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Hund’s coupling driven photocarrier relaxation in the two-band Mott insulator
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We study the relaxation dynamics of photocarriers in the paramagnetic Mott insulating phase of the half-filled
two-band Hubbard model. Using nonequilibrium dynamical mean-field theory, we excite charge carriers across
the Mott gap by a short hopping modulation, and simulate the evolution of the photodoped population within the
Hubbard bands. We observe an ultrafast charge-carrier relaxation driven by the emission of local spin excitations
with an inverse relaxation time proportional to the Hund’s coupling. The photodoping generates additional
side-bands in the spectral function, and for strong Hund’s coupling, the photodoped population also splits into
several resonances. The dynamics of the local many-body states reveals two effects, thermal blocking and kinetic
freezing, which manifest themselves when the Hund’s coupling becomes of the order of the temperature or the
bandwidth, respectively. These effects, which are absent in the single-band Hubbard model, should be relevant for
the interpretation of experiments on correlated materials with multiple active orbitals. In particular, the features
revealed in the nonequilibrium energy distribution of the photocarriers are experimentally accessible, and provide
information on the role of the Hund’s coupling in these materials.
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I. INTRODUCTION

The photoexcitation of charge carriers across a Mott or
charge-transfer gap triggers a nonequilibrium phase transition
from a correlation-induced insulating to a nonthermal con-
ducting state. A wide range of experiments have characterized
these photodoped metallic states and explored the relaxation
pathways and lifetimes of the photocarriers, as well as their ef-
fect on ordered states. Iwai and collaborators [1] measured the
reflectivity spectrum of a nickel-chain compound, and found
that it exhibits a Drude-like low-energy feature immediately
after photoexcitation and that this metallic behavior lasts for
several picoseconds. Similar results have also been obtained
for the cuprates La2CuO4 and Nd2CuO4 [2], where it was
also shown that charge-spin and charge-phonon couplings
play an important role in the short-time relaxation process.
Using time-resolved photoemission spectroscopy, the ultrafast
relaxation of photodoped doublons has been investigated in
the polaronic Mott insulator 1T -TaS2 [3–5], and femtosecond
resonant x-ray diffraction has been employed to study the
effect of photodoping on the magnetic structure in CuO [6] and
TbMnO3 [7]. The latter material exhibits a complex interplay
between charge, spin, and orbital degrees of freedom.

Unveiling the nature of the bosonic excitations coupled to
the electronic degrees of freedom is one of the fundamental
goals of pump-probe spectroscopy. The two-temperature
model introduced by Allen [8] provides a means to ex-
tract the microscopical parameters describing electron-phonon
coupling from the relaxation dynamics after photoexcitation
[9,10]. A careful analysis of time-dependent optical spec-
troscopy [11] and angle-resolved photoemission spectroscopy
(ARPES) measurements [12] enabled the determination of
the relative weight of the electron-boson coupling for a

*hugo.strand@gmail.com
†philipp.werner@unifr.ch

broad range of frequencies [13,14]. The population dynamics
measured in ARPES furthermore allows to disentangle the
electron-electron interactions from electron-boson interactions
[12]. This information is crucial for determining the micro-
scopic origin of symmetry broken states, such as supercon-
ductivity [14], density-wave orders [15], excitonic insulators,
etc., especially when several orders are intertwined [16].

Significant theoretical effort has also been aimed at un-
derstanding the basic aspects of the photodoping process and
the subsequent relaxation [17–19]. These studies—which so
far have focused on single-band models—have addressed the
exponential dependence of the photocarrier’s lifetime on the
Mott gap [19–21], the role of impact ionization processes in
small-gap insulators [22], and the nature of the photodoped
metallic state [23]. Deep in the Mott phase the number
of holon-doublon pairs is an almost conserved quantity on
the time scale of the electronic hopping, and the initial
relaxation of the photocarriers can only occur within the
Hubbard bands. The corresponding relaxation time strongly
depends on the coupling of the photodoped carriers to bosonic
degrees of freedom, such as spins [24,25] or phonons [26–
30]. In particular, the scattering with antiferromagnetically
ordered spins provides a very efficient cooling mechanism
[14,24,31,32]. Very strong electron-boson couplings, which
appear, for example, in systems with dynamically screened
Coulomb interactions [33], can on the other hand open
new channels for doublon-hole recombination and lead to a
nontrivial energy exchange between electronic and bosonic
degrees of freedom [26,33,34].

In multiorbital Hubbard systems, one should expect similar
processes to play a prominent role even in the absence
of phonon couplings, antiferromagnetic correlations, and
nonlocal interactions. In Mott insulators with small or van-
ishing crystal-field splitting, the Hund’s coupling controls the
energies of the most relevant local states, and favors high-spin
states. The goal of this study is to clarify how photodoped
carriers moving in this high-spin background produce local
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FIG. 1. Schematic illustration of the photodoping process in
a two-band Mott insulator, creating photoexcited singlon-triplon
pairs (I), and the subsequent relaxation by doublon-triplon (and
doublon-singlon) scattering (II), which generates high-energy (IIa),
and low-energy (IIb) S = 0 doublon excitations on the S = 1 high-
spin doublon background. A legend for the local two-orbital states is
shown at the bottom.

spin excitations and thereby transfer their excess kinetic energy
to interaction energy.

We will explore this physics in the simple context of a
half-filled two-orbital Mott insulator with degenerate bands
and density-density interactions. For positive Hund’s coupling
J , the dominant states are the half-filled high spin states ([↑,↑])
indicated by the green dots in Fig. 1, while the two low-spin
states ([↑,↓] and [↑↓,0]) have an energy that is higher by J (red
dots) and 3J (yellow dots), respectively. Driving the system
with a frequency above the interorbital interaction U produces
photocarriers in terms of singlon-triplon pairs, as illustrated by
process (I) of Fig. 1. The singlons and triplons, with an initially
high kinetic energy, then scatter with the high-spin doublon
states transferring energy quanta of J (process IIa) or 3J (pro-
cess IIb) to local spin excitations. As a result of this, the energy
distributions of the triplons changes, and the corresponding
population shifts within the upper Hubbard band towards the
lower band edge. (An analogous dynamics takes place in the
lower Hubbard band, where the singlon distribution shifts
to the upper band edge.) We also observe a splitting of the
photocarrier distribution in the upper Hubbard band, which
can be linked to the Hund’s coupling induced splitting of
the local states within the doublon sector. By systematically
studying the relaxation at a constant 1% photodoping as a
function of temperature and Hund’s coupling, we furthermore
demonstrate two mechanisms, thermal blocking and kinetic
freezing that partially inhibit the relaxation dynamics within
the doublon sector.

This paper is organized as follows. Section II presents
the effective two-band Hubbard model, and Sec. III presents
the real-time dynamical mean-field method that we use to
study the nonequilibrium dynamics. In Sec. IV, we present
the equilibrium spectral function (Sec. IV A) and then discuss
the photo doping dynamics (Sec. IV B). The different aspects

of the relaxation dynamics are explored in the following
sections: Sec. IV B 1 presents the simulated time-resolved
photo emission spectra, while Sec. IV B 2 analyzes the short-
time dynamics. The doublon excitation dynamics is discussed
in Sec. IV B 3, and its temperature and Hund’s coupling
dependence in Secs. IV B 4 and IV B 5, respectively. Section V
contains a discussion and conclusions.

II. MODEL

The two-band Hubbard model is the canonical model for
interacting multiband electron systems, relevant, e.g., for the
eg irreducible representation of d-orbitals in crystal fields with
cubic or tetragonal symmetry [35]. The Hamiltonian has the
form

Ĥ = −thop

∑
〈i,j〉

∑
ασ

(c†iασ cjασ + c
†
jασ ciασ )

+
∑

i

Ĥloc,i − μ
∑
iασ

n̂iασ , (1)

where c
†
jασ creates an electron on site i in orbital α = 1,

2 with spin σ = ↑, ↓, n̂iασ is the density operator n̂iασ ≡
c
†
iασ ciασ , thop is the nearest-neighbor hopping, Ĥloc,i is the

local interaction Hamiltonian on site i, and μ is the chemical
potential. The interaction Ĥloc,i has the general structure

Ĥloc,i = U
∑

α

n̂iα↑n̂iα↓ +
∑
α �=β

∑
σ,σ ′

(U ′ − Jδσσ ′)n̂iασ n̂iβσ ′

+ γ J
∑
α �=β

(c†iα↑c
†
iα↓ciβ↓ciβ↑ + c

†
iα↑c

†
iβ↓ciα↓ciβ↑),

(2)

where U is the intraorbital Coulomb interaction, U ′ is the
interorbital Coulomb interaction, and J is the Hund’s coupling.
The interaction in Eq. (2) is the well-known Kanamori
interaction [36], which becomes rotationally invariant when
U ′ = U − 2J and γ = 1.

