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We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions.
We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting
leads that enable the topological nodal points in the spectrum of Andreev states. When the scattering matrix
possesses time-reversal symmetry, the gap closing occurs at special stationary points that are topologically trivial
as they carry vanishing Berry fluxes. In contrast, for the time-reversal broken case we find topological monopoles
of the Berry curvature and corresponding phase transition between states with different Chern numbers. The
latter is controlled by the structure of the scattering matrix that can be tuned by a magnetic flux piercing through
the junction area in a three-terminal geometry. The topological regime of the system can be identified by nonlocal
conductance quantization that we compute explicitly for a particular parametrization of the scattering matrix in
the case where each reservoir is connected by a single channel.

DOI: 10.1103/PhysRevB.96.161406

Introduction. The Wigner-Dyson classes of Gaussian
random-matrix ensembles of orthogonal, unitary, and sym-
plectic symmetry [1–3] play a central role in mesoscopic
physics, as they describe the universal ergodic limit of
disordered and chaotic single-particle systems. The power
of such random-matrix theory (RMT) description is that
it enables predictive statements about the properties of a
system, such as level statistics and level correlations, transport
conductance and its fluctuations, etc., by circumventing the
need for a microscopic description of the system [4]. Study
of normal-superconductor hybrid mesoscopic devices carried
out by Altland and Zirnbauer [5] led to the extension in
applications of RMT phenomenology in solid-state systems
to include nonstandard Cartan symmetry spaces. This work
paved the way for a complete classification of gapped phases
of noninteracting fermions [6–9] (see also recent reviews
[10,11]). In any given spatial dimension only five of the ten
symmetry classes host topologically nontrivial phases. The
topology can be identified as a mapping from the properties of
bands in the Brillouin zone to a certain integral invariant such
as a Chern number [12].

The early surge for band topology was concentrated
around various lattice models: Haldane [13], Kane-Mele
[14], Bernevig-Hughes-Zhang [15], and Kitaev [16], which
has since been expanded to include crystalline symmetries
[17]. These initial ideas, spread across different physics
disciplines and topological properties, are being discovered
and extensively studied beyond crystals. The list of examples
includes photonic arrays, coupled resonators, metamaterials
and quasicrystals [18], colloids [19], and even amorphous
media [20], while some of the proposed lattice Hamiltonians
were realized with cold atoms [21].

Most recently, it was proposed that topological properties
of various kinds can be effectively engineered and manipulated
in multiterminal Josephson junctions (JJs) [22–26]. One
of the most crucial aspects of this fruitful idea, from the
standpoint of its experimental realization, is that such band
topology engineering does not require the material constituents
forming the junction to be topological. Rather, the topology
emerges by design and is harbored by the subgap Andreev
bound states (ABS) localized in the junction. The core

essence of the idea can be summarized as follows. The ABS
spectrum in a two-terminal junction is a periodic function
of superconducting phase difference. This is an equivalent
to a dispersion relation of a particle in a one-dimensional
crystal, where the superconducting phase difference plays the
role of momentum and its periodicity modulo 2π mimics a
Brillouin zone. Extending this analogy to a three-terminal
junction yields two-dimensional sheets of Andreev levels
controlled by two phase differences between superconducting
terminals. Remarkably, this system can realize an analog of
quantum spin Hall insulator as characterized by a quantized
conductance, even though the underlying physics is very
different. The four-terminal junctions can further realize
three-dimensional Weyl singularities in the ABS spectra that
carry topological Berry fluxes. The topological properties
of the ABS spectra are determined by the details of the
normal-region scattering matrix connecting superconducting
leads. However, the precise requirements for the occurrence of
band topology are not yet well understood in general. We find
some exact analytical results for a particular realization of a
scattering matrix from the orthogonal and unitary symmetries
in a limit where each superconducting reservoir is linked by
a single conduction channel. We find Weyl singularities in
the three-terminal setup when the system lacks time-reversal
symmetry and fully explore the topological phase diagram
of the model. These results may guide future experimental
searches and trigger further theoretical generalizations.

