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Nonlocal Andreev entanglements and triplet correlations in graphene with spin-orbit coupling
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Using a wave function Dirac Bogoliubov–de Gennes method, we demonstrate that the tunable Fermi level of a
graphene layer in the presence of Rashba spin-orbit coupling (RSOC) allows for producing an anomalous nonlocal
Andreev reflection and equal spin superconducting triplet pairing. We consider a graphene nanojunction of a
ferromagnet-RSOC-superconductor-ferromagnet configuration and study scattering processes, the appearance of
spin triplet correlations, and charge conductance in this structure. We show that the anomalous crossed Andreev
reflection is linked to the equal spin triplet pairing. Moreover, by calculating current cross-correlations, our
results reveal that this phenomenon causes negative charge conductance at weak voltages and can be revealed in a
spectroscopy experiment, and may provide a tool for detecting the entanglement of the equal spin superconducting
pair correlations in hybrid structures.
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Introduction. Superconductivity and its hybrid structures
with other phases can host a wide variety of intriguing
fundamental phenomena and functional applications such as
Higgs mechanism [1], Majorana fermions [2], topological
quantum computation [3], spintronics [4], and quantum entan-
glement [5–8]. The quantum entanglement describes quantum
states of correlated objects with nonzero distances [6,8] that
are expected to be employed in novel ultrafast technologies
such as secure quantum computing [3,6].

From the perspective of BCS theory, s-wave singlet super-
conductivity is a bosonic phase created by the coupling of two
charged particles with opposite spins and momenta (forming
a so-called Cooper pair) through an attractive potential [9].
The two particles forming a Cooper pair can spatially have
a distance equal or less than a coherence length ξS [9].
Therefore, a Cooper pair in the BCS scenario can serve as
a natural source of entanglement with entangled spin and
momentum. As a consequence, one can imagine a heterostruc-
ture made of a single s-wave superconductor and multiple
nonsuperconducting electrodes in which an electron and hole
excitation from different electrodes are coupled by means of
a nonlocal Andreev process [7,10–13]. This idea has so far
motivated numerous theoretical and experimental endeavours
to explore this entangled state in various geometries and
materials [12,14–27]. Nonetheless, the nonlocal Andreev
process is accompanied by an elastic cotunneling current
that makes it practically difficult to detect unambiguously
the signatures of a nonlocal entangled state [10,11,13–17].
This issue, however, may be eliminated by making use of a
graphene-based hybrid device that allows for locally controlled
Fermi level [26].

On the other hand, the interplay of s-wave supercon-
ductivity and an inhomogeneous magnetization can convert
the superconducting spin singlet correlations into equal spin
triplets [28,29]. After the theoretical prediction of the spin
triplet superconducting correlations much effort has been
made to confirm their existence [4,30–43]. For example, a
finite supercurrent was observed in a half-metallic junction
that was attributed to the generation of equal spin triplet
correlations near the superconductor–half-metal interface [30].
Also, it was observed that in a Josephson junction made

of a holmium–cobalt–holmium stack, the supercurrent as a
function of the cobalt layer decays exponentially without
any sign reversals due to the presence of equal spin triplet
pairings [36,37]. One more signature of the equal spin triplet
pairings generated in the hybrid structures may be detected in
superconducting critical temperature [43–46] and density of
states [47–50]. Nevertheless, a direct observation of the equal
spin triplet pairings in the hybrid structures is still lacking.

In this Rapid Communication, we show that the existence
of the equal spin superconducting triplet correlations can
be revealed through charge conductance spectroscopy of a
graphene-based ferromagnet–Rashba SOC–superconductor–
ferromagnet junction. We study all possible electron/hole
reflections and transmissions in such a configuration and
show that by tuning the Fermi level a regime is accessible
in which spin reversed cotunneling and usual crossed Andreev
reflections are blocked while a conventional cotunneling and
anomalous nonlocal Andreev channel is allowed. We justify
our findings by analyzing the band structure of the system.
Moreover, we calculate various superconducting correlations
and show that, in this regime, the equal spin triplet correlation
has a finite amplitude while the unequal spin triplet component
vanishes. Our results show that the anomalous crossed Andreev
reflection results in a negative charge conductance at low
voltages applied across the junction and can be interpreted
as evidence for the generation and entanglement of equal
spin superconducting triplet correlations in hybrid structures
[51–55].