Here, we set U ′ = U − 2J but employ the nonsymmetric
form (with γ = 0) for practical reasons. This approximation,
which only retains the density-density interactions, has been
shown to have a richer phase diagram than the isotropic
model [37,38]. The lattice is assumed to be bipartite, and the
noninteracting dispersion is chosen to yield a semicircular
density of states with bandwidth W = 4thop. In the following,
we use thop as the unit of energy, so that time is measured
in units of h̄/thop. The chemical potential is fixed to μ =
(3U − 5J )/2, which yields half-filling (two electrons per
site). The system undergoes an antiferromagnetic spontaneous
symmetry breaking at low temperature [37,38], but in the
present study, we restrict our attention to the paramagnetic
high-temperature Mott phase.

III. METHOD

To investigate the nonequilibrium dynamics of the two-
band Hubbard model [Eq. (1)] in the strongly correlated
paramagnetic Mott insulating phase, we employ real-time
dynamical mean-field theory (DMFT) [17]. The DMFT for-
malism neglects the momentum dependence of the self-energy,
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i.e., �(k,t ; k′,t ′) ≈ �(t,t ′), which allows to map Eq. (1) to an
impurity action

S =
∫
C
dtĤloc(t) +

∫∫
C
dtdt ′

∑
ασ

c†ασ (t)�ασ (t,t ′)cασ (t ′) (3)

with a self-consistently determined dynamical mean field
in the form of a two-time-dependent hybridization function
�ασ (t,t ′). The featureless semicircular density of states allows
us to capture the general physics of the Mott insulator, and
yields the simple self-consistency relation �ασ = t2

hopgασ ,
where gασ is the impurity single-particle Green’s function,
gασ (t,t ′) ≡ −i〈T cασ (t)c†ασ (t ′)〉S .

Since the Mott insulator is out-of-reach for weak coupling
DMFT approaches [39,40] and variational approaches [41–
47], we employ a pseudoparticle strong coupling (PPSC)
real-time impurity solver. Introducing pseudoparticles enables
diagrammatic expansion in the hybridization function, and
we employ the first- and second-order self-consistent dressed
approximation, also known as the noncrossing approximation
(NCA) and one-crossing approximation (OCA) [48]. Since
the dressed self-energy approximation can be written as a
functional derivative of a (pseudoparticle) Luttinger-Ward
functional [49,50], the PPSC expansion yields conserving ap-
proximations for both density and energy. These conservation
laws are central for studying the time evolution of the system,
especially at longer times. A detailed description of the method
can be found in Ref. [48].

We have recently extended our real-time PPSC solver to
general multiorbital systems, using both the blocking of the
local Hamiltonian and a symmetry analysis of the pseudo parti-
cle diagrams to reduce the computational effort. The numerical
symmetry analysis is flexible enough to automatically identify
special situations such as spin and particle-hole symmetry,
which for the paramagnetic half-filled two-band Hubbard
model [Eq. (1)] with density-density interactions reduces the
number of pseudoparticle NCA self-energy diagrams from 64
to 10, and the number of NCA single-particle Green’s function
diagrams from 32 to 12, for details see Appendix B.

Real-time DMFT directly gives the local single-particle
Green’s function gασ (t,t ′) of the system and the local many-
body density matrix ρ(t) through the pseudoparticle Green’s
function Ĝ(t,t ′), ρ(t) = −iĜ<(t,t). In the case of density-
density interaction, both Ĝ and ρ are diagonal in the local
occupation number basis 
, i.e., ρ

′ = δ

′ρ
 . Note that the
trace over the local many-body density matrix is a conserved
quantity, i.e.,

∑



ρ
(t) = 1 ⇒
∑




∂tρ
(t) = 0. (4)

The total energy of the system Etot is the sum of the interaction
(Eint) and kinetic (Ekin) energy, Etot = Eint + Ekin. Using the
local multiplet energies E
 , Eint is obtained as

Eint(t) =
∑




ρ
(t)E
, (5)

and Ekin is given by the equal-time contour convolution
between � and g, Ekin(t) = −i

∑
ασ [�α ∗ gασ ]<(t,t), see

Ref. [17].

The time evolution is solved using a fifth-order multistep
method [51], and equidistant steps �t = 0.01thop in real time
and Nτ = 100 to 800 steps in imaginary time τ , τ ∈ [0,β),
where β is the inverse temperature β = 1/T [52]. The
DMFT+PPSC approach is inherently memory bound since
it employs two-time Green’s functions [53] and we find that
this typically limits the number of time steps Nt to Nt ∼ 1000.
The discretization errors are controlled by ensuring that the
drift in the total density per site is below 10−4. We note that
the density conservation is sensitive to both real and imaginary
time discretizations and therefore gives a good measure of the
total convergence.

IV. RESULTS

A. Equilibrium

The equilibrium properties of the Mott phase in the strongly
interacting half-filled two-band Hubbard model [Eq. (1)] are
well understood within DMFT [54–62]. In what follows, we
fix the interaction to U = 15 and the bandwidth to W = 4,
which corresponds to the deep Mott-insulating regime, U �
W . In equilibrium, a numerically exact DMFT solution can be
obtained using the continuous time quantum Monte Carlo (CT-
QMC) method [56,63,64], which allows to gauge the accuracy
of our PPSC approach in the strong coupling regime.

In Fig. 2(a), we compare the equilibrium CT-QMC solu-
tion for the local single-particle Green’s function gασ (τ ) in
imaginary time τ , obtained using the hybridization expansion
as implemented in the TRIQS application CTHYB [65–67],
with the NCA and OCA results at inverse temperature β =
1 and relative Hund’s coupling J/U = 0.06. We see that
the strong local interaction (U = 15) makes the first-order
strong coupling approximation (NCA) an extremely good
approximation. The deviation between the Green’s function
obtained from NCA/OCA and CT-QMC is lower than the
stochastic QMC noise |gNCA/OCA(τ ) − gQMC(τ )| < 0.004 for
β = 1 (and β = 10, not shown). Comparing NCA and OCA,
we find that in contrast to the metallic single band case [48],

FIG. 2. (a) Equilibrium imaginary time single particle Green’s
function gασ (τ ) for β = 1, U = 15, and J/U = 0.06. Comparing
exact continuous-time quantum Monte Carlo (CT-QMC) with first
(NCA) and second-order (OCA) strong coupling expansions. (b) CT-
QMC hybridization expansion probability contribution p(N�) to the
partition function (N� is the perturbation order).
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FIG. 3. Real-frequency equilibrium spectral function for β = 1,
U = 15, and J/U = 0.06.

the OCA result is more correlated than the NCA result, i.e.,
gOCA(β/2) < gNCA(β/2).

The good performance of NCA can be understood by
looking at the distribution over hybridization perturbation
orders in the CT-QMC solution, see Fig. 2(b). In the deep
Mott state, the expansion of the partition function is dominated
by the zeroth-order perturbation order N� = 0 (the atomic
limit) with a ∼10% contribution from the first-order terms
p(N� = 1) ≈ 0.1, corresponding to a single hybridization
insertion, while the second-order terms contribute less than
one percent p(Nδ =2) � 0.008. The zeroth- and first-order
contributions are exactly captured within NCA, and the higher-
order contributions are exponentially small, hence the close
agreement with CT-QMC.