Scattering matrix formalism. Formation of the subgap
bound states in the JJs is the result of coherent multiple
Andreev reflections that describe electron-to-hole conversion
at the superconductor-normal (SN) interface. In transport
theory the spectrum of such localized states can be found
by the Beenakker’s determinant formula [27]

Det[1 − γ (ε)r̂Aŝ∗(−ε)r̂∗
Aŝ(ε)] = 0, (1)

where γ (ε) = exp(−2i arccos ε). For brevity we assume that
all superconducting terminals have the same energy gap �

and choose to measure energies in units of � so that ε

is dimensionless. We also assume spin-rotation symmetry.
Equation (1) has a transparent physical meaning. Indeed, the
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diagonal matrix r̂A = eiθ̂ corresponds to Andreev reflections
at the junction interfaces, with θ̂ = diag{θ0,θ1, . . .} being the
corresponding phases of superconducting terminals, while
γ (ε) captures an additional phase shift due to the mismatch
of electron and hole quasimomenta. The scattering matrix
ŝ(ε) [ŝ∗(−ε)] describes propagation of electron [hole] -like
excitations in the normal region of the junction between
superconductors.

We begin our analysis by a brief recap of essential
results that follow from Eq. (1) in two-terminal junctions.
In the RMT limit, which neglects energy dependence of
the normal-region scattering matrices, there is one-to-one
correspondence between the spin-degenerate energy spectrum
of ABS εk = ±

√
1 − Tk sin2 θ/2 and transmission eigenvalues

of the scattering matrix Tk , where the index k labels conduction
channels in the junction k = 1, . . . ,N . For each channel,
Andreev levels come in opposite-energy pairs and each level is
doubly degenerate as a consequence of the Kramers theorem.
The Andreev levels cross at θ = π for perfectly transmitting
channels Tk = 1, while exhibiting avoided crossings for any
finite transparency Tk < 1 with the gap 2

√
1 − Tk . Physically

the RMT limit corresponds to the approximation L/ξ →
0, where L is the length of the junction and ξ is the
superconducting coherence length, which is justified for point-
contact/quantum-dot junctions. Relaxing on this condition
leads to the appearance of several qualitatively new features
in the spectra of ABS: (i) For a small but finite L/ξ , the
Andreev levels decouple from the continuum of states at
phases θl = 2πl, with l ∈ Z, which is in contrast to the
RMT result εk(θl) = ±1, and the energy of decoupling δ is
of the order δ ≈ (L/ξ )2. (ii) For a longer junction L/ξ �
1, the decoupling energy grows and a new pair of levels
emerges within the energy window ε ∈ ±[1 − δ,1]. (iii) Once
L/ξ � 1 the Andreev levels start to densely populate all the
subgap region and form a band with small level spacing. To
capture the crossover regime to a long junction one has to
employ semiclassical methods based on either the Eilenberger
equation for ballistic junctions [28] or the Usadel equation
for diffusive ones [29]. (iv) Inclusion of spin-orbit interaction
couples the spin of the bound states to the superconducting
phase difference and lifts the Kramers degeneracy of the
spectrum. This leads to additional features appearing both
at zero energy and at the gap edges. All these complexities
attracted much attention recently with a particular emphasis
on three-terminal [22,26,30] and four-terminal [23–25,31–33]
junctions.

Andreev spectra. Three-terminal Josephson junctions, as
schematically shown in Fig. 1(a), are the main focus of
our work. Because of the overall gauge invariance, one
superconducting terminal can be considered at zero phase
θ0 = 0 so that the ABS spectrum in the device is controlled
by the remaining two phases θ1,2 and particular properties of
the scattering matrix ŝ. Current conservation implies that ŝ is a
unitary matrix: ŝ−1 = ŝ†. Its size is determined by the sum of
the numbers of incoming modes in the leads. For simplicity we
analyze Eq. (1) for the energy-independent scattering matrix
relevant for the RMT limit. Furthermore, we assume that
each superconducting terminal is coupled by only a single
conducting channel.

