(
4πtz

h̄ωc

)[
cos

(
4πε

h̄ωc

)
+ cos

(
4πt⊥
h̄ωc

)]
R2

D.

(12)

The first term in the square brackets gives the second harmonic
of MQO, which is strongly damped by temperature by a factor
close to the square of RT in Eq. (10) similarly to the first
harmonic. The second term in the square brackets of Eq. (12),
responsible for SlO, is independent of energy. Therefore, its
integration over ε with n′

F (ε) in Eq. (8) does not produce any
temperature damping factor for SlO:

σ2(μ) ∝ J 2
0

(
4πtz

h̄ωc

)[
cos

(
4πμ

h̄ωc

)
R2

T + cos

(
4πt⊥
h̄ωc

)]
R2

D.

(13)

Thus, within this simplest model, the SlO are not damped
by temperature, as seen in the observed slow oscillations
in Refs. [51,52]. However, magnetoresistance oscillations
observed at frequency Fα ≈ 530T have some temperature
damping, corresponding to an effective mass of m� ≈ 1.6me

[22,24,56]. Such a strong temperature damping of what are
proposed by us as being slow oscillations may arise from
the square of the temperature-dependent Dingle factor RD

[57]. For noninteracting electrons, when the Dingle factor
comes only from impurity scattering, RD is almost temperature
independent. A weak electron-phonon interaction was also
predicted [58] not to violate the usual RT (T ) to the lowest-
order perturbation theory, but for YBCO at T ∼ 10 K the
electron-phonon interaction is not weak, and the result of
Ref. [58] may not apply. In addition, the electron-electron
interaction, which in cuprates is very strong, gives con-
siderable temperature dependence to RD [59], as observed
experimentally and may contribute to the measured effective
electron mass m� ≈ 1.6me. Note that the extracted effective

mass depends strongly on doping outside the doping interval
0.1 < p < 0.125 [22], and this would reflect the doping
dependence of the strength of e-e interactions.

D. Effect of macroscopic spatial inhomogeneities

The macroscopic spatial inhomogeneities affect MQO
similarly to temperature, because they smear the Fermi level
μ along the whole sample. To show explicitly, let us take the
most common Gaussian distribution of the spatially fluctuating
shift of Fermi level �μ(r), given by the normalized weight

D(�μ) = (1/
√

2πW ) exp[−(�μ)2/2W 2]. (14)

In addition to the temperature smearing in Eq. (8), given by
the integration over electron energy ε, conductivity acquires
the coordinate smearing, given by the integration over the shift
�μ(r) of chemical potential weighted by Eq. (14):

σ =
∫

dμσ (μ)D(μ − μ0 − �μ), (15)

where σ (μ) is given by the sum of first- and second-order
terms given by Eqs. (11) and (13). The first-order terms give
the MQO:

σ1

σ0
∝

∫
dμD(μ − μ0 − �μ)2J0

(
4πtz

h̄ωc

)

× cos

(
2π

μ ± t⊥
h̄ωc

)
RDRT

= 2J0

(
4πtz

h̄ωc

)
cos

(
2π

μ0 ± t⊥
h̄ωc

)
RDRT RW . (16)

Here the last damping factor,

RW = exp
( − 2π2W 2/h̄2ω2

c

)
,

comes from the spatial variations of the Fermi level. The width
W of this Gaussian distribution of Fermi level contributes
to the total Dingle temperature T tot

D ≈ T
imp
D + T inh

D , where
T inh

D ≈ W . Note that the Gaussian Fermi-level smearing leads
to the quadratic dependence of ln RW on magnetic field and
on harmonic number, which was experimentally observed in
high-quality samples of quasi-2D organic metals [60].