By time evolving the equilibrium solution within NCA and
OCA, we can directly obtain the real-frequency single-particle
spectral function by Fourier transforming the real-time Green’s
function, see Fig. 3. The dominant spectral features of the half-
filled Mott insulator are the lower and upper Hubbard bands
centered around ω ≈ ±U/2 = ±7.5. The single-particle spec-
tral function corresponds to particle addition and particle
removal for positive and negative frequencies ω, respectively.
Thus the upper (lower) Hubbard band corresponds to the
particle addition (removal) processes |2,
〉 → |3〉 (|1〉), where

 is one of the doublon states listed in Fig. 1. In contrast to
the single-band Hubbard model, the larger Hilbert space of the
two-band model results in two additional spectral features at
energies beyond the Hubbard bands. These resonances come
in two classes, thermally activated and quantum fluctuation
driven, analogous to what has previously been discussed for
the Bose-Hubbard model [68]. The first resonance beyond the
Hubbard bands arises from thermally activated electron-hole
pair excitations in the ground state, which on particle addition
(removal) produces the local transitions |3〉 → |4〉 (|1〉 → |0〉).
While these resonances involve only the multiplet states at one
site, the second resonance corresponds to concomitant addition

(removal) of an electron and the emission of a hole |h〉 (particle
|p〉) excitation into other lattice sites, i.e., |2,
〉 → |4〉 ⊗ |h〉
(|2,
〉 → |0〉 ⊗ |p〉). As seen in Fig. 3, NCA overestimates
the spectral weight of the second resonance in comparison to
OCA. However, since this resonance is very high in energy,
its influence on the photodoping dynamics across the Hubbard
gap is negligible. Hence, we will apply NCA in the study of
the photodoping dynamics of the deep Mott insulator in what
follows.

B. Nonequilibrium photodoping

To study the response of the two-band Mott insulator rele-
vant to pump-probe experiments [69–71], we use a simplified
driving to produce particle-hole transitions across the Mott
gap (process I in Fig. 1). Specifically, we employ a two-cycle
modulation of the single particle hopping with frequency
�pump = 2.25U and a Gaussian envelope. This mechanism
is different from the application of an electric field, but since
we aim at investigating the relaxation after the excitation, the
precise mechanism of generating carriers is not important, as
long as it produces an essentially instantaneous excitation of
particle-hole pairs across the Mott gap.

We focus again on the strongly correlated Mott insulator
with Hubbard U = 15 and a single particle bandwidth fixed
to W = 4. The recombination rate of triplons and singlons
is in this case exponentially suppressed by the large Mott
gap (U � W ) [21,72,73] and the photodoping generated by
the pump excitation is therefore an approximately conserved
quantity on the numerically accessible time scales. In addition,
to enable a direct comparison between systems with different
strengths of the Hund’s coupling J , we fix the density of
photodoping induced singlon-triplon carriers after the pump
to 1% by tuning the pump amplitude.

The system responds to the pump-excitation on all the
time scales corresponding to characteristic energies of the
Hamiltonian [Eq. (1)], i.e., (i) the Hubbard U = 15, (ii) the sin-
gle particle hopping bandwidth W = 4, and (iii) the Hund’s
coupling J � 0.05U = 0.75. However, before we disentangle
the photodoping dynamics in terms of the kinetic energy
and the local many-body state occupations, we present results
for the time-dependent photo emission spectra.

1. Time-dependent photoemission spectroscopy

To show how multiorbital and Hund’s physics may be
detected experimentally using time-dependent photoemission
spectroscopy (TD-PES) [12,18], we study the time evolution
of the nonequilibrium single-particle spectral function after the
pump. Disregarding matrix elements and the finite width of the
probe pulse this corresponds to the theoretical time-dependent
photoemission spectrum [74]. The photodoping generates a
redistribution of the spectral weight in both the retarded
spectral function gR(ω,t) and the lesser spectral function
g<(ω,t) defined as

gγ (ω,t) = ± 1

π
Im

∫ ∞

t

d t̄ e−i(t̄−t)ωgγ (t,t̄), (6)

where ω is the relative frequency, t is the absolute time, the
+(−) sign corresponds to the lesser, γ =< (retarded, γ = R)
component.
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FIG. 4. Theoretical time-dependent photoemission spectra showing the kinetic energy relaxation of the photodoped triplons in the upper
Hubbard band for U = 15, T = 0.1, J/U = 0.01 [(a) and (b)], and J/U = 0.06 [(c) and (d)].

Since the lesser spectral function g<(ω,t)—i.e., the oc-
cupied density of states (DOS)—is the main observable in
TD-PES, we focus on the time-dependent change in g<(ω,t)
relative to the time-translational invariant occupied DOS
g<

eq(ω) of the initial equilibrium state. In Fig. 4, the differential
response of the occupied DOS is shown for J/U = 0.01
[Figs. 4(a) and 4(b)] and J/U = 0.06 [Figs. 4(c) and 4(d)].

The short pulse injects particle-hole pairs (singlon-triplon
pairs) with high kinetic energy into the Hubbard bands (process
I in Fig. 1), and thus results in an initial spectral weight
redistribution from the lower to the upper Hubbard band. The
singlons and triplons then relax their high kinetic energy by
emitting doublon spin excitations (processes IIa and IIb in
Fig. 1) when scattering off the high spin doublon background,
as indicated in the upper Hubbard band in Fig. 1. The result is
a drift of the occupied density of states in the upper Hubbard
band from the upper band edge to the lower band edge.
However, as can be seen by comparing Figs. 4(a) and 4(b)
with 4(c) and 4(d) the relaxation dynamics and the spectral
features induced by this cooling process depend strongly on
the Hund’s coupling J .

At small Hund’s coupling, e.g., J/U = 0.01 as in Figs. 4(a)
and 4(b), the kinetic relaxation of triplons manifests itself
primarily as a redistribution of occupied spectral weight within
the upper Hubbard band. A short time after the pulse [see
t = 2 dot-dashed curve in Fig. 4(b)] the broad distribution in
the upper Hubbard band indicates the presence of triplons
with high kinetic energy. This population relaxes at later
times to a thermal-like distribution (solid red line), albeit with
a shifted chemical potential. While the triplons apparently

“thermalize” within the upper Hubbard band, the large Mott
gap exponentially suppresses singlon-triplon recombination,
which is required for the system to reach a true thermal
equilibrium state.

The observed population dynamics within the Hubbard
band [Figs. 4(a) and 4(b)] is similar to the dynamics of
photodoped antiferromagnetic systems [31,32] or systems
coupled to lattice degrees of freedom [26,30,75], where the
electrons interact with external bosonic degrees of freedom.
Thus, at weak Hund’s coupling, the local doublon spin degrees
of freedom in the two band model qualitatively act as a boson
bath into which the electronic degrees of freedom can transfer
excess kinetic energy.

We also note that the dynamics in the Hubbard band
is reproduced in the second Hubbard resonance at ω ≈
−3U/2 = −22.5, see Figs. 4(a) and 4(b). This spectral feature
corresponds to the particle removal transition |1〉 → |0〉, as
previously discussed in Fig. 3. Note that the singlon population
(corresponding to the unoccupied DOS) in the lower Hubbard
band is the mirror copy of the triplon population in the upper
Hubbard band, by particle-hole symmetry (not shown). Hence,
while triplons relax towards lower frequencies at the lower
band edge of the upper Hubbard band, singlons relax towards
higher (small negative) frequencies at the upper band edge of
the lower Hubbard band. In contrast, the resonance |1〉 → |0〉
at ω ≈ −22.5 in the occupied density of state represents
photoemission from a singlon state, and displays a reversed
relaxation towards low (large negative) frequencies. Since the
multiplet energy separation between the singlon and holon
state is equal to U the singlons at the upper band edge of the
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FIG. 5. Time-evolution of the single-particle retarded Green’s function gR(ω,T ) (blue) and lesser Green’s function g<(ω,T ) (green), for
U = 15, β = 10, J/U = 0.01 [(a)–(d)], and J/U = 0.06 [(e)–(h)]. (c), (d), (g) and (h) show all integer times t = 2 to 14 (red to blue).

lower Hubbard band with large (small negative) kinetic energy
require a smaller excitation energy in the |1〉 → |0〉 transition,
whence these singlons produce the low-frequency structure in
the ω = −3U/2 resonance.