FIG. 1. (a) Schematics of a three-terminal Josephson junction.
Solid (dash) lines indicate electron (hole) propagation, ŝ(	) is
the normal-region scattering matrix that can be tuned by external
magnetic flux 	, and r̂A is the Andreev reflection matrix. (b) Phase
diagram for ϕ = 0. For b ∈ [b−(a,0), b+(a,0)] there is a pair of
zero-energy states at �±, as shown in (c). (c) The example of a
gapless ABS spectrum for a = 0.3, b = 1/

√
2, ϕ = 0, and (d) gapped

spectrum for a = 0.3, b = 0.9, ϕ = 0.

When the system lacks time-reversal symmetry, unitarity is
the only constraint on ŝ. This corresponds to a circular unitary
ensemble in the RMT classification. Thus for a single-channel
limit of three-terminal devices under consideration the normal-
region scattering matrix sij has size 3 × 3 and in general can
be determined by nine real parameters [34]:

s11 = aeiϕ11 , s12=b
√

1 − a2eiϕ12 , s31=
√

(1−a2)(1−c2)eiϕ31 ,

s13 =
√

(1 − a2)(1 − b2) eiϕ13 , s21 = c
√

1 − a2 eiϕ21 ,

s22 = −abc ei(ϕ12+ϕ21−ϕ11) +
√

(1 − b2)(1 − c2)eiϕ22 ,

s23 = −eiϕ13 [ac
√

1 − b2 ei(ϕ21−ϕ11) + b
√

1 − c2ei(ϕ22−ϕ12)],

s32 = −eiϕ31 [ab
√

1 − c2 ei(ϕ12−ϕ11) + c
√

1 − b2ei(ϕ22−ϕ21)],

s33 = ei(ϕ13+ϕ31)[−a
√

(1−b2)(1−c2)e−iϕ11+bc ei(ϕ22−ϕ12−ϕ21)],

(2)

where a,b,c ∈ [0,1], and ϕ11,22,12,13,21,31 ∈ [0,2π ]. Interest-
ingly, for this case Eq. (1) can be written as a cubic
antipalindromic equation (γ − 1)(γ 2 − 2Bγ + 1) = 0, which
gives a flat-band solution ε = 1 and a dispersive band solution

ε(θ1,θ2) =
√

B(θ1,θ2) + 1

2
, (3)
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where the B function reads

B = 1
2 [2a2 − (1 + a2)(b2 + c2 − 2b2c2)

− 4abc
√

(1 − b2)(1 − c2) cos ϕ]

+ bc(1 − a2) cos ϑ1 + (1 − a2)
√

(1 − b2)(1 − c2) cos ϑ2

+ [bc(1+a2)
√

(1−b2)(1−c2)+a(b2+c2−2b2c2) cos ϕ]

= × cos(ϑ1 − ϑ2) + a(b2 − c2) sin ϕ sin(ϑ1 − ϑ2). (4)

Here ϑ1,2 = θ1,2 + φ1,2 are shifted superconductor phases with
φ1 ≡ ϕ12 − ϕ21, φ2 ≡ ϕ13 − ϕ31, and ϕ ≡ ϕ11 + ϕ22 − ϕ12 −
ϕ21. Consequently, there are only six independent parameters
of the scattering matrix {a,b,c,ϕ,φ1,2} that enter the spectrum
of ABS. Furthermore, φ1,2 only shift the phases of the leads.
Each band has its mirror image at ε → −ε.

The presence of time-reversal symmetry imposes additional
constraints. In particular, if in addition spin-rotation symmetry
is present, which corresponds to a RMT circular orthogonal
ensemble, then the scattering matrix is unitary and symmetric:
ŝ = ŝT . For a 3 × 3 matrix this implies only six independent
real parameters, which can be reduced from the parametriza-
tion in Eq. (2) by setting c = b and φ1,2 = 0, so that the B

function in Eq. (4) is simplified to

B = a2 + (1 − a2)[b2 cos θ1 + (1 − b2) cos θ2]