The second-order terms (13) after substitution to Eq. (15)
give

σ2

σ0
∝

∫
dμD(μ − μ0 − �μ)J 2

0

(
4πtz

h̄ωc

)
R2

D

×
[

cos

(
4πμ

h̄ωc

)
R2

T + cos

(
4πt⊥
h̄ωc

)]

=
[

cos

(
4πμ0

h̄ωc

)
R2

T R4
W + cos

(
4πt⊥
h̄ωc

)]
J 2

0

(
4πtz

h̄ωc

)

×R2
D. (17)

We see that the second harmonic acquires the enhanced
damping factor R4

W from the Fermi-level variations, while the
slow oscillations remain unchanged.

As a result, the fast quantum oscillations are additionally
damped by the Fermi-level variations, while the SlO are not
affected by this type of disorder [51,52]. Qualitatively, this can
be described by a complex Dingle factor Rtot

D = RDRW , or as
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a complex Dingle temperature T tot
D ≈ TD + W [51]. The first

usual part of the Dingle factor RD comes from short-range
disorder, e.g., impurities, and enters both the usual fast MQO
and SlO. The second part of the Dingle factor RW comes
from the smearing of the local Fermi level by macroscopic
long-range inhomogeneities and enters only the fast MQO.
In organic metals, the second part of the Dingle temperature
W turns out to be unexpectedly large, being more than four
times larger than the first part TD , so that T tot

D ≈ 5.3TD , as
was demonstrated from the experimental data on the field
dependence of the amplitudes of both types of magnetic os-
cillations in β-(BEDT-TTF)2IBr2 [51]. In cuprates, which are
notoriously inhomogeneous, the difference between T tot

D and
TD can be even larger. Using Eqs. (16) and (17) and neglecting
the second harmonics ∝ cos (4πμ0/h̄ωc) in Eq. (17), we can
rewrite the conductivity σ = σ1(μ) + σ2(μ) as

σ

σ0
= J0

(
4πtz

h̄ωc

) ∑
l=±1

cos

(
2π

μ + 2lt⊥
h̄ωc

)
RT RDRW

+ J 2
0

(
4πtz

h̄ωc

)
cos

(
4πt⊥
h̄ωc

)
R2

D. (18)

The first line describes usual MQO, probably Fβ frequency
in YBCO, while the second line describes SlO, i.e., Fα

and Fα ± �F frequencies in YBCO. The damping factor
RT RDRW of usual MQO is, probably, much sronger than the
damping factor R2

D of SlO, which explains why Fβ frequency
in YBCO is much weaker and more fragile than Fα and even
than Fα ± �F frequencies.

E. Angular dependence of the frequencies of slow
magnetoresistance oscillations

The angular dependence of the split frequency 2�Fc,
proportional to tz, drastically differs from that of 2�F⊥, related
to the bilayer splitting t⊥. The frequency 2�Fc ∝ tz has a
strongly nonmonotonic dependence on the tilt angle θ of the
magnetic field [51,61]:

�Fc(θ ) = �Fc(θ = 0)J0(kF c� tan θ )/ cos θ, (19)

where c� (= 11.65Å for YBCO) is the lattice constant in the
interlayer z direction, and kF is the Fermi momentum. This
angular dependence is the same as for the beat frequency of
MQO in a quasi-2D metal [51], but differs strongly from the
standard cosine dependence

F (θ ) = F (θ = 0)/ cos θ, (20)

typical for quasi-2D metals where the interplanar coupling is
so small that the Fermi surface can be considered perfectly
cylindrical. Equation (19) has an obvious geometrical inter-
pretation [62]: the slightly warped Fermi surface has two
extremal cross-sections Sext perpendicular to the magnetic
field B, which become equal, to first order in tz, at some
tilt angles θYam. In contrast, 2F⊥ has the cosine angular
dependence given by Eq. (20). To see this, consider the
dispersion in Eq. (2) at tz � t⊥, corresponding to the Fermi
surface in Fig. 1(c). The Fermi surface consists of two cylinders
along the z axis with base areas Seven and Sodd, differing by
�S = Seven − Sodd = 4πt⊥m∗ = const. In a tilted magnetic
field the two corresponding extremal cross-section areas are

Seven,odd = Seven,odd/ cos θ , leading directly to Eq. (20). Thus,
according to our interpretation, the angular dependence of
Fα frequency from bilayer splitting obeys the usual cosine
dependence given by Eq. (20), while the shift �Fα of shoulder
frequencies obeys Eq. (19) in agreement with experimental
data in Ref. [24].