While this spectral feature is present in equilibrium at
elevated temperatures due to thermal activation of singlon
states (Fig. 3), its emergence after the pump is a nonequilibrium
effect induced by the photodoped singlons. We note that the
emergence of satellites below the lower Hubbard band is
a generic feature of multiorbital systems with Hubbard U

interaction, due to the additional states in the local Fock space
with higher/lower occupation numbers. The generation of this
class of side bands in photodoped multiorbital systems could
be used to experimentally detect the presence of multiorbital
interactions in an out-of-equilibrium setup.

For larger J/U , the time scale of the kinetic relaxation
becomes shorter, and for J/U = 0.06 the initial high to
low kinetic energy triplon redistribution overlaps with the
short-lived coherent 2π/U oscillations at t � 2, see Figs. 4(c)
and 4(d). In this regime, the relaxation changes its qualitative
behavior. After the fast kinetic relaxation, the occupied spectral
weight in the upper Hubbard band no longer comprises a single
resonance, instead, the spectral weight is split into two main
resonances (at ω ≈ 4 and ω ≈ 7), see Fig. 4(d). Furthermore,
the second Hubbard resonance (at ω = −22) is no longer a
mirror copy of the entire occupied spectral weight in the upper
Hubbard-band, but rather only a mirror copy of the low-energy
resonance.

The splitting of the occupied spectral weight in the upper
Hubbard band of Figs. 4(c) and 4(d) can be understood in
terms of the Hund’s coupling induced splitting of the doublon
states, where the S = 0 doublon states [↑,↓] and [↑↓,0] (see
Fig. 1) are split off from the high-spin S = 1 doublon states

[↑,↑] by J and 3J , respectively. After the pump excitation, the
excess triplon density can transition to all three doublon states
on particle removal, which directly produces three resonances
in the upper Hubbard band, corresponding to the processes
|3〉 → |2,
〉, while only two resonances are discernible in
Figs. 4(c) and 4(d) (due to limited frequency resolution) the
stronger resonance consists of two peaks, see Fig. 5(g). Note
that the particle-hole symmetric process |1〉 → |2,
〉 produces
a shoulder feature at the upper edge of the lower Hubbard
band, at ω ≈ −5 in Fig. 4(d), which might be simpler to
detect experimentally than the occupied DOS in the upper
Hubbard band. We propose that the detection of a splitting
of the photodoped occupation in the upper Hubbard band and
the emergence of a low-energy shoulder of the lower Hubbard
band can serve as a “litmus test” for strong Hund’s coupling
in Mott insulators.

A similar reasoning also explains why the second Hubbard
resonance (at ω ≈ −23) only displays a single peak, see
Figs. 4(c) and 4(d). This spectral feature corresponds to
the removal of a photodoping induced singlon state, i.e.,
|1〉 → |0〉. Since these states are not split by the Hund’s
coupling J the transition only yields a single peak.

So far, we have focused on the occupied density of states
since it is experimentally observable in TD-PES. However,
our real-time DMFT calculations give direct access also to the
retarded spectral function gR(ω,t). Thus we are able to give
the complete picture of the spectral distribution throughout the
relaxation, see Fig. 5. Beyond the features already identified
in the differential TD-PES, the full spectral function shows
the general shape of the Hubbard bands at J/U = 0.01 and
0.06, see Figs. 5(a) and 5(e). Going from low to high J ,
the Hubbard bands develop from a resonance with a low-
frequency shoulder, into a resonance with two shoulders on the

165104-6



HUND’s COUPLING DRIVEN PHOTOCARRIER . . . PHYSICAL REVIEW B 96, 165104 (2017)

high-frequency side. In addition, Figs. 5(b) and 5(f) show not
only the redistribution due to kinetic relaxation but also that the
third resonances beyond the upper and lower Hubbard bands
(at |ω| ≈ 36) are not affected by the pump excitation. This
can be understood by considering the local transitions that
give rise to the resonance, e.g., at positive frequencies they
correspond to |2,
〉 → |4〉 ⊗ |h〉 (where |h〉 is an emitted hole
on the lattice). Since the singlon-triplon states are not directly
involved in these transitions, their relaxation does not affect
this third class of resonances.

Detailed plots of time slices at the upper Hubbard band
and the second resonance clearly show that at low J/U =
0.01, they are mirror copies of each other, see Figs. 5(c) and
5(d). At this low Hund’s coupling, the thermal activation in
the initial state with T = 0.1 makes it impossible to resolve
the individual doublon excitations since their splitting J =
0.15 is of the same order, J ≈ T . At larger Hund’s coupling
J/U = 0.06, however, the splitting of the atomic multiplets
gives rise to a separation of the occupied DOS in the upper
Hubbard band, see Figs. 5(f) and 5(g). In this particular case,
all three resonances are resolved in Fig. 5(f) [due to better
spectral resolution as compared to Fig. 4(d)]. We also note
that the shoulder feature in the lower Hubbard band is even
more pronounced in the retarded spectral function at ω ≈ −5
as compared to the feature in the occupied DOS, cf. green and
blue lines in Fig. 5(f). Further, while the second resonance
qualitatively is a single peak [see Fig. 5(h)], a close inspection
reveals additional structures. In particular, it has a high-energy
extended shoulder feature due to higher-order processes.

2. Short-time particle-hole excitations

In order to understand the photocarrier relaxation observed
in our time-dependent PES results, in particular its dependence
on the relative Hund’s coupling J/U and temperature T ,
we perform a detailed analysis of the relaxation dynamics.
To do this, we will exploit the fact that our PPSC method
also provides information about the local many-body density
matrix ρ(t), and use this to study the time evolution of the
different local many-body states throughout the relaxation
process as a function of T and J/U .

The short-time response of the system at t � 2, shown
in Fig. 6, displays only the two fastest time scales U and
W . The response during the application of the pump (gray
line) is dominated by a rapid increase of the singlon and
triplon probability ρ1 = ρ3, with a concomitant reduction of all
doublon probabilities ρ2,
 due to Eq. (4). The sudden increase
is followed by a damped oscillatory decay, see Fig. 6. The
corresponding photodoping ρd is defined as the combined
change in singlon-triplon probability �ρ1,3(t) = ρ1,3(t) −
ρ1,3(0) and holon-quadruplon probability �ρ0,4(t) = ρ0,4(t) −
ρ0,4(0), i.e., ρd ≡ �ρ1,3(t) + �ρ0,4(t). However, since the
density of holon-quadruplon high-energy excitations is negli-
gible, �ρ0,4(t) ≈ 0. Except at very high initial temperature ρd

effectively measures the singlon-triplon doping ρd ≈ �ρ1,3.
The oscillation frequency �1,3 is approximately equal to the
Hubbard-U , �1,3 ∼ U , and the inverse relaxation time τ−1

1,3 is
of the order of the bandwidth, τ−1

1,3 ≈ W . Both frequency and
damping are only weakly dependent on the Hund’s coupling

FIG. 6. Short-time dependence of the photodoping pump-
induced change in the singlon-triplon density ρ1,3(t) − ρ1,3(0) for
U = 15, β = 1, and J/U = 0.00 to 0.05 (upper panel), showing
damped 2π/U oscillations �1,3 ∼ U with an inverse relaxation
time τ−1

1,3 of the order of the bandwidth W (bottom). The hopping
modulation thop(t) of the pump pulse is shown as a gray thin solid line
in the upper panel.

J , since the corresponding time scale is long, see the lower
panel in Fig. 6.

The time evolution of the system’s energy components—in
the same time window—is shown in Figs. 7(a) and 7(b). The
hopping modulation of the pump only lasts for t � 0.5 and
concomitantly the total energy Etot of the system displays
an oscillatory increase [Fig. 7(a)]. After the pulse the total
energy Etot again becomes a conserved quantity, ∂tEtot(t) = 0
for t � 0.5. The increase of the photodoping yields an increase
in the local interaction energy Eint. The oscillatory behavior
with frequency �1,3 ∼ U is driven by a shuffling between
singlon-triplon interaction energy E1,3 and kinetic energy Ekin

at times t � 2, as shown in Fig. 7(b).
The photodoping (i.e., the change in the singlon-triplon

probability density �ρ1,3) only becomes an approximately
conserved quantity after the 2π/U oscillations have damped
out at times t � 2. The short-time behavior and photodoping
conservation is similar to the dynamics seen in the single-band
Hubbard model. However, at longer times, the (paramagnetic)
single-band and two-band models exhibit different relaxation
dynamics.