−2b2(1 − b2)(1 + a2 + 2a cos ϕ) sin2

(
θ1 − θ2

2

)
, (5)

while the ABS spectrum is still given by Eq. (3). This
particular limit admits a complete analytical solution. The
Andreev energy spectrum has six potential stationary points:
�1 = (0,0),�2 = (π,π ),�3 = (π,0),�4 = (0,π ),�+ =
(θ0

1 ,θ0
2 ), �− = (2π − θ0

1 ,2π − θ0
2 ), where θ0

1 =
arccos [ 2a2−F1(a,b,ϕ)

b2 F2(a,b,ϕ) ] and θ0
2 = 2π − arccos [−1−a4+F1(a,b,ϕ)

(1−b2) F2(a,b,ϕ) ],

with F1(a,b,ϕ) = −2a(1 − 2b2) cos ϕ(1 + a2 + a cos ϕ) +
(1 + a2)2b2, and F2(a,b,ϕ) = (1 − a2)(1 + 2a cos ϕ + a2)
so that θ0

1 ∈ [0,π ] and θ0
2 ∈ [π,2π ]. In general �1 is the

maximum point with energy ε(�1) = 1 and �2 a saddle point
with ε(�2) = a. For convenience we introduce the functions

b+(a,ϕ) =
√

1 + a cos ϕ

1 + 2a cos ϕ + a2
, b−(a,ϕ) = √

ab+(a,ϕ),

(6)

such that b+(a,ϕ) ∈ [1/
√

2, 1] and b+(a,ϕ) ∈ [0, 1/
√

2] as a

changes in a range a ∈ [0,1] for a fixed value of ϕ. When
b ∈ [b+(a,ϕ), 1], �3 is the minimum point with energy

ε(�3) =
√

1 − 2b2 + (1 + a2)b4 − 2ab2(1 − b2) cos ϕ,

(7)

�4 is a saddle point, and no solution exists for �±. When
b ∈ [0, b−(a,ϕ)], �4 is the minimum point with energy

ε(�4) =
√

b4 − (1 − b2)[a2(1 − b2) + 2ab2 cos ϕ], (8)

�3 is a saddle point, and no solution exists for �±. Finally,
when b ∈ [b−(a,ϕ), b+(a,ϕ)], �± are such that

ε(�±) = a| sin ϕ|√
a2 + 2a cos ϕ + 1

, (9)

FIG. 2. Phase diagram and the Chern number C12 of Andreev
bounds states for three-terminal Josephson junctions in the case of
broken time-reversal symmetry. We take b = √

1 − c2 for simplicity.
C12 as a function of parameters of the scattering matrix: (a) a and b

for ϕ = π , and (b) b and ϕ for a = 0.3, respectively.

and �3,4 are saddle points. When ϕ = 0 there is a pair of
zero-energy states at �±, as shown in Fig. 1(c). As ϕ passes
through zero, the energy gap closes and reopens. The gapped
phase is shown in Fig. 1(d), whereas the phase diagram in a
parameter space of {a,b} is shown in Fig. 1(b).

We can further derive an effective low-energy Hamiltonian
by expanding the Andreev spectrum about �τ (τ = ±), which
takes the form of massive Dirac fermions in two dimensions
Ĥτ = V̂ τ · P + Mσ̂3, where effective momentum P is a
rotation of δ� ≡ � − �τ : P = R̂τ (a,b)δ�, σ̂i are Pauli
matrices operational in the basis of the two degenerate states,
and V̂ τ = [vτ,1(a,b)σ̂1,vτ,2(a,b)σ̂2] the effective velocity. The
rotation matrix R̂τ and velocity components are determined by
the eigenproblem of the matrix Ĉτ , with Cτ,ij ≡ 1

4∂θi
∂θj

B(ϕ =
0)|�=�τ

: R̂τ Ĉτ R̂
−1
τ = diag{v2

τ,1,v
2
τ,2}. Finally, the Dirac mass

M(a,b,ϕ) = ε(�±) [Eq. (9)] is positively defined for any
phase value of the scattering matrix so that this case is
topologically trivial.