Method and results. As seen in Fig. 1, we assume that the
ferromagnetism, superconductivity, and spin-orbit coupling
are separately induced into the graphene layer through the
proximity effect as reported experimentally in Refs. [56–58]
for isolated samples. Therefore, the low-energy behavior of
quasiparticles, quantum transport characteristics, and thermo-
dynamics of such a system can be described by the Dirac
Bogoliubov–de Gennes (DBdG) formalism [34,59]:

(
HD + Hi − μi �eiφ

�∗e−iφ μi − T [HD − Hi]T −1

)(
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in which ε is the quasiparticles’ energy and T represents a
time-reversal operator [34,59]. Here HD = h̄vF s0 ⊗ (σxkx +
σyky) with vF being the Fermi velocity [59]. sx,y,z and σx,y,z

are 2 × 2 Pauli matrices, acting on the spin and pseudospin

degrees of freedom, respectively. The superconductor region
with a macroscopic phase φ is described by a gap � in the
energy spectrum. The chemical potential in a region i is shown
by μi while the corresponding Hamiltonians read

Hi =

⎧⎪⎨
⎪⎩
HF = hl(sz ⊗ σ0), x � 0
HRSO = λ(sy ⊗ σx − sx ⊗ σy), 0 � x � LRSO

HS = −U0(s0 ⊗ σ0), LRSO � x � LS + LRSO

HF = hr (sz ⊗ σ0), LS + LRSO � x.

(2)

The magnetization �hl,r in the ferromagnet segments are assumed fixed along the z direction with a finite intensity hl,r . λ is the
strength of Rashba spin-orbit coupling and U0 is an electrostatic potential in the superconducting region. Previous self-consistent
calculations have demonstrated that sharp interfaces between the regions can be an appropriate approximation [34,59–62]. The
length of the RSO and S regions are LRSO and LS, respectively.

To determine the properties of the system, we diagonalize the DBdG Hamiltonian equation (1) in each region and obtain
corresponding eigenvalues:

ε =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

±μFl ±
√(

k
Fl
x

)2 + q2
n ± hl, x � 0

±μRSO ±
√(

kRSO
x

)2 + q2
n + λ2 ± λ, 0 � x � LRSO

±
√(

μS + U0 ±
√(

kS
x

)2 + q2
n

)2 + |�0|2, LRSO � x � LRSO + LS

±μFr ±
√(

k
Fr
x

)2 + q2
n ± hr, LRSO + LS � x.

(3)

The associated eigenfunctions are given in Ref. [63]. The wave
vector of a quasiparticle in region i is ki = (ki

x,qn) so that its
transverse component is assumed conserved upon scattering.
In what follows, we consider a heavily doped superconductor
U0 � ε,� which is an experimentally relevant regime [59].
We also normalize energies by the superconducting gap at zero
temperature �0 and lengths by the superconducting coherent
length ξS = h̄vF /�0.

Since the magnetization in F regions is directed along the
z axis, which is the quantization axis, it allows for unam-
biguously analyzing spin-dependent processes. Therefore, we
consider a situation where an electron with spin-up (described
by wave function ψ

F,+
e,↑ ) hits the RSO interface at x = 0 due to

a voltage bias applied. This particle can reflect back (ψF,−
e,↑(↓))

with probability amplitude r
↑(↓)
N or enter the superconductor as

a Cooper pair and a hole (ψF,−
h,↑(↓)) with probability amplitude

FIG. 1. Schematic of the graphene-based F-RSO-S-F hybrid. The
system resides in the xy plane and the junctions are located along the
x axis. The length of the RSO and S regions are denoted by LRSO and
LS. The magnetization of the F regions (�hl,r ) are assumed fixed along
the z axis. We assume that the ferromagnetism, spin-orbit coupling,
and superconductivity is induced into the graphene layer by means
of the proximity effect.

r
↑(↓)
A reflects back, which is the so-called Andreev reflection.

