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We investigate the interplay between confinement and the fermion doubling problem in Dirac-like
Hamiltonians. Individually, both features are well known. First, simple electrostatic gates do not confine electrons
due to the Klein tunneling. Second, a typical lattice discretization of the first-order derivative k → −i∂x skips
the central point and allow spurious low-energy, highly oscillating solutions known as fermion doublers. While
a no-go theorem states that the doublers cannot be eliminated without artificially breaking a symmetry, here we
show that the symmetry broken by the Wilson’s mass approach is equivalent to the enforcement of hard-wall
boundary conditions, thus making the no-go theorem irrelevant when confinement is foreseen. We illustrate our
arguments by calculating the following: (i) the band structure and transport properties across thin films of the
topological insulator Bi2Se3, for which we use ab initio density functional theory calculations to justify the
model; and (ii) the band structure of zigzag graphene nanoribbons.
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Topological insulators (TIs) constitute a class of materials
that exhibit the ubiquitous property of being an insulator in
their bulk, while presenting metallic states on their edges or
surfaces [1–4]. The key ingredient for the underlying physics
of the TIs is a strong spin-orbit interaction, which generically
leads to a Dirac-like spectrum. At low energy, the effective
Hamiltonians for the edge/surface states are linear in the
momentum, yielding a massless Dirac spectrum. The result-
ing helical band structure is topologically protected against
backscattering, thus providing perfect conducting channels
that are potentially useful for future electronic devices [5,6],
quantum computation [7], and optical applications [8].

The numerical approach to investigate the properties (e.g.,
transport, dynamics, confinement) [9–11] of these systems
often requires a lattice discretization of the Hamiltonian.
Unfortunately, standard finite difference descriptions of the
first-order derivatives of linear in momentum h̄k Hamiltonians
are infected by the fermion doubling problem (FDP). This
yields spurious low-energy states, as exemplified in Fig. 1(a).
Even though the energy dispersion is well described by the
discrete Hamiltonian at small k, the doublers appearing for
large k will affect the transport and dynamics of the system.
There are many ways to eliminate the doublers [12,13], e.g.,
staggered fermions [14–17], Wilson’s mass [18–21], nonlo-
cal discretizations [22–24], and extra artificial dimensions
[25–28]. Each of them presents its own advantages and
disadvantages. There is, however, a common and seemingly
unsolvable problem: As required by the Nielsen-Ninomiya
theorem (NNT) [29,30], all these approaches introduce a
symmetry breaking or nonlocality.

The k-linear models also display the Klein tunneling
“paradox” [31,32], which states that simple electrostatic
barriers are transparent and cannot confine massless electrons.
This is a consequence of the constant Fermi velocity of the
linear dispersion, which allows perfect matching of the injected
and transmitted waves. Consequently, to attain confinement,
one needs to either open a gap by breaking a symmetry in the
outer region [21,33–38], or invoke finite-size effects [39].

In this Rapid Communication we ask whether it is possible
to eliminate the FDP in a finite system by breaking the

same symmetry that provides the confinement. The answer
is yes. The short argument is as follows: Since the symmetry
is already broken by the confinement, there is no harm in
introducing a Wilson’s mass that breaks the same symmetry.
More interestingly, here we show that the Wilson’s mass not
only eliminates the doublers, but also defines the type of
hard-wall confinement that is imposed by vanishing boundary
conditions. To present this argument, we start with a simple
unidimensional model that captures its essence. Here, we
solve the linear Hamiltonian with vanishing flux hard-wall
boundaries [35,37], and compare it with the solutions obtained
by introducing a parabolic Wilson’s mass term ∝wk2 and
vanishing wave-function hard-wall boundaries. We find that
the solutions match for a small, but finite, Wilson’s mass w,
while for w → 0, one recovers the spurious doublers.

Next, we discuss the surface states of the three-dimensional
(3D) topological insulator Bi2Se3 as a prototype model to
illustrate our findings. Here, we consider two different forms
of the Wilson’s mass term to show that it can either break time-
reversal symmetry (TRS), as in Refs. [21,37,38], or a sublattice

FIG. 1. (a) In a discrete lattice with spacing a, the linear
dispersion ε = ±h̄vF k of the continuous model (solid black line) is
replaced by ε = ±h̄vF (2a)−1 sin(ka) (dashed red line), yielding the
“doublers” at the Fermi energy εF (black dots). A finite Wilson’s mass
term ∝wk2 eliminates the doublers by opening a gap at k = ±π/a

(dotted blue line). (b) Quantized energies of the linear spectrum due
to hard-wall confinement as a function of the Wilson mass w. The
numerical solutions (solid lines) approach the exact solutions (red
dots) in the range |ε| < 2w/a2 (black dashed lines). For w → 0, the
numerical solutions merge to form the doublers.
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chiral symmetry. Its consequences for the energy levels and
degeneracies of a quantum dot, and the transport properties
across a ribbon are discussed. We use a modified version of the
effective Hamiltonian for the Bi2Se3 from Refs. [40,41] fitted
to first-principles calculations from the VASP code [42,43].
The effective model is then implemented numerically using
the KWANT code [44]. Additionally, we briefly present the case
of zigzag graphene nanoribbons, which is a challenging case
for effective models [17].