In contrast, in the absence of time-reversal symmetry the
ABS bands become topologically nontrivial, in particular, due
to the condition b 	= c. This most interesting scenario can
be realized by applying a magnetic flux piercing the normal
junction area [26]. Depending on the choice of parameters
and fluxes in our model we find very rich behavior of the
energy bands. For a special case b = √

1 − c2 and ϕ = π the
spectrum can be studied analytically and reveals nontrivial
topology, as exemplified in Figs. 2 and 3. Weyl points appear at
ϑ0

1 = ϑ0
2 = π for b = b±(a) with b±(a) ≡ 1±√

a

2
√

1+a
. We define

b0 = 1/
√

2 representing the time-reversal-symmetric point.
The Chern number for the bands of ABS can be computed
according to the standard procedure by integrating Berry
curvature over the unit cell spanned by phases θ1,2 [24–26],

C12= 1

2π

∫∫ 2π

0
dθ1dθ2 B12, B12=−2

∑
k

Im〈∂θ1ψk|∂θ2ψk〉,

(10)

where B12 is the Berry curvature with |ψk〉 being the bound
state k. For our model the Chern number as a function of a
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FIG. 3. Energy spectrum of Andreev bounds states for three-
terminal Josephson junctions in the case of unitary symmetry of
the scattering matrix in the normal region of the junction. We take
the same parameters as those in Fig. 2(a) and fix a = 0.3. (a) Chern
number as a function of b, and (b)–(f) the Andreev spectra at b = 0.1,
b−, b0, b+, and 0.99, indicted in (a).

and b reads [see Fig. 2(a)]

C12 =
⎧⎨
⎩

0, a ∈ [0,b−) ∪ (b+,1],
+1, a ∈ (b−,b0),
−1, a ∈ (b0,b+).

(11)

We note that the Chern number vanishes C12 = 0 at the
time-reversal-symmetric point b = b0 and takes opposite signs
C12 = sgn(b0 − b) for b ≈ b0. In Fig. 2(b) we also show the
numerical result for the phase diagram of trivial-to-topological
quantum phase transitions as a function of b and ϕ for a fixed
parameter a.

Conductance and Chern numbers. As shown in Ref. [24],
the existence of Weyl points in the multiterminal JJs can
be probed by nonlocal conductance measurements that are
expected to be quantized in the topological regime. Indeed,
the current flowing into the first lead as a result of applied

subgap voltage eV2 
 � to the second lead is of the form

I1(t) = 2e�

h̄
∂θ1ε − 2eθ̇2B12, (12)

where by virtue of the second Josephson equation θ̇2 =
2eV2/h̄. The first term in Eq. (12) corresponds to the adiabatic
current, and the second term is the first-order correction that
is in a way an anomalous velocity component governed by the
Berry curvature B12. In this sense, the instantaneous current
can be used to directly assess the Berry curvature [35–39].
When two incommensurate voltages are applied to both leads,
the two phases uniformly sweep an effective Brillouin zone
of the ABS band structure. In the dc limit the adiabatic
current averages out to zero, whereas the anomalous velocity
component is replaced by its average value. As a result, the
current is linear in the voltages Īα = GαβVβ and conductance
is defined by the Chern number

G12 = −4e2

h
C12, (13)

with C12 taken from Eq. (11) within our model. A particular
example is depicted in Fig. 3(a). The corresponding shapes
of Andreev bands are displayed in Figs. 3(b)–3(f). We do not
delve into a detailed discussion of the conditions required for
observability of quantized conductances as both Landau-Zener
nonadiabatic conditions and inelastic relaxation processes
play an important role. This analysis was carried out in
Ref. [25] for the four-terminal setup with an estimate that
topological quantization becomes visible for voltages of the
order � 10−2�/e.