Hence, the total wave function in the left F region is (see
Refs. [53,63])

	Fl (x) = ψ
F,+
e,↑ (x) + r

↑
Nψ

F,−
e,↑ (x) + r

↓
Nψ

F,−
e,↓ (x)

+ r
↓
Aψ

F,−
h,↓ (x) + r

↑
Aψ

F,−
h,↑ (x). (4)

The total wave function in the RSO and S parts are su-
perpositions of right- and left-moving spinors with different
quantum states n; ψRSO

n and ψS
n (see Ref. [63]): 	RSO(x) =∑8

n=1 anψ
RSO
n (x) and 	S(x) = ∑8

n=1 bnψ
S
n (x), respectively.

The incident particle eventually can transmit into the right F
region as an electron or hole (ψF,+

e,↑↓,ψ
F,+
h,↑↓) with probability

amplitudes t
↑↓
e and t

↑↓
h :

	Fr (x) = t↑e ψ
F,+
e,↑ (x) + t↓e ψ

F,+
e,↓ (x) + t

↓
h ψ

F,+
h,↓ (x) + t

↑
h ψ

F,+
h,↑ (x).

(5)
The transmitted hole is the so-called crossed Andreev reflec-
tion (CAR). By matching the wave functions at F-RSO, RSO-
S, and S-F interfaces we obtain the probabilities described
above. Figure 2 exhibits the probabilities of usual electron
cotunneling |t↑e |2, spin-flipped electron |t↓e |2, usual crossed
Andreev reflection |t↓h |2, and anomalous crossed Andreev
reflection |t↑h |2. To have a strong anomalous CAR signal, we
set LS = 0.4ξS which is smaller than the superconducting
coherence length and LRSO = 0.5ξS [11]. We also choose
μFl = μFr = hl = hr = 0.8�0, μRSO = 2.6�0, λ = �0 and
later clarify physical reasons behind this choice using band-
structure analyses. In terms of realistic numbers, if the
superconductor is Nb [62] with a gap of the order of �0 ∼
1.03 meV and coherence length ξS ∼ 10 nm, the chemical
potentials, magnetization strengths, and the RSO intensity
are μFl = μFr = hl = hr = 0.824 meV, μRSO = 2.68 meV,
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FIG. 2. (a) Spin-reversed cotunneling probability |t↓
e |2.

(b) Anomalous crossed Andreev reflection probability |t↑
h |2.

(c) Conventional cotunneling |t↑
e |2. (d) Usual CAR |t↓

h |2. The
probabilities are plotted vs the transverse component of wave vector
qn and voltage bias across the junction eV . We set μFl = μFr = hl =
hr = 0.8�0, μRSO = 2.6�0, λ = �0, LRSO = 0.5ξS, LS = 0.4ξS .

λ = 1.03 meV, respectively [56,57], and LS = 4 nm, LRSO =
5 nm. We see that the anomalous CAR has a finite amplitude
and its maximum is well isolated from the other transmission
channels in the parameter space. Therefore, by tuning the local
Fermi levels the system can reside in a regime that allows for a
strong signal of the anomalous CAR. According to Fig. 2 this
regime is accessible at low voltages eV 	 �0.