Fermion doubling. To establish our arguments, let us first
consider a simple one-dimensional Dirac-like model given
by the Hamiltonian Hξ = h̄vFMξ k, where vF is the Fermi
velocity, k is the momentum along a generic coordinate ξ ,
and Mξ is a unitary Hermitian matrix. The exact energy
spectrum of Hξ is ε = ±h̄vF k, which is the Dirac cone
illustrated in Fig. 1(a). However, if one desires to find the
spectrum numerically via finite differences, the momentum
h̄k = −ih̄∂ξ takes a discrete form. To keep H Hermitian,
one typically chooses the symmetric finite difference ap-
proach, leading to an expression that skips the central point,
i.e., ∂ξψ(ξj ) ≈ [ψ(ξj+1) − ψ(ξj−1)]/2a, where the integer
j labels the points in the discrete lattice of spacing a.
Consequently, it allows for low-energy, highly oscillating
states of a topological origin [29,30], thus yielding the doublers
shown in Fig. 1(a).

Wilson’s mass. Here, we choose the Wilson’s mass approach
[18–21] to eliminate the doublers. The idea is to introduce
a parabolic correction HW = wMck

2 to Hξ → Hξ + HW.
For small k, the linear terms dominate and HW does not
significantly affect the band structure. However, this term
eliminates the doublers as its discretization couples all three
points j , and j ± 1, thus opening a gap 2w/a2 at k = ±π/a,
as shown in Fig. 1(a). The penalty for using HW is that it breaks
a chiral symmetry of the linear Hξ . Next, we argue that this
penalty is irrelevant if one chooses Mc to be the same unitary
matrix that the defines the hard-wall confinement.

Hard-wall boundary conditions. The hard-wall boundary
condition for Hξ (without HW) is imposed by the limit α → ∞
of the confining potential HC = αMc�(|ξ | − ξ0), where �(ξ )
is the Heaviside step function defining the walls at ξ = ±ξ0.
The unitary matrix Mc must break a symmetry of Hξ to open
a gap 2α in the outer region (|ξ | > ξ0). At the interface, the
spinor is discontinuous [33,34], and integrating Hξψ = εψ

across the interface we obtain the boundary condition [35,37]

(±iMξ + Mc)ψ(ξ0) = 0, (1)

where the matrices (±iMξ + Mc) are singular, thus allowing
nontrivial solutions. Notice that we have used the same matrix
Mc to define here this boundary condition for linear Hξ , and
above to introduce the Wilson’s mass parabolic term HW. This
assures that both approaches will break the same symmetry of
Hξ .

In contrast to Eq. (1), the Wilson’s mass model Hξ + HW

allows trivial vanishing boundary conditions ψ(±ξ0) = 0.
Therefore, now we have two different approaches to apply
a hard-wall confinement. Moreover, our choice of a simple Hξ

allows for analytical solutions (up to a transcendental equation)
for the boundary condition from Eq. (1), thus avoiding the
discretization and the FDP all together. In Fig. 1(b) we compare
these solutions with a numerical finite difference model for

Hξ + HW with vanishing boundary conditions as a function
of the Wilson’s mass w. For w → 0, pairs of eigenstates
merge to form the degenerate doublers, but are split for finite
w. An appropriate value for w can be chosen such that the
energy window of interest lies within the Wilson’s mass
gap 2w/a2 [see Fig. 1(a)], and preserves the dominance of
the linear term over the parabolic correction, which yields
1
2a2|ε| < w < (h̄vF )2/|ε| [43].