While both the photoexcited single-band and two-band
models are (in the large-U limit) trapped in a long-lived
nonthermal state, since the recombination of particle-hole pairs
is exponentially suppressed by the Mott gap [19,20], the evo-
lution of the photodoped population within the Hubbard bands
is very different. In the single-band case, the redistribution of
spectral weight (and the associated relaxation of the kinetic
energy) is very slow [20]. In contrast, as shown in Fig. 1
and discussed in Sec. IV B 1, the photodoped population can
quickly relax within the Hubbard bands due to the additional
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FIG. 7. Three stages of excitation/relaxation: (a) hopping mod-
ulation thop (green) and increase of the total energy Etot (black) at
t � 0.5, (b) energy conversion between kinetic energy Ekin (magenta)
and singlon-triplon interaction energy E1,3 (blue) at t � 2 (cf. Fig. 6),
and (c) conversion from (singlon-triplon) kinetic energy to interaction
energy in terms of S = 0 doublon excitations E2,[↑,↓] (red) and
E2,[↑↓,0] (yellow), cf. (IIa) and (IIb) in Fig. 1. The approximately
conserved singlon-triplon energy �E1,3 (rescaled by 0.1) is also
shown (blue).

orbital degrees of freedom and the local spin excitations
generated by the Hund’s coupling J energy scale.

If we would consider an antiferromagnetically ordered
system, then even the single-band Hubbard model would show
a similar kinetic energy relaxation [24], whose relaxation rate
would be determined by the exchange energy scale Jex, which
is different from the Hund’s coupling J that controls the
cooling dynamics of the (paramagnetic) two-orbital system.
While we will not consider the interplay of the two scattering
processes in the antiferromagnetically ordered two-orbital
case in this work, it is clear that the Jex-based relaxation
mechanism will depend strongly on temperature and (within
single-site DMFT) will disappear above the Neel temperature,
while the Hund’s-J based mechanism will persist above this
temperature, provided that J > Jex. Since the flipping of S = 1
moments requires four hoppings, we generically expect that
the Hund’s coupling mechanism indeed dominates.

3. Doublon excitations

The photodoped two-band Mott-insulator with finite
Hund’s coupling |J | > 0 has, due to the lifted doublon
degeneracy, internal degrees of freedom in the doublon
subsector. The approximate conservation of the photoexcited
singlon-triplon density ρ1,3(t) and holon-quadruplon density
ρ0,4(t), i.e.,

∂tρ1,3(t) ≈ 0, ∂tρ0,4(t) ≈ 0 (7)

implies that the conservation of total local probability [Eq. (4)]
constrains the probabilities of the three inequivalent doublon
states,

∂tρ2,[↑,↑] + ∂tρ2,[↑,↓] + ∂tρ2,[↑↓,0] ≈ 0. (8)

Note that each label is assumed to encompass all possible
permutations and directions of spin, i.e., [↑,↑] also includes
[↓,↓] and [↑,↓] also includes [↓,↑], etc.

From the energetic point of view the remaining degree
of freedom is the conversion between kinetic energy Ekin

and interaction energy in the doublon subsector Eint,2, i.e.,
∂t (Ekin + Eint,2) ≈ 0, where Eint,2 is given by the weighted
sum of the occupation probabilities ρ2,
 of the doublon
states (with two electrons Ne = 2) and their atomic multiplet
energies E2,
:

Eint,2 =
∑


∈{
:Ne=2}
ρ
E
, (9)

cf. Eq. (5). The kinetic energy relaxation of the pump-
generated singlon-triplon excitations by the production of
doublon spin excitations, i.e., step (II) in the illustration of
Fig. 1, can directly be seen in the time-evolution of the system’s
energy components at times t � 2 in Fig. 7(c). The kinetic
energy Ekin shows an exponential decrease, accompanied by
a corresponding increase in the interaction energy for the
high-energy S = 0 doublon state with local double occupancy
�E2,[↑↓,0], and a smaller and slower increase in the low-energy
S = 0 doublon state interaction energy �E2,[↑,↓]. These two
processes correspond to the scattering processes (IIa) and (IIb)
in Fig. 1, respectively.

4. Temperature dependence

We find that the speed and magnitude of the response
of the different energy components is very sensitive to both
the Hund’s coupling J and the temperature T of the initial
state. Since the temperature dependence is experimentally
accessible, we begin by investigating how the relaxation
dynamics depends on T .

At low temperature T � J , the initial state is dominated
by high spin doublons [↑,↑] and singlon-triplon quantum
fluctuations. In this regime the excited doublon states ([↑,↓]
and [↑↓,0]) are exponentially suppressed due to the Hund’s
coupling induced splitting of these states (J and 3J , respec-
tively).

To see this, we fix J/U = 0.04, i.e., U = 15 and J = 0.6,
and sweep temperature from T = 0.1 to 2.5, see Fig. 8. At T =
0.1, the high-spin doublon (green circles) dominates the local
many-body density matrix ρ2,[↑,↑] � 1, while the occupations
of the low-energy (red circles) and high-energy doublons
(yellow circles) are exponentially suppressed. The low-energy
doublon occupation ρ2,[↑,↓] (red), with an energy splitting of
J = 0.6, rapidly grows when increasing the temperature T

from 0.1 to 1, see Fig. 8(a), while the high-energy doublon
density ρ2,[↑↓,0] (yellow) displays a slower increase, due to its
larger energy splitting 3J = 1.8.

We find that the 1% photo doping, i.e., the change in
the singlon-triplon and holon-quadruplon occupation after the
pump, ρp = �ρ1,3 + �ρ0,4, does not drastically change the lo-
cal multiplet occupations. As can be seen from the occupations
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FIG. 8. (a) Local multiplet probabilities ρ
 at time t = 0 (solid
lines) and at t = 32 after 1% photodoping (dashed lines) for a range of
temperatures T = 0.1 to 2.5 with W = 4, U = 15, and J/U = 0.04,
(b) their relative changes ρ
(t) − ρ
(0) in time, showing the processes
IIa (yellow) and IIb (red) of Fig. 1, (c) the kinetic energy Ek at
t = 0 and t = 32, and (d) scaled time derivatives of the two doublon
excitation multiplet densities. The shape of the markers indicates the
temperature. In (b) and (d), real-time results for initial temperatures
T = 0.1 (left triangles), 0.3 (circles), 0.5 (squares), 1.0 (up triangles),
and 2.5 (right triangles) are shown.

at time t = 32 after the pulse [dashed lines in Fig. 8(a)], the
pump-induced redistribution in the doublon subsector is also
of the order of one percent.

While the absolute changes in the probability distribution
among the local multiplet states 
 are small, the time-
dependent deviations from the initial state �ρ
(t) ≡ ρ
(t) −
ρ
(0) are nontrivial, see Fig. 8(b). Due to the large Mott
gap and the induced conservation laws Eqs. (7) and (8) the
three state dynamics in the doublon sector is captured by
the occupation probabilities of the two excited doublons. The
excited doublon densities (red and yellow) show an initial
fast exponential rise followed by a slow near linear drift, see
Fig. 8(b). The speed in the initial rise of the high-energy
doublon (yellow) as compared to the low-energy one (red)
correlates well with the difference in their multiplet energies

FIG. 9. Change in the local multiplet probability relative to the
initial ground state, �ρ
(t) ≡ ρ
(t) − ρ
(0), for several different
photodoping densities (left). Rescaling with the long-time singlon-
triplon photodoping density ρ1,3(t = 32) reveals more clearly the
doping dependence of the low spin doublon (red and yellow)
conversion rate (right). The color coding is defined in Fig. 8.

(J and 3J ). Intriguingly, when extrapolating the exponential
rise back to t = 0 (disregarding the 2π/U oscillations at short
times), we find that all doublon densities extrapolate to a
−1/3% absolute reduction as compared to the initial state.
In other words, the 1% photodoping increase of the singlon-
triplon and holon-quadruplon states by the high-frequency
pulse results in a rapid and even reduction of 1/3% of all three
doublon states. This, however, requires all doublon states to
be populated in the initial state, i.e., J � T .