III. DISCUSSION

In the previous section, we have shown that the interlayer
hopping may produce low-frequency magnetic oscillations,
given by Eq. (7) and illustrated in Fig. 2. Although these slow
oscillations contain the usual Dingle factor squared, they may
be much stronger than the usual MQO, because the latter are
strongly damped by sample inhomogeneities (see Sec. II D)
or by temperature (see Sec. II C). The Fourier transform of
these slow oscillations has a natural three-peak structure. The
amplitude of the central frequency 2�F⊥ is at least twice as
large as the amplitudes of the side frequencies 2�F⊥ ± 2�Fc,
as can be seen from pure combinatorics [63] (see Appendix B
for details). As given by Eq. (7) and shown in Fig. 2, the
amplitudes of side peaks are additionally damped by the Dingle
factor or due to the finite field range of available experimental
data. This theoretical plot closely resembles the experimental
data in YBCO [5–7,24]. We therefore propose that the
observed [4,20–27] three equidistant harmonics of magnetic
oscillations at low frequency Fα ≈ 530T in YBa2Cu3O6+δ

(and, probably, in YBa2Cu4O8 [46–48]) are not due to the
tiny pockets of the Fermi surface reconstructed by CDW order
[5–7,41–45], but originate from mixing of four frequencies
Fβ ± �F⊥ ± �Fc, formed by a fundamental frequency Fβ

split by bilayer and interbilayer electron hopping integrals t⊥
and tz. Several terms come from this frequency mixing even
in the lowest second order in Dingle factor. A half of these
terms come from various sums of fundamental frequencies
and correspond to the second harmonics of fundamental
frequencies, being much weaker than MQO with fundamental
frequencies appearing in the first order in Dingle factor. The
second half of mixed frequencies correspond to the various
differences of fundamental frequencies, which do not contain
electron energy or Fermi level but only split energies. Hence
these oscillations are robust against sample inhomogeneities,
and therefore are much more pronounced than the MQO
with fundamental frequencies. Such oscillations are respon-
sible for the observed three-peak Fourier transform. The
corresponding analytical expression is given in Eq. (7). The
frequencies Fα = 2�F⊥ ≈ 530T = 2t⊥B/h̄ωc and �Fα =
2�Fc ≈ 90T ≈ 4tzB/h̄ωc provide an experimental measure
of the values of bilayer t⊥ and interbilayer tz average electron
transfer integrals. The extracted bilayer splitting can also be
compared to ARPES data [29]. We summarize arguments for
this new interpretation:

(1) Frequency pattern. The multiple extra magnetic oscil-
lation frequencies predicted from the scenarios with Fermi
surface reconstruction are missing in experiment [5–8,41–45].
In contrast, the proposed model predicts only the three peaks
shown in Fig. 2. The only frequency with an amplitude
comparable to the side peaks at Fα ± �Fα would be even
lower: 2�Fc ∼ 90T . The corresponding analytical expression
is given in Eq. (6). Such ultraslow oscillations could be
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detected only at low magnetic field Bz < 2�Fc, where they
are strongly damped by the Dingle factor. In addition, these
ultraslow oscillations are not exactly periodic in 1/Bz, espe-
cially in high field Bz ∼ �Fc, because the zeros of the Bessel’s
function in Eq. (6) are not exactly equidistant. Nevertheless,
such low-frequency magnetic oscillations have been observed
recently [27], supporting the proposed interpretation. Our
model also predicts a much larger frequency Fβ from true
Fermi surface pockets but with much smaller amplitude
and is much stronger damped by temperature and spatial
inhomogeneities. Experimentally, the Fβ ≈ 1.65kT frequency
was indeed observed in dHvA [20] and tunnel diode oscillation
cyclotron resonance [23] measurements, but only at very low
temperatures and not in all samples [8].