Bi2Se3 thin films. Next, we apply our approach to model
thin films of the topological insulator Bi2Se3. Bulk Bi2Se3

is composed of van der Waals interacting quintuple layers
(QLs). Each QL is formed by an alternation of covalent
bonded hexagonal monolayers of Se-Bi-Se-Bi-Se. The effec-
tive Hamiltonian for both the bulk and its surface states are well
known [37,40,41]. Here, we choose to write it on the basis
of surface states of semi-infinite solutions from the top (T)
and bottom (B) surfaces, i.e., {ϕT ↑(r),ϕT ↓(r),ϕB↑(r),ϕB↓(r)},
where {↑,↓} refers to the spin along z. Up to linear order in
k = (kx,ky) the Hamiltonian reads [43]

H = ε0 + h̄vF (kxγ3y − kyγ3x) + Fγ30 + �γ10 + Bγ0z, (2)

where γij = τi ⊗ σj , σ and τ are su(2) operators acting on spin
and surface subspaces, ε0 is the energy reference, F represents
the intensity of a structural inversion asymmetry (SIA) field,
� is the hybridization coupling between the surfaces, and B

is a generic Zeeman field. We extract these parameters from
DFT simulations [43,45]. For a pristine Bi2Se3 stacking of
seven QLs, the Dirac bands are well defined and we find
vF = 479 nm/ps [46], ε0 = −12 meV, F = � ≈ 0. Addi-
tionally, in the Supplemental Material we analyze the band
structure of Bi2Se3 contacted by a Ti metallic lead. At this
interface, a charge transfer yields a bias field F ≈ 95 meV and
a shift of the Dirac cones ε0 ≈ −150 meV. Moreover, these
are coupled to metallic bands near the Fermi level, which will
allow us to use the wide-band approximation later on.

A finite F splits the Dirac cones from the top and
bottom surfaces without opening a gap, while � opens a gap
hybridizing the surfaces, and B opens a gap by breaking TRS.
Therefore, there are two possible Wilson mass terms that can
be added to H to eliminate the doublers and define the types
of hard-wall boundary conditions. These are

HB = mB

a2

4
k2γ0z and H� = m�

a2

4
k2γ10. (3)

Hereafter we will refer to mB and m� as the Wilson masses
for a B-type and �-type hard-wall confinements. These break
the same symmetries as B and �. Similarly to the range of
w above, the appropriate range for mB/� is |ε|/2 < |mB/�| <

(2h̄vF /a)2/|ε| [43].
Chiral symmetries. A chiral symmetry [47–49] is defined

by an operator P that anticommutes with H . Consequently, it
assures that for every eigenstate of H with energy ε, there is
a chiral partner with energy −ε. For the Bi2Se3 H above, we
find four candidate operators for chiral symmetries that obey

{P0z,H − ε0} = 2B + 2�γ1z + 2Fγ3z, (4)

{P10,H − ε0} = 2Bγ1z + 2�, (5)

{P20,H − ε0} = 2Bγ2z, (6)

{P3z,H − ε0} = 2Bγ30 + 2Fγ0z, (7)
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(a) (b)

FIG. 2. Spectrum of a circular Bi2Se3 thin-film quantum dot as a
function of the total angular momentum jz. The up- (blue) and down-
pointing (red) triangles refer to the chiral charge q1z = ±1. (a) For the
�-type confinement both the chirality (εjz,−q1z

= −εjz,q1z
) and TRS

(ε−jz,−q1z
= εjz,q1z

) are preserved. (b) The B-type confinement breaks
both chiral and TRS, but preserves their product (ε−jz,q1z

= −εjz,q1z
).

where Pij ≡ γij . For simplicity, we omit the Wilson masses
mB and m�, but their contributions follow the B and � terms
above. In accordance with the NNT [29], [30], a finite mB

or m� breaks some chiral symmetries. Particularly, mB 
= 0
breaks them all. However, we find that combining the P
operators above with the TRS operator T = −iγ0yK (K
is complex conjugation) as P ′

j = PjT , one obtains similar
anticommutation relations independent of B [43].

Circular dot. To illustrate the �- and B-type confining
potentials and the chiral symmetries, we consider a circular
quantum dot of radius R on a Bi2Se3 thin film modeled by H

in Eq. (2) and the Wilson masses in Eq. (3). For this geometry,
the z-component Jz = Lz + Sz of the total angular momentum
is conserved [37], which allows us to label the states by its
eigenvalues jz = (m + 1

2 )h̄, where m is an integer. The discrete
spectrum of this quantum dot for �-type (m� = −500 meV)
and B-type (mB = −500 meV) confining potentials are shown
in Fig. 2 as a function of jz. For simplicity, in both cases,
ε0 = F = B = 0, � = −5 meV, and vF = 479 nm/ps. The
eigenvalues are obtained using a square lattice in which the
sites are connected only for r � R = 50 nm, and N = 100
sites along the diagonal.