The slower dynamics at times t � 5 additionally conserves
the local interaction and kinetic energy, which can be seen in
the weighted time derivatives of the doublon occupations, see
Fig. 8(d). Every high-energy doublon with energy 3J decays
into three low-energy doublons with energy J by scattering
of the high-spin doublon background. This conversion cor-
responds to the derivative matching: ∂tρ2,[↑,↓] ≈ −3∂tρ2,[↑↓,0]

shown in Fig. 8(d). The dominant decay channel for this energy
conserving doublon conversion is, however, still mediated by
the singlon-triplon photodoped carriers. Thus the doublon
conversion rate is sensitive to the photodoping density, as
shown in Fig. 9.

While the pump generates singlon-triplon pairs with high
kinetic energy, the initial relaxation of the total kinetic
energy occurs during the initial fast rise for t � 5 (not
shown). The largest kinetic energy change (≈10%) occurs
at low initial temperatures, see Fig. 8(c), and it is substantial
considering the 1% fixed photodoping. At higher temperature
the photoinduced kinetic energy change is reduced since the
initial thermal state already populates the excited doublon
sector. In fact, the thermal activation of the low-energy doublon
results in a thermal blocking of its dynamics. This can be
seen from the monotonic reduction of the low-energy doublon
density (red) in Fig. 8(b). At low temperature, the dynamics is
dominated by the low-energy doublon, but as temperature is
increased its amplitude is rapidly suppressed [correlating with
its thermal activation in the initial state, see Fig. 8(a)]. For
temperatures T > J = 0.8, this reduction is so severe that the
high-energy doublon (yellow) exhibits the largest response to
the photodoping.

Interestingly, at T = 2.5, where the low-energy doublon
is almost completely thermally blocked, the initial −1/3%
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FIG. 10. (a) Local multiplet probabilities ρ
 at time t = 0 (solid
lines) and at t = 32 after 1% photodoping (dashed lines) for a range
of Hund’s couplings J/U = 0.04 to 0.15 with W = 4, U = 15, and
β = 10; (b) their relative changes ρ
(t) − ρ
(0) in time, showing the
processes IIa (yellow) and IIb (red) of Fig. 1 for J/U = 0.04 (left
triangles), 0.06 (circles), 0.10 (squares), and 0.15 (up triangles); (c)
rescaled time 2J t/(2π ) and magnitude (E
)2ρ2,
 of the two doublon
densities; and (d) total change of interaction energy in the doublon
subsector �Eint,2. The color-coded markers indicate the value of the
Hund’s coupling, and the arrows in (c) and (d) indicate the direction
of increasing J/U .

offset still persist. This can be understood as an effect of a
quasi instantaneous 1% photo doping change in the singlon-
triplon density which by probability conservation [Eq. (4)]
requires the doublon probability densities to be reduced by
an equal amount (assuming that the excitation is below the
holon-quadruplon threshold).

5. Hund’s coupling dependence

We finally investigate the dependence of the photocarrier
relaxation on the Hund’s coupling in Fig. 10 at fixed T = 0.1.
At this low initial temperature, the doublon excitations are
suppressed, while the singlon-triplon fluctuations persist at
almost one percent in the initial state, due to hopping driven

quantum fluctuations. However, one can still see thermal
activation effects of doublons at low J/U since in this limit
T ∼ J . For this reason, the low-energy doublon excitation
(red solid line) displays a marked increase for J/U � 0.08,
see Fig. 10(a).

The time dependence of the probability density changes in
Fig. 10(b) show that the roles of the doublon states when
tuning J/U are reversed, as compared to the increasing
temperature. For higher J/U , the high-energy doublon state
(yellow) is successively more suppressed, and the dynamics
is instead dominated by the low-energy doublon (red). The
suppression of the high-energy doublon can be understood by
kinetic energy arguments. At J/U � 0.09, the high-energy
doublon splitting 3J exceeds the bandwidth W = 4 and high
kinetic energy singlons and triplons can no longer excite these
high-energy doublons. We coin this effect kinetic freezing. It
acts in the opposite direction as compared to thermal blocking.

There is also an interesting structure in the short-time
dynamics of the doublon excitations, which directly reveals
their atomic-like properties. This manifests itself in the
damped oscillations occurring directly after the initial fast rise.
We find that this short-time dynamics exhibits a well defined
scaling with respect to the Hund’s coupling. The time and
amplitude rescaling

t → 3J

2π
t, �ρ
 → (E
)2�ρ
 (10)

approximately collapses the short-time doublon dynamics, see
Fig. 10(c). This time rescaling reveals that the frequency � of
the damped oscillatory response scales with Hund’s J . The
rescaled period t̄p = 1 for the high-energy doublon (yellow)
in Fig. 10(c) corresponds to a frequency � = 3J , while the
period t̄ = 3 for the low-energy doublon (red) corresponds
to a frequency � = J . Thus the short-time response contains
information on the multiplet splittings.

The amplitude scaling with the square of the multiplet
energy (E
)2 ∝ J 2 approximately collapses the probability
densities for the high-energy doublon (yellow). However, the
low-energy doublon dynamics (red) shows clear deviations
[Fig. 10(c)]. This deviation from the J 2 scaling of the low-
energy doublon occurs in the low J/U regime (J/U < 0.08),
where it is thermally activated in the initial state, see Fig. 10(a).

After the initial short-time dynamics t � 10, the system
still shows a conversion between doublon states, while the total
interaction and kinetic energy is conserved, see Fig. 10(d). This
is a direct analog to the temperature sweep results discussed
previously. Interestingly, we find that the conversion between
high and low-energy doublon excitations changes direction,
when going from low to high J/U . While the high-energy
doublon population indeed gets frozen when 3J > W , at even
higher J/U it starts to slowly grow with time. We speculate
that this effect has to do with direct high-energy doublon
to singlon-triplon transitions, since at J/U = 0.2 these two
states become degenerate. In this regime, the system becomes
unstable with respect to charge disproportionation [76], which
should have profound effects on the nonequilibrium dynamics.
However, since this requires rather high J/U that are not
commonly found in real materials we do not study this regime
here.

165104-10



HUND’s COUPLING DRIVEN PHOTOCARRIER . . . PHYSICAL REVIEW B 96, 165104 (2017)

While the preceding analysis of the relaxation dynamics
has been based on the single-particle spectral function and the
local many-body density matrix, the pseudoparticle method
provides a complementary view on the system’s dynamics in
terms of the pseudoparticle spectral functions. In particular,
from this analysis, it is evident that the dominant contribution
to the kinetic energy, and the kinetic energy relaxation, comes
from the singlon-triplon states. For details see Appendix A.

V. DISCUSSION AND CONCLUSIONS

A series of recent theoretical studies has shown that
already the single-band Hubbard model exhibits a nontrivial
thermalization dynamics after photoexcitation [17–19], in
particular an exponential dependence of the photocarrier
lifetime with the Mott gap [19–21], impact ionization in the
small gap regime U � W [22], and an unconventional nature
of the photodoped metallic state [23]. Nonlocal interactions
[26,33,34] and spin correlations [24,25] lead to qualitative
changes in the relaxation dynamics of the photocarriers, as
does the coupling to phonons [26–30].

The results of the present analysis show that local orbital
degrees of freedom and Hund’s coupling further enrich the
response to photodoping in the strongly interacting Mott
insulator, and lead to qualitatively new physics, which man-
ifests itself in new features of the nonequilibrium spectral
function and new relaxation time scales. This is central for
the understanding of pump-probe experiments, since most
correlated materials contain multiple orbitals in the vicinity
of the Fermi level (typically a mix of transition metal d states
and oxygen/pnictogen p orbitals) and cannot be represented by
an effective single-band Hubbard model. Here, we focused on
the case with strongly correlated orbitals only. The analysis of
a photodoped state with weakly correlated holes and strongly
correlated doublons, as realized for example in a d-p model
of cuprates, is an interesting topic for a separate future study.