(2) Agreement with ARPES. The value of the bilayer split-
ting �BS = 0.075 Å in momentum space observed by ARPES
[29] is consistent with the Fα = 2�F⊥ = 530T frequency,

corresponding to the FS area Sα = 0.0507 Å
−1 ≈ 2% SBZ.

According to our interpretation, it is the doubled shaded
area between the bonding and antibonding Fermi arcs [see
Fig. 1(b)], given by the product 4�BSlFA, where lFA ≈ 0.17Å−1

is the length of a Fermi arc. The value of the average
bilayer splitting t⊥ expected from band-structure calculations
[45,64] is also consistent with Fα [65]: t⊥ ≡ 〈t⊥(k‖)〉 =
h̄eFα/2m∗

β ≈ 8 meV. Note that the maximum value t⊥(k‖)
of bilayer transfer integral may considerably exceed this
average value t⊥. Similarly, the observed tz-induced splitting
2�Fc ≈ 90T ≈ 4tzB/h̄ωc gives a reasonable average value
2tz ≈ 1.4 meV.

(3) Doping dependence. The observed Fα ≈ 530T depends
weakly on the degree of doping [22,23,50], more consistent
with our model than expected [49] from tiny pockets in the
Fermi-surface appearing due to FS reconstruction.

(4) Damping by sample inhomogeneities. Long-range spa-
tial inhomogeneities, common in cuprates, should strongly
damp oscillations from true Fermi-surface pockets due to the
smearing of Fermi level similar to the effect of temperature
(see Secs. II C and II D). This type of disorder affects the
proposed slow oscillations much less, as shown in Sec. II D,
making their observation much easier.

(5) The angular dependencies of the observed frequen-
cies [24]. Fα and �Fα agree with Eqs. (20) and (19)
correspondingly. The observed strong angular dependence
of the split frequency �Fc(θ ) (see Fig. 4(a) in Ref. [24])
is well fit by Eq. (19), suggesting that this frequency is
indeed related to the kz electron dispersion, coming from
the interlayer transfer integral tz and giving the warping of
a larger Fermi surface. The extracted [24] first Yamaji angle
θYam ≈ 43◦ in �Fc(θ ), corresponding to the first zero of the
Bessel function J0(kF c� tan θ ), indicates the Fermi momentum
kF = 2.4/c� tan θYam = 2.2 nm−1 and a true Fermi-surface
area of about Sext ∼ πk2

F ≈ 15 nm−2. This corresponds to
an underlying quantum oscillation frequency of Sexth̄/2πe ≈
1.6kT , which is far from Fα ≈ 530T but close to the reported
value of Fβ ≈ 1.65kT [20,23]. Note that Fβ was observed only
at rather low temperatures and not in all samples [8], which is
consistent with our model, because frequencies corresponding
to real Fermi-surface pockets are stronger damped by sample-
dependent inhomogeneities and by temperature than slow
oscillations.

(6) Insensitivity to magnetic breakdown. A CDW-induced
Fermi-surface reconstruction is not necessary for the observa-
tion of SlO. Hence there are no issues to be resolved as how
a weak and fluctuating CDW ordering, with transition tem-
perature less than 40 K, overcomes the magnetic breakdown,
which should be strong for fields up to 100 T and restore the
electron orbits of unreconstructed Fermi surface.

(7) The relative amplitudes of the observed frequencies are
naturally explained without additional fitting parameters (see
Fig. 2).