For the �-type confinement shown in Fig. 2(a), P20 and
P3z are chiral symmetries. These combine to define the
chiral charge Q1z = −iP20P3z = γ1z, such that [Q1z,H ] = 0.
Together with jz, the eigenvalues q1z = ±1 of Q1z are used
to label the eigenenergies as εn,jz,q1z

, where n is an extra
index that labels the different solutions with the same jz and
q1z. Since {P,H } = 0, [P,Jz] = 0 and {Pj ,Q1z} = 0, every
state with energy εn,jz,q1z

has a chiral partner with energy
εn,jz,−q1z

= −εn,jz,q1z
. Similarly, the TRS produces the Kramer

partners with energies εn,−jz,−q1z
= εn,jz,q1z

. Combined, these
two symmetries produce the X-shaped spectrum of Fig. 2(a).
In contrast, Fig. 2(b) shows the spectrum for the B-type
confinement, for which the chiral symmetries P and TRS are
broken. Here, the time-reversal chiralities P ′

20 and P ′
3z are

preserved. These combine to give the same chiral charge Q1z.
However, now {P ′,Jz} = 0 and [P ′,Q1z] = 0. Consequently,
a state with energy εn,jz,q1z

has a time-reversal chiral partner

(b) (c) (d)

(a)

FIG. 3. (a) Illustration of the top and bottom Bi2Se3 surfaces
coupled by �, biased by F , and contacted by effective leads
introduced by the self-energies �

j

� . (b) Conductance vs Vg for � = 0.
The Vg ∼ 7.6 mV peak is shown in detail in (c) for � = 0, and
(d) for � = 0.1 meV. Red (blue) lines correspond to �-type (B-type)
confinement, and solid (dashed) lines refer to the NL = 2 (4) terminal
model.

with energy εn,−jz,q1z
= −εn,jz,q1z

, yielding the single linear
branch and the shifted bands in Fig. 2(b). The agreement
between these exact relations and the numerical results in
Fig. 2 show that our approach does eliminate the doublers
without any harm to the chiralities that remain in the presence
of confinement.

Conductance across a ribbon device. As another example
of our main result, let us now calculate the conductance
across the Bi2Se3 surface. We consider a geometry that
was recently realized experimentally [50], where the leads
are contacted with metal electrodes, while the scattering
region is pristine Bi2Se3. The conductance peaks reflect
the degeneracy of the states, which are directly affected by
the symmetry breaking discussed previously. In the leads, the
hybridization between the topmost QLs Bi2Se3 and the metal
[51] puts the chemical potential within an energy window
composed of Bi2Se3 surface and Ti states [43]. Therefore,
we can judiciously assume that the effect of the leads is
essentially to broaden the discrete Fabry-Perot resonances in
the confined central region. Within this simplified description,
we introduce the self-energies �

j

� (E) with � = L,R (for left
and right) and j = T ,B (for top and bottom), which in the
wide-band limit are �

j

� (E) = −i�̄
j

� (EF )�(D − |E − EF |);
see Fig. 3(a). Here, �̄

j

� (EF ) is a real quantity giving the
broadening of the sites interfacing the �th TI lead, and D is
some suitable cutoff energy. This rather crude simplification is
very suitable for numerical simulations of realistically sizable
systems. Nonetheless, it gives qualitatively plausible results
for the conductance as compared to those obtained with a
complete model.

For the scattering region we consider square surfaces
of pristine Bi2Se3 of side W = 100 nm, discretized into a
20 × 20 site grid. A two-terminal case (NL = 2) is built with
the top left and right (� = L and R) leads with symmetric
broadening �̄T

� = 1 meV. Moreover, despite the reduced
coupling to the metal contact, a four-terminal (NL = 4)
case is also considered with �̄B

� = 1 meV. Figure 3(b)
shows the conductance G versus gate voltage Vg for � = 0,
NL = 2(4) as solid (dashed) lines, and both �-type (blue lines,
m� = −100 meV) and B-type (red lines, mB = −100 meV)
confinements. Figures 3(c) and 3(d) zoom to show details
of the Vg ∼ 7.6 mV peaks. For the NL = 2 case with the
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(a) (c)

(b)

FIG. 4. (a) A graphene nanoribbon with zigzag terminations and
width W . (b) The first Brillouin zone of bulk graphene and its
projection (shaded area) along the nanoribbon’s kx . (c) Band structure
around K̄ for a W ≈ 71 nm ribbon comparing the analytical solution
(black solid lines) and our numerical approach with a Wilson mass
(blue dots).

�-type confinement, we observe that the peaks reach 2G0,
where the factor 2 results from the TR pair of degenerate
states (symmetric and antisymmetric combinations of the
top and bottom surface states) that contribute as independent
conducting channels. These peaks are not substantially
affected by the presence of small � 
= 0, as we see in Fig. 3(d).
In contrast, for the B-type confinement the conductance peaks
reach only G0 in Fig. 3, for � = 0. Indeed, here TRS is
broken and one would already expect a single conducting
channel. More interestingly, a finite � = 0.1 meV splits this
peak, showing G = 0 in the middle. This can be understood
in terms of the P ′ chiral symmetries and the