Summary and outlook. We considered a simple model of
a three-terminal Josephson junction that realizes the band
topology of subgap Andreev levels. Weyl singularities appear
in the spectrum when the system lacks time-reversal symmetry.
The latter is captured by the properties of the scattering matrix
of the normal region connecting superconducting leads and can
be tuned by external magnetic flux piercing the junction area.
The topological regime is quantified by nonvanishing Chern
numbers that translate into a quantized nonlocal conductance.
Three- and four-terminal Josephson junctions have been
recently realized in experiments [40–42]. These advances open
new avenues not only to study new physics of topological
mesoscopic superconducting systems, but also to explore
opportunities in implementing these multiterminal devices
into superconducting qubits to seek topological protection
in quantum computation, high fidelity gates, and potentially
braiding operations by voltage pulses. It is also important to
clarify how such artificial multiterminal “materials” fit into
the standard periodic table of topological semimetals as they
are conceptually distinct. In terms of transport theories it is
of interest to investigate whether multiterminal JJs may also
provide an alternative platform to study properties of Weyl
semimetals related to chiral anomaly both within and beyond
the linear response.

Note added. We recently learned about the work of Ref. [26]
where the nontrivial Chern numbers of Andreev bound states
were also studied in three-terminal Josephson junctions. We
reach the same conclusions as in Ref. [26], albeit we study a
different model.
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821 (2014).
[19] B. Senyuk, Q. Liu, S. He, R. D. Kamien, R. B. Kusner,

T. C. Lubensky, and I. I. Smalyukh, Nature (London) 493, 200
(2013).

[20] Adhip Agarwala and Vijay B. Shenoy, Phys. Rev. Lett. 118,
236402 (2017).

[21] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[22] B. van Heck, S. Mi, and A. R. Akhmerov, Phys. Rev. B 90,
155450 (2014).

[23] Tomohiro Yokoyama and Yuli V. Nazarov, Phys. Rev. B 92,
155437 (2015).

[24] Roman-Pascal Riwar, Manuel Houzet, Julia S. Meyer, and Yuli
V. Nazarov, Nat. Commun. 7, 11167 (2016).

[25] Erik Eriksson, Roman-Pascal Riwar, Manuel Houzet, Julia S.
Meyer, and Yuli V. Nazarov, Phys. Rev. B 95, 075417 (2017).

[26] Julia S. Meyer and Manuel Houzet, Phys. Rev. Lett. 119, 136807
(2017).

[27] C. W. J. Beenakker, Phys. Rev. Lett. 67, 3836 (1991).
[28] N. B. Kopnin, Phys. Rev. B 65, 132503 (2002).
[29] Alex Levchenko, Phys. Rev. B 77, 180503(R) (2008).
[30] C. Padurariu, T. Jonckheere, J. Rech, R. Mélin, D. Feinberg,

T. Martin, and Yu. V. Nazarov, Phys. Rev. B 92, 205409
(2015).

[31] Tomohiro Yokoyama, Johannes Reutlinger, Wolfgang Belzig,
and Yuli V. Nazarov, Phys. Rev. B 95, 045411 (2017).

[32] M. Amundsen, J. A. Ouassou, and J. Linder, Sci. Rep. 7, 40578
(2017).

[33] Sebastian Mai, Ervand Kandelaki, Anatoly Volkov, and Kon-
stantin Efetov, Phys. Rev. B 87, 024507 (2013).

[34] P. Dita, J. Phys. A: Math. Gen. 15, 3465 (1982).
[35] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth, New J. Phys.

13, 053042 (2011).
[36] V. Gritsev and A. Polkovnikov, Proc. Natl. Acad. Sci. USA 109,

6457 (2012).
[37] C. Xu, A. Poudel, and M. G. Vavilov, Phys. Rev. A 89, 052102

(2014).
[38] P. Roushan, C. Neill, Yu Chen, M. Kolodrubetz, C. Quintana, N.

Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J.
J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White,
A. Polkovnikov, A. N. Cleland, and J. M. Martinis, Nature
(London) 515, 241 (2014).

[39] M. D. Schroer, M. H. Kolodrubetz, W. F. Kindel, M. Sandberg,
J. Gao, M. R. Vissers, D. P. Pappas, Anatoli Polkovnikov, and
K. W. Lehnert, Phys. Rev. Lett. 113, 050402 (2014).

[40] S. R. Plissard et al., Nat. Nanotechnol. 8, 859 (2013).
[41] E. Strambini, S. D’Ambrosio, F. Vischi, F. S. Bergeret, Yu. V.