Very similar magnetic oscillations have been observed
in another closely related bilayer stoichiometric high-Tc
superconductor YBa2Cu4O8 [46–48]. This compound has no
indication of a CDW order, which excludes the CDW-induced
fine-grained FS reconstruction giving small FS pockets. Hence
the proposed magnetic oscillations due to bilayer splitting
are a quite general phenomenon. Not only cuprates but also
rare-earth tritelluride compounds with bilayer crystal structure
show similar slow oscillations [53] originating from bilayer
splitting, but the three-peak structure is not resolved there
because of a very small value of tz. Similar slow oscillations
with a frequency ≈840T (but without side-frequency split-
ting), corresponding to 3% of the Brillouin zone, have been
observed in HgBa2CuO4+δ , where there is no bilayer splitting,
but a much larger tz is expected from the shorter interlayer
distance. It is as yet unclear whether this frequency has the
same origin, coming from tz, spin-orbit, magnetic or some
other type of splitting. Therefore a more detailed study of these
magnetic oscillations, as well as the further theoretical study of
this effect taking into account various types of electron-band
splitting is need.

To summarize, we propose and analyze a new interpretation
of the observed magnetic oscillations in YBa2Cu3O6+δ high-Tc

superconductors, with frequencies Fα ≈ 530T and Fα ± �Fα

related to the bilayer splitting and tz-dispersion rather than
to tiny Fermi-surface pockets. This is based on the new
result (7), as illustrated in Fig. 2. The frequencies agree with
ARPES data, thus resolving the long-standing puzzle, and
allow us to estimate values of bilayer splitting t⊥ = h̄eFα/2m∗
and of kz dispersion tz = h̄e�Fα/4m∗. The observed angular
dependence of �Fα points to a true Fermi-surface pocket close
to Fβ ≈ 1.6kT . This interpretation is robust, requiring only a
bilayer crystal structure and closed Fermi-surface pockets. The
reproducibility of Fα ≈ 530T and Fα ± �Fα frequencies in
YBCO, in contrast to that of the more fragile Fβ ≈ 1.6kT ,
is understood in terms of the lesser sensitivity to sample
inhomogeneities. The comparison of the amplitudes of Fα

and Fβ oscillations then provides a potentially useful way of
characterizing the type of disorder present in a given sample.
Verifying the existence, and, in principle, a further splitting of
the Fβ , in extremely clean samples would be a good test of the
proposed theory.

This brings us back to the issue of the charge density order,
where we have mentioned there is now mounting evidence,
particularly at the high fields where magnetic oscillations
are observed [34]. While we have argued that the magnetic
oscillations that were seen should not be taken as evidence
of any corresponding detailed Fermi surface reconstruction,
we cannot rule out the possibility of such reconstruction. Any
new oscillations would be subject to magnetic breakdown,
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which depends on the strength of charge density order and the
disorder. It would be important to quantify both aspects fully,
by detailed study of charge order and magnetic oscillation as a
function of doping and applied pressure, but it is likely that any
new oscillations would be more fragile than the oscillations we
describe. In our view, the bilayer geometry of YBCO is ideal
in identifying the source of the oscillations that have been
seen, but it could well be that in single-layer cuprates a similar
mechanism can explain low frequency components.

The proposed model not only resolves the puzzle of
inconsistency between ARPES and MQO data, but also
suggests how the available extensive experimental data on
MQO in YBCO can be used. According to our interpretation,
the frequency of the observed slow magnetic oscillations
in YBCO gives the area between bonding and antibonding
Fermi-surface arcs much more precisely than can be obtained
from ARPES data [29]. The angular dependence of the
observed shoulder frequencies allows to estimate the areas
of the true Fermi-surface pockets, which may stimulate their
reliable experimental observation. The comparison of the
amplitudes of SlO and true MQO would give the important
information about the spatial variations of the Fermi level
due to sample inhomogeneities. Our model also predicts the
magnetic oscillations with ultralow frequency, ∼90 T, which
has an unusual angular dependence given by Eq. (19). Possibly
such oscillations were detected in Ref. [27], but the angular
dependence of their frequency needs further experimental
study.
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APPENDIX A: DENSITY OF STATES IN QUASI-2D METAL
WITH BILAYER CRYSTAL STRUCTURE

In a single-band quasi-2D metal without bilayer splitting
with only one cylindrical Fermi surface, an electron dispersion
in the tight-binding approximation is [1]

ε(kz,k‖) ≈ ε‖(k‖) − 2tz cos(kzc
�).