The eigenvalues, Eqs. (3), determine the propagation
critical angles of moving particles through the junction. By
considering the conservation of transverse component of wave
vector throughout the system, we obtain the following critical
angles [59]:

αc
e,↓ = arcsin

∣∣∣ε + μFr − hr

ε + μFl + hl

∣∣∣, (6a)

αc
h,↓ = arcsin

∣∣∣ε − μFr + hr

ε + μFl + hl

∣∣∣, (6b)

αc
e,↑ = arcsin

∣∣∣ε + μFr + hr

ε + μFl + hl

∣∣∣, (6c)

αc
h,↑ = arcsin

∣∣∣ε − μFr − hr

ε + μFl + hl

∣∣∣. (6d)

These critical angles are useful in calibrating the device
properly for a regime of interest. For the spin-reversed
cotunneling, the critical angle is denoted by αc

e,↓, while for the
conventional CAR we show this quantity by αc

h,↓. Hence, to
filter out these two transmission channels, we set μFr = hr and
choose a representative value 0.8�0. In this regime, we see that
αc

e(h),↓ → 0 at low energies, i.e., μFr ,hr ,� � ε → 0 and thus,
the corresponding transmissions are eliminated. This is clearly
seen in Figs. 2(a) and 2(d) at eV 	 �0. At the same time,
the critical angles to the propagation of conventional electron
cotunneling and anomalous crossed Andreev reflection reach
near their maximum values αc

e(h),↑ → π/2 consistent with
Figs. 2(b) and 2(c). We have analyzed the reflection and
transmission processes using a band-structure plot, presented
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FIG. 3. (a)–(d) Real and imaginary parts of opposite spin f0 and
equal spin pairings f1 within the Fr region x � LRSO + LS at weak
voltages eV 	 �0. The parameter values are the same as those of
Fig. 2 except we now compare two cases where μFl = μFr = hl =
0.8�0 and hr = 0.4�0,0.8�0.

in Ref. [63], that can provide more sense on how a particle is
scattered in this regime.

To gain better insights into the anomalous CAR, we
calculate the opposite (f0) and equal (f1) spin-pair correlations
in the Fr region [31,34]:

f0(x,t) = +1

2

∑
β

ξ (t)[u↑
β,Kv

↓,∗
β,K ′ + u

↑
β,K ′v

↓∗
β,K

−u
↓
β,Kv

↑∗
β,K ′ − u

↓
β,K ′v

↑∗
β,K ], (7a)

f1(x,t) = −1

2

∑
β

ξ (t)[u↑
β,Kv

↑,∗
β,K ′ + u

↑
β,K ′v

↑∗
β,K

+u
↓
β,Kv

↓∗
β,K ′ + u

↓
β,K ′v

↓∗
β,K ], (7b)

where K and K ′ denote different valleys and β stands
for A and B sublattices [34,59]. Here, ξ (t) = cos(εt) −
i sin(εt) tanh(ε/2T ), t is the relative time in the Heisenberg
picture, and T is the temperature of the system [31,34].
Figure 3 shows the real and imaginary parts of opposite
and equal spin pairings in the Fr region, extended from x =
LRSO + LS to infinity, at eV 	 �0. For the set of parameters
corresponding to Fig. 2, we see that f0 pair correlation is
vanishingly small, while the equal spin triplet pair correlation
f1 has a finite amplitude. We also plot these correlations for
a different set of parameters where μFl = μFr = hl = 0.8�0,
while hr = 0.4�0. The opposite spin triplet pairing f0 is now
nonzero too. Therefore, at low voltages and the parameter
set of Fig. 2, the nonvanishing triplet correlation is f1, which
demonstrates the direct link of f1 and t

↑
h . This direct connection

can be proven by looking at the total wave function in the right
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FIG. 4. Charge conductance (top panels) and its components
(bottom panels). (a) and (c) charge conductance associated with
the probabilities presented in Figs. 2 and 3 (hr = 0.8�0) and its
components, respectively. (b) and (d) the same as panels (a) and (c)
except we now consider hr = 0.4 (see Fig. 3). The conductance is
normalized by G0 = G↑ + G↓.