Nazarov, and F. Giazotto, Nat. Nanotechnol. 11, 1055 (2016).
[42] F. Vischi, M. Carrega, E. Strambini, S. D’Ambrosio, F. S.

Bergeret, Yu. V. Nazarov, and F. Giazotto, Phys. Rev. B 95,
054504 (2017).

161406-5

https://doi.org/10.1017/S0305004100027237
https://doi.org/10.1017/S0305004100027237
https://doi.org/10.1017/S0305004100027237
https://doi.org/10.1017/S0305004100027237
https://doi.org/10.2307/1970008
https://doi.org/10.2307/1970008
https://doi.org/10.2307/1970008
https://doi.org/10.2307/1970008
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1063/1.1703773
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/RevModPhys.69.731
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1088/0031-8949/2015/T168/014001
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nphoton.2014.248
https://doi.org/10.1038/nature11710
https://doi.org/10.1038/nature11710
https://doi.org/10.1038/nature11710
https://doi.org/10.1038/nature11710
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevB.90.155450
https://doi.org/10.1103/PhysRevB.90.155450
https://doi.org/10.1103/PhysRevB.90.155450
https://doi.org/10.1103/PhysRevB.90.155450
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1103/PhysRevB.92.155437
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1038/ncomms11167
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevB.95.075417
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevLett.119.136807
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevLett.67.3836
https://doi.org/10.1103/PhysRevB.65.132503
https://doi.org/10.1103/PhysRevB.65.132503
https://doi.org/10.1103/PhysRevB.65.132503
https://doi.org/10.1103/PhysRevB.65.132503
https://doi.org/10.1103/PhysRevB.77.180503
https://doi.org/10.1103/PhysRevB.77.180503
https://doi.org/10.1103/PhysRevB.77.180503
https://doi.org/10.1103/PhysRevB.77.180503
https://doi.org/10.1103/PhysRevB.92.205409
https://doi.org/10.1103/PhysRevB.92.205409
https://doi.org/10.1103/PhysRevB.92.205409
https://doi.org/10.1103/PhysRevB.92.205409
https://doi.org/10.1103/PhysRevB.95.045411
https://doi.org/10.1103/PhysRevB.95.045411
https://doi.org/10.1103/PhysRevB.95.045411
https://doi.org/10.1103/PhysRevB.95.045411
https://doi.org/10.1038/srep40578
https://doi.org/10.1038/srep40578
https://doi.org/10.1038/srep40578
https://doi.org/10.1038/srep40578
https://doi.org/10.1103/PhysRevB.87.024507
https://doi.org/10.1103/PhysRevB.87.024507
https://doi.org/10.1103/PhysRevB.87.024507
https://doi.org/10.1103/PhysRevB.87.024507
https://doi.org/10.1088/0305-4470/15/11/023
https://doi.org/10.1088/0305-4470/15/11/023
https://doi.org/10.1088/0305-4470/15/11/023
https://doi.org/10.1088/0305-4470/15/11/023
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1088/1367-2630/13/5/053042
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1073/pnas.1116693109
https://doi.org/10.1103/PhysRevA.89.052102
https://doi.org/10.1103/PhysRevA.89.052102
https://doi.org/10.1103/PhysRevA.89.052102
https://doi.org/10.1103/PhysRevA.89.052102
https://doi.org/10.1038/nature13891
https://doi.org/10.1038/nature13891
https://doi.org/10.1038/nature13891
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1103/PhysRevLett.113.050402
https://doi.org/10.1038/nnano.2013.198
https://doi.org/10.1038/nnano.2013.198
https://doi.org/10.1038/nnano.2013.198
https://doi.org/10.1038/nnano.2013.198
http://www.nature.com/nnano/journal/v11/n12/full/nnano.2016.157.html
https://doi.org/10.1103/PhysRevB.95.054504
https://doi.org/10.1103/PhysRevB.95.054504
https://doi.org/10.1103/PhysRevB.95.054504
https://doi.org/10.1103/PhysRevB.95.054504