In magnetic field B, the electron spectrum consists of a set
of equidistant Landau levels separated by h̄ωc = h̄eBz/m∗c,
where m∗ is the effective electron mass:

εs(kz,n) ≈ h̄ωc(n + 1/2) − 2tz cos(kzc
�) + s�Z,

where �Z = gμBB is the Zeeman splitting, g is the g factor,
μB is the Borh magneton, and s = ±1/2 is the projection
of quasiparticle spin on magnetic field B, inclined by the
angle θ with respect to the normal to conducting layers. The
corresponding oscillating density of electron states (DoS) g(ε)

is given by the sum over Landau levels (LL):

g(ε) =
∞∑

n=0

∑
kz,s

δ[ε − εs(kz,n)]

=
∞∑

n=0

∑
s=±1

gLL/π√
4t2

z − (ε − s�Z − h̄ωc (n + 1/2) + i)2
,

(A1)

where the LL degeneracy per unit area gLL = eBz/2πh̄c, and
 = (ε) is the broadening of electron levels due to scattering.
It is often convenient to transform this sum over LL to the sum
over harmonics using the Poisson summation formula. When
MQO are weak, e.g., at  � h̄ωc, keeping only the zeroth and
first harmonics one obtains [54]

g(ε)

g0
= 1 − 2J0

(
4πtz

h̄ωc

)
cos

(
2πε

h̄ωc

)
cos

(
2π�Z

h̄ωc

)
RD,

(A2)

where g0 = m∗/πh̄2d = 2gLL/h̄ωcd is the average DoS at the
Fermi level per two spin components, J0(x) is the Bessel’s
function, and RD = exp (−2π/h̄ωc) is the Dingle factor
[2]. The DoS at the Fermi level is found by making the
subsititution ε → μ, where μ is the chemical potential equal
to Fermi energy. Introducing the magnetic quantum oscillation
frequency Fβ = μBz/h̄ωc, we rewrite Eq. (A2) as

gF

g0
= 1 − 2J0

(
2π�Fc

Bz

)
cos

(
2π

Fβ

Bz

)
cos

(
2πm∗

m cos θ

)
RD.

(A3)

For conductivity, the sum over two spin components ap-
pears only in the final expression in Eq. (3), which con-
tains the DoS per one spin component without the factor
cos (2πm∗/m cos θ ). Below, we do not keep the Zeeman spin
splitting �Z and the spin subscript s in the intermediate
formulas, but similar to the standard calculations [1–3]
introduce it only in the end as an energy shift by ±�Z .

In bilayer crystals the quasi-2D electron dispersion (2) is
additionally split by 2t⊥(k‖) to the so-called “bonding” and
“atibonding” states. The corresponding DoS for one spin
component is given by the sum of contributions from the
bonding and antibonding branches of electron dispersion

g(ε) =
∞∑

n=0

∑
±

gLL/π√
4t2

z − (ε ± t⊥ − h̄ωc (n + 1/2) + i)2
.

(A4)

Applying the Poisson summation formula and keeping only
the zeroth and first harmonics, similar to Eq. (A2), one obtains

g(ε)

2g0
= 1 −

∑
l=±1

2J0

(
4πtz

h̄ωc

)
cos

(
2πε − lt⊥

h̄ωc

)
RD, (A5)

which gives the DoS on the Fermi level ε = μ, corresponding
to Eq. (4),

gF

2g0
= 1 −

∑
l=±1

2J0

(
2π�Fc

Bz

)
cos

(
2π

Fβ − l�F⊥
Bz

)
RD.