To highlight the qualitative differences between the single-
and multiband systems, we have studied the dynamics of
the paramagnetic half-filled two-band Hubbard model with
local density-density interactions after a photodoping pulse.
By analyzing the dynamics of the local many body states
and the single-particle time-dependent photoemission spectra
(TD-PES), we identified a number of qualitatively new features
of multiorbital models. In particular, we observed additional
side peaks in the occupied TD-PES spectra, and showed that
these result from transitions between local states with one and
two electrons less than the nominal filling. This is a general
feature of multiorbital systems with several local occupation
states. We also observed a splitting of the photodoped carrier
population in the upper Hubbard band in the TD-PES spectra,
and showed that this is a direct effect of the Hund’s coupling.
The experimental observation of such a dynamic splitting
would be a “smoking gun” experiment for nonequilibrium
Hund’s physics. Note that, although these features have two
orders of magnitude lower intensity than the filled lower
Hubbard band in the TD-PES spectra (Fig. 4), the photo
doping density in the upper Hubbard band can be detected
experimentally, see, e.g., recent work on tantalum disulfide
(1T -TaS2) [5].

By studying the time evolution of the local many-body
states, we also identified two distinct multiorbital Hund’s cou-
pling effects, which we denoted thermal blocking and kinetic
freezing. Thermal blocking in the photodoping dynamics arises
when the temperature of the initial state competes with the
Hund’s splitting of the local states, T � J , inhibiting the
dynamics of thermally occupied local spin excitations. The
kinetic freezing effect on the other hand is the competition
between the Hund’s coupling J and the bandwidth W of
the electronic hopping. In the regime W � J , the internal
dynamics of the local spin excitations are frozen out since
the available kinetic energy is less than the energy J or 3J

required to generate such spin excitations.
An interesting venue for further studies is the photodoping

of the anti-ferromagnetic state, and its characteristic changes
with temperature. In this case, there is an additional energy
scale (the antiferromagnetic exchange coupling Jex), and the
relaxation dynamics will depend on the relative values of T ,
W , J , and Jex. It should also be interesting to investigate the
quantitative changes in the dynamics of the two-band model
when going from the density-density interaction case studied
here to the rotationally invariant Kanamori interaction (setting
γ = 1 in Eq. [2]). Since this changes the degeneracy of the
doublon states and modifies the multiplet splittings [62], from
J and 3J to 2J and 4J , we expect the onset of thermal blocking
and kinetic freezing to shift.

An interesting material to explore some of the Hund’s
coupling effects discussed in this paper is the paramagnetic
Mott insulator Ca2RuO4. A recent ARPES study of this
material, and a combined density functional theory plus DMFT
investigation [77] suggest that spectral features originating
from the Hund’s coupling are present already in equilibrium.
Since the proposed effective local interaction parameters
for this system yield J/U ≈ 0.17 we predict that a time-
dependent photo emission study with pump excitation across
the Mott gap of ≈2.7 eV should produce a pronounced splitting
in the photocarrier distribution in the upper Hubbard band,
qualitatively similar to what we observe in Figs. 4(c) and 4(d).
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APPENDIX A: LOCAL MANY-BODY VIEW
ON RELAXATION

The pseudoparticle approach does not only give access to
the local many-body density matrix, but also to spectroscopic
information on the local many-body states (the pseudopar-
ticles). The equilibrium pseudoparticle spectral functions
Ĝ
(ω,t) for all local many-body states 
 are shown in
Fig. 11(a). The three doublon states, the high-spin S = 1 state
(green), and the high- (yellow) and low-energy (red) S = 0
doublon states (split by J and 3J ) are the lowest-energy
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FIG. 11. Equilibrium pseudoparticle frequency Green’s function
ĜR


 (ω) for U = 15, β = 1, J/U = 0.06 (a). [(b)–(e)] Change
in the lesser pseudoparticle Green’s function, �G<


 (ω,T ) =
G<


 (ω,T ) − G<

 (ω,4), relative to absolute time T = 4 for times

T = 6,8,10,12,14, for J/U = 0.02 [(b) and (c)] and J/U = 0.06
[(d) and (e)].

pseudoparticles at half-filling. The singlon-triplon states are
intermediate in energy (at ω ≈ 10) and the holon-quadruplon
states (at ω ≈ 30) are the highest energy local many-body
states. The singlon-triplon states are the only ones that are
dispersive, with a smeared-out spectral distribution. All other
states, the doublons and holon-quadruplons are delta-peak-like
resonances (the peak widths in Fig. 11 are due to a limited
frequency resolution).

Since only the singlon-triplon states are dispersive, kinetic
energy relaxation is restricted to these states. Hence the
singlon-triplon scattering processes (IIa and IIb), schemati-
cally shown in Fig. 1, are the relevant processes for relaxing
excess kinetic energy in the photodoped Mott insulator. This
can also be seen in the time-dependent change in the singlon-
triplon occupied density of states [Fig. 11(c)], where spectral
density is redistributed with time from high to low frequencies
within the singlon-triplon pseudoparticle band. As previously
noted, the speed of the kinetic relaxation is controlled by the
Hund’s coupling J and comparing J/U = 0.02 and 0.06 the
relaxation is only visible in the time range t = 6 to 14 for
the lower value of J , compare Figs. 11(c) and 11(e) [note the
order-of-magnitude scale difference between panels (b), (d)
and (c), (e)].

The redistribution within the doublon sector can also
be analyzed in terms of the time-dependent pseudoparticle
spectral function, see Figs. 11(b) and 11(d). For J/U =
0.02 [Fig. 11(b)], we observe the redistribution from the
high-spin S = 1 doublon (green) to the high-energy S = 0
doublon (yellow), while the spectral weight of the low-energy
S = 0 doublon (red) shifts down in energy. For J/U = 0.06
[Fig. 11(d)] the situation is markedly different. The high-
energy S = 0 doublon (yellow) is now well separated from
the S = 1 and low-energy S = 0 doublons (green and red) and
only a conversion between the last two occurs on the time scale
of the calculations. This is a prime example of kinetic freezing
of the high-energy doublon state.

We also note that the pseudoparticle spectral function
enables a qualitative understanding of the single-particle
spectral function. In particular, the three-peak structure in the
upper Hubbard band of Fig. 5(g), corresponding to the removal
processes |3〉 → |2,
〉, can be understood as the convolution
of the lesser triplon spectral function Ĝ<

0,3 and the retarded
doublon spectral functions ĜR

2,
 .

APPENDIX B: PSEUDOPARTICLE
STRONG-COUPLING-DIAGRAM SYMMETRY ANALYSIS

While it is straightforward to write down all symmetry
allowed pseudoparticle strong coupling self-energy and single-
particle Green’s function diagrams in, e.g, the DMFT approach
for the single-band Hubbard model, the number of possible
diagrams and symmetries proliferate when going to multior-
bital systems, general interactions, and spontaneous symmetry
broken states. In order to exploit (simple) symmetries in the
diagrams and thereby reduce the computational effort, we have
implemented an automated numerical symmetry analysis for
the first- and second-order diagrams.

The approach builds on top of the standard block diagonal-
ization of the local Hamiltonian, H

′ → Hs,

′ , and the pseu-
doparticle propagator Ĝ(t1,t2) ≡ Ĝ(12) → Ĝs,

′ (12) into
blocks s of Hilbert space states 
 [48]. This procedure
is analogous to the block diagonalization employed in the
continuous-time quantum Monte Carlo hybridization expan-
sion, see Section X.F.1 in Ref. [64] for an in-depth discussion.
The blocks are constructed so that each block s is only
connected to a single other block s ′ by the application of a
creation or annihilation operator ca ≡ cασ and c

†
ā = c†ασ , where

a is a super index containing orbital (α) and spin (σ ) indices.
Using the matrix notation developed in Ref. [78] the

pseudoparticle strong coupling first-order self-energy �̂NCA

(i.e., the noncrossing approximation, NCA) takes the form

�̂NCA(12) = i
∑
āb

(�āb(12)[c†āĜ(12)cb]

−�āb(21)[cbĜ(12)c†ā]), (B1)

see Appendix B in Ref. [78]. Using the blocking of the local
Hilbert space the self-energy �̂NCA

s (12) of the block s can be
written as

�̂NCA
s (12) =

∑
āb

∑
s̄

∑
η=←,→

ŜNCA
ss̄,η,āb(12), (B2)
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Data: All diagram indices γ = {ss̄, η, āb}
Result: The set U and the factors Cs,γ′
U = [ ];
for all γ = {ss̄, η, āb} do

calculate Ŝγ ;
for γ′ ∈ U do

if Ŝγ = Ŝγ′ then
Csγ ,γ′ += 1;

else if Ŝγ = −Ŝγ′ then
Csγ ,γ′ −= 1;

else
append γ to U ;
for s in all Hilbert space blocks do

Cs,γ = 0;
end
Csγ ,γ = 1;

end

end

end

FIG. 12. Algorithm for the PPSC first-order (NCA) self-energy
diagram symmetry analysis.

where ŜNCA
ss̄,η,āb(12) are the single self-energy diagram contri-

butions

ŜNCA
ss̄,←,āb(12) ≡ +i�āb(12)[(c†ā)ss̄ Ĝs̄(12) (cb)s̄s], (B3)

ŜNCA
ss̄,→,āb(12) ≡ −i�āb(21)[(cb)ss̄ Ĝs̄(12) (c†ā)s̄s], (B4)

with a forward (η =←) or backward (η =→) propagating
insertion of the hybridization function �āb.