F region, Eq. (5), transmission probabilities shown in Fig. 2,
and the definition of triplet correlations, Eqs. (7). One can
show that when t

↓
e and t

↓
h vanish, f0 disappears and f1 remains

nonzero, which offers a spin triplet valve effect.
We calculate the charge conductance through the BTK

formalism:

G =
∫

dqn

∑
s=↑,↓

Gs

(∣∣t se ∣∣2 − ∣∣t sh∣∣2)
, (8)

where we define G↑↓ = 2e2|ε + μl ± hl|W/hπ in which W

is the width of the junction. Figures 4(a) and 4(b) exhibit the
charge conductance as a function of bias voltage eV across the
junction at hr = 0.8�0 and 0.4�0, while the other parameters
are set the same as those of Figs. 2 and 3. As seen, the charge
conductance is negative at low voltages when hr = 0.8�0,
whereas this quantity becomes positive for hr = 0.4�0. To
gain better insights, we separate the charge conductance into
G

↑↓(↑↓)
e,(h) , corresponding to the transmission coefficients t

↑↓(↑↓)
e,(h)

used in Eq. (8). Figures 4(c) and 4(d) illustrate the contribution
of different transmission coefficients into the conductance.
We see in Fig. 4(c) that G

↑
h dominates the other components

and makes the conductance negative. As discussed earlier,
this component corresponds to the anomalous CAR which
is linked to the equal spin triplet pairing, Fig. 3. This

component, however, suppresses when hr = 0.4�0 so that the
other contributions dominate, and therefore the conductance
is positive for all energies. Hence, the nonlocal anomalous
Andreev reflection found in this work can be revealed in
a charge conductance spectroscopy. There are also abrupt
changes in the conductance curves that can be fully understood
by analyzing the band structure. We present such an analysis
in Ref. [63].

In line with the theoretical works summarized in Ref. [59],
we have neglected spin-dependent and -independent impurities
and disorders as well as substrate and interface effects in
our calculations [64–66]. Nonetheless, a recent experiment
has shown that such a regime is accessible with today’s
equipment [62]. Moreover, the same assumptions have already
resulted in fundamentally important predictions such as the
specular Andreev reflection [59] that was recently observed
in experiment [61]. The experimentally measured mean free
path of moving particles in a monolayer graphene deposited
on top of a hexagonal boron nitride substrate is around  ∼
140 nm [67]. The coherence length of induced superconduc-
tivity into a monolayer graphene using a Nb superconductor
was reported as ξS ∼ 10 nm [62]. In this situation, where
 � ξS , the Andreev mechanism is experimentally relevant.
On the other hand, it has been demonstrated that the equal-spin
pairings discussed here are long range and can survive even
in systems with numerous strong spin-independent scattering
resources [40–42]. Therefore, as far as the Andreev mechanism
is a relevant scenario in a graphene-based F-RSO-S-F device
containing spin-independent scattering resources, i.e.,  � ξS ,
we expect that the negative conductance explored in this Rapid
Communication is experimentally accessible.

In conclusion, motivated by recent experimental achieve-
ments in the induction of spin-orbit coupling into a graphene
layer [56,57], we have theoretically studied quantum trans-
port properties of a graphene-based ferromagnet-RSOC-
superconductor-ferromagnet junction. Our results reveal that
by manipulating the Fermi level in each segment, one can
create a dominated anomalous crossed Andreev reflection. We
calculate the charge conductance of the system in this regime
and show that this phenomenon results in negative charge
conductance at low voltages. By calculating various pairing
correlations, we demonstrate a direct link between the appear-
ance of anomalous CAR and equal spin triplet correlations.
Our findings suggest that a conductance spectroscopy of such
a junction can detect the signatures of the anomalous CAR and
entanglement of equal spin superconducting triplet pairings in
hybrid structures.
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