(A6)
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The diffusion coefficient Di depends on its direction i

with respect to magnetic field and to the crystal axes, and
its oscillations can be approximated by

Di

D0i

≈ 1 − BiJ0

(
2π�Fc

Bz

) ∑
l=±1

cos

(
2π

Fβ − l�F⊥
Bz

)
RD,

(A7)

where D0i is the average nonoscillating part of diffusion coef-
ficient and the coefficients Bi ∼ 1 depend on the direction i.
For i ‖ z and without bilayer splitting, it was calculated in
Refs. [51,52], where in addition to J0(4πtz/h̄ωc) the terms
containing J1(4πtz/h̄ωc) appear, which only introduce the
phase shift of beats and of slow oscillations. For i ⊥ z, these
J1(4πtz/h̄ωc) terms are small by a factor ∼tz/EF [66], and
Eq. (A7) is valid.

APPENDIX B: COMBINATORICAL EXPLANATION OF
THE OBSERVED THREE-PEAK STRUCTURE OF MQO

The observed three-peak structure of MQO Fourier trans-
form, with the central peak at least twice larger than the side
peaks, can be obtained from simple combinatorics without
using the Bessel’s functions. The combination of double
bilayer splitting by t⊥(k‖) and the Fermi-surface warping
due to tz with two extremal FS cross-section areas gives a
four-fold splitting of MQO frequency F corresponding to the
true FS pocket area both for the DoS gF and for the diffusion
coefficient Di , which oscillate with a varying magnetic field
Bz perpendicular to the conducting x-y layers as

gF

g0
= 1 + A

∑
j,l=±1

cos

(
2π

Fβ + j�F⊥ + l�Fc

Bz

)
(B1)

and

Di

D0i

= 1 + Bi

∑
j,l=±1

cos

(
2π

Fβ + j�F⊥ + l�Fc

Bz

)
. (B2)

The product of Eqs. (B1) and (B2) gives

σi

σ
(0)
i

= 1 + (A + Bi)
∑

j,l=±1

cos

(
2π

Fβ + j�F⊥ + l�Fc

Bz

)

+AβBi

∑
j,l,j ′,l′=±1

cos

(
2π

Fβ + j�F⊥ + l�Fc

Bz

)

× cos

(
2π

Fβ + j j ′�F⊥ + l l′�Fc

Bz

)
, (B3)

where σ
(0)
i = e2g0D0i does not oscillate. The second term in

Eq. (B3) gives the first harmonic of MQO with amplitudes ∼A

and four close frequencies Fβ ± �F⊥ ± �Fc ∼ Fβ � �F⊥,
corresponding to one splitted FS pocket. The last term in
Eq. (B3) is of the second order in the amplitude Aβ and
gives various frequencies: (i) for j ′ = l′ = 1, the four second
harmonics 2(Fβ ± �F⊥ ± �Fc), which are strongly damped
by temperature and disorder and can be neglected; (ii) for
j ′ = 1 and l′ = −1, the SlO with ultralow frequency 2�Fc �
�F⊥ � Fβ , corresponding to the very low frequency ∼100T

recently observed [27] in YBCO; (iii) for j ′ = −1 and
l′ = ±1, the SlO with intermediate frequencies 2�F⊥ and

2�F⊥ ± 2�Fc, which correspond to the observed Fα ≈ 530T

and F± = Fα ± �Fα frequencies in YBCO. Indeed, using
the identity 2 cos x cos y = cos (x − y) + cos (x + y) and ne-
glecting the high frequency (∼2Fβ) contributions cos (x + y),
we can rewrite the last term in Eq. (B3) for j ′ = −1 as

AβBi,β

2

∑
j,l,l′=±1

cos

(
2π

2j�F⊥ + l(1 − l′)�Fc

Bz

)

= AβBi,β

[
2 cos

(
4π�F⊥

Bz

)

+
∑
l=±1

cos

(
4π

�F⊥ + l�Fc

Bz

)]
. (B4)

The first term in the square brackets, corresponding to l′ = 1,
gives the central peak, while the last term, corresponding to
l′ = −1, gives two side peaks. The amplitude of the central
peak is doubled because there are four different combinations
of j,l giving this term: any j and l at l′ = 1. On contrary, each
side peak is given by only two combinations of j,l at l′ = −1:
j = l for the right-side peak, and j = −l for the left side peak.
This combinatoric analysis was proposed in Ref. [63].