The automatic symmetry analysis involves two steps. First,
it performs a short-time propagation of all the diagram con-
tributions ŜNCA

ss̄,η,āb(12). Then, the contributions are compared
and classified to be equal or different (up to a sign and a fixed
numerical accuracy). We then construct a set UNCA

� of indices
γ = {η,āb,ss̄} ∈ UNCA

� with only one diagram representative
from each class, and for each such index γ we store the

class’ contribution to each self-energy sector s ′ in the scalar
factors CNCA

s ′,γ . These steps are detailed in Fig. 12.
For the long-time simulations, this information is used

to calculate one and only one unique diagram ŜNCA
γ per

diagram class, which allows to calculate the self-energy as
the symmetry reduced sum

�̂NCA
s (12) =

∑
γ∈UNCA

�

CNCA
s,γ ŜNCA

γ (12). (B5)

This approach substantially speeds up the calculations in sym-
metric cases such as particle-hole symmetry, spin degeneracy,
etc., while also allowing the study of situations with no or
reduced symmetry.

1. Second-order pseudoparticle self energy

The symmetry analysis is general and also applicable to
the second-order PPSC self-energy �̂OCA(12) (i.e., the one-
crossing approximation, OCA). At second order, the diagrams
contain two crossing hybridization-function insertions, which
yields four directed diagram contributions

�̂OCA(14)

=
∑
āb

∑
c̄d

∫
d2d3 (+�āb(13)�c̄d (24)

× [c†āĜ(12)c†c̄Ĝ(23)cbĜ(34)cd ]

−�āb(13)�c̄d (42)[c†āĜ(12)cdĜ(23)cbĜ(34)c†c̄]

−�āb(31)�c̄d (24)[cbĜ(12)c†c̄Ĝ(23)c†āĜ(34)cd ]

+�āb(31)�c̄d (42)[cbĜ(12)cdĜ(23)c†āĜ(34)c†c̄]).

(B6)

When introducing the Hilbert space blocks s, the complete
sum takes the form

�̂OCA
s (14) =

∑
ābc̄d

∑
s1s2s3

∑
η

∫
d2d3 ŜOCA

s,s1s2s3,η,ābc̄d (1234),

(B7)
with the four directional contributions

ŜOCA
s,s1s2s3,←←,ābc̄d (1234) ≡ +�āb(13)�c̄d (24)

[
(c†ā)ss1Ĝs1 (12)(c†c̄)s1s2Ĝs2 (23)(cb)s2s3Ĝs3 (34)(cd )s3s

]
, (B8)

ŜOCA
s,s1s2s3,←→,ābc̄d (1234) ≡ −�āb(13)�c̄d (42)

[
(c†ā)ss1Ĝs1 (12)(cd )s1s2Ĝs2 (23)(cb)s2s3Ĝs3 (34)(c†c̄)s3s

]
, (B9)

ŜOCA
s,s1s2s3,→←,ābc̄d (1234) ≡ −�āb(31)�c̄d (24)

[
(cb)ss1Ĝs1 (12)(c†c̄)s1s2Ĝs2 (23)(c†ā)s2s3Ĝs3 (34)(cd )s3s

]
, (B10)

ŜOCA
s,s1s2s3,→→,ābc̄d (1234) ≡ +�āb(31)�c̄d (42)

[
(cb)ss1Ĝs1 (12)(cd )s1s2Ĝs2 (23)(c†ā)s2s3Ĝs3 (34)(c†c̄)s3s

]
. (B11)

Also, in this case, all diagram contributions ŜOCA
ν (12) ≡∫

d2d3 ŜOCA
s,s1s2s3,η,ābc̄d (1234) are calculated for a short-time

evolution and separated in classes represented by a unique
index combination ν = {η,ābc̄d,s,s1s2s3} and scalar weight
factors COCA

s,ν giving �̂OCA
s as a sum analogous to Eq. (B5),

�̂OCA
s (12) =

∑
ν∈UOCA

�

COCA
s,ν ŜOCA

ν (12). (B12)

2. Single-particle Green’s function

The first- and second-order diagrams for the single-particle
Green’s function gab̄(12) can analogously be decomposed into
diagram contributions:

GNCA
γ (12) ≡ GNCA

s1s2,ab̄
(12) (B13)

GOCA
ν (12) ≡

∫
d1̄d2̄GOCA

s1s2s3s4,η,ab̄c̄d
(11̄2̄2), (B14)
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respectively. The first-order (NCA) contribution to gab̄(12) is given by the expression

gNCA
ab̄

(12) = Tr[iĜ(21)caĜ(12)c†
b̄
] =

∑
s1s2

GNCA
s1s2,ab̄

(12), (B15)

see Appendix B in Ref. [78], where the diagram contributions GNCA
s1s2,ab̄

(12) are given by

GNCA
s1s2,ab̄

(12) ≡ Tr
[
iĜs1 (21) (ca)s1s2 Ĝs2 (12) (c†

b̄
)s2s1

]
. (B16)

The second-order (OCA) contribution on the other hand contains a directed internal hybridization insertion, yielding the closed
bubble diagrams

gOCA
ab̄

(13) =
∑
c̄d

∫
d2d4 (−�c̄d (24)Tr[Ĝ(41)caĜ(12)c†c̄Ĝ(23)c†

b̄
Ĝ(34)cd ] − �c̄d (42)Tr[Ĝ(41)caĜ(12)cdĜ(23)c†

b̄
Ĝ(34)c†c̄]),

(B17)

whose contributions can be collected as

gOCA
ab̄

(13) =
∑
c̄d

∑
s1s2s3s4

∑
η

∫
d2d4GOCA

s1s2s3s4,η,ab̄c̄d
(1234), (B18)

where the forward (η =←) and backward (η =→) contributions are defined as

GOCA
s1s2s3s4,←,ab̄c̄d

(1234) ≡ −�c̄d (24)Tr
[
Ĝs1 (41)(ca)s1s2Ĝs2 (12)(c†c̄)s2s3Ĝs3 (23)(c†

b̄
)s3s4Ĝs4 (34)(cd )s4s1

]
, (B19)

GOCA
s1s2s3s4,→,ab̄c̄d

(1234) ≡ −�c̄d (42)Tr
[
Ĝs1 (41)(ca)s1s2Ĝs2 (12)(cd )s2s3Ĝs3 (23)(c†

b̄
)s3s4Ĝs4 (34)(c†c̄)s4s1

]
. (B20)

The symmetry reduction proceeds in exactly the same way as for the self-energy diagrams by mapping each unique diagram
class’ contribution GNCA

γ (12) and GOCA
ν (12) (with γ = {ab̄,s1s2} and ν = {η,ab̄c̄d,s1s2s3s4}) to gab̄(12) through scalar factors,

CNCA
ab̄,γ

and COCA
ab̄,ν

respectively, i.e.,

gab̄(12) =
∑

γ∈UNCA
g

CNCA
ab̄,γ

GNCA
γ (12) +

∑
ν∈UOCA

g

COCA
ab̄,ν

GOCA
ν (12). (B21)

Also for the single-particle Green’s function gab̄(12), the number of components γ and ν that needs to be evaluated is reduced
for systems with symmetries, such as, particle-hole symmetry (when the forward and backwards contributions are equal), and
orbital degeneracy where all spin-orbital index pairs aā are equal.
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