APPENDIX C: POSSIBLE APPEARANCE OF SLOW
OSCILLATIONS IN MAGNETIZATION

Similarly, one can explain the fact that the slow oscillations
with frequency Fα ≈ 530T are observed also in dHvA effect,
which again contradicts the simple model above and that of
Refs. [51,52]. If the electron-electron interaction is included,
its effects are roughly proportional to the product of the
oscillating density of states (DoS), and it should produce
a nonlinearity in the magnetic oscillations of magnetization
(or of other thermodynamic quantities) as a functional of the
density of states. This nonlinearity results in slow oscillations
of thermodynamic quantities such as magnetization, similar to
those of the magnetoresistance.

Slow oscillations originate from mixing of different but
close fundamental frequencies of magnetic oscillations. This
mixing requires some nonlinearity. Transport properties nat-
urally contain such nonlinearity, because they are determined
by the density of states and diffusion coefficient. However, the
thermodynamic potential

�(μ,B) = −kBT

∫
dερ(ε,B) ln

(
1 + exp

μ − ε

kBT

)
(C1)

is a linear functional of the density of states (DoS) ρ(ε,B).
Hence thermodynamic quantities, e.g., magnetization M =
−∂ �(μ,B)/∂B, are also linear functionals of the density of
states (DoS) ρ(ε,B) [67]. Hence, for slow oscillations to take
place in magnetization, the nonlinearity must appear already
in the DoS ρ(ε,B). The DoS is related to the imaginary
part of the retarded Green’s function GR(η,ε) as ρ(ε,B) =
−∑

η ImGR(η,ε)/π , where η = {n,ky,kz} is a set of quantum
numbers of quasiparticles in a magnetic field. This Green’s
function GR(η,ε) includes all relevant types of interaction:
with impurities, electron-phonon, and electron-electron inter-
actions, which are contained in the self-energy part �R ≡
�R(η,ε,B): GR(η,ε) = [ε − ε(η,B) − �R]−1, where ε(η,B)
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is the bare energy spectrum in the presence of magnetic field. Hence the DoS

ρ(ε,B) =
∑

η

−Im�R(η,ε,B)/π

[ε − ε(η,B) − Re�R(η,ε,B)]2 + [Im�R(η,ε,B)]2
. (C2)

If the self-energy part �(η,ε,B) is independent of η, the sum over η in Eq. (C2) can be calculated analytically. In quasi-2D
metals, ε(η,B) = h̄ωc(n + γ ) + 2tz cos (kzd), and applying the Poisson summation formula one obtains [52,54]

ρ(ε,B)

ρ0
= 1 + 2

∞∑
k=1

(−1)kJ0

(
4πktz

h̄ωc

)
exp

(
−2πk

|Im�R(ε,B)|
h̄ωc

)
cos

(
2πk

ε − Re�R(ε,B)

h̄ωc

)
. (C3)

The nonlinearity of the oscillating field dependence is
clearly seen from this expression. Naively, one would expect
that already the impurity scattering, which in the Born
approximation gives oscillating Im�R(ε,B) ∝ ρ(ε,B), results
in slow oscillations of ρ(ε,B). However, this is not the case,
because, as first shown in Ref. [52], in the lowest (second)
order of the Dingle factor exp (−2π |Im�R(ε,B)|/h̄ωc), the
contribution from Re�R exactly cancels the contribution
from Im�R(ε,B) to the slow oscillations. Of course, if

one goes beyond the Born approximation and/or includes
also the e-e interaction, this exact cancellation does not
take place, which results in slow oscillations of magne-
tization. Therefore, in organic metals, which are rather
good clean metals, the slow oscillations of magnetization
were not observed [51]. However, in cuprates, where e-e
interaction is very strong and the impurity concentration
is very high, the slow oscillations of magnetization should
appear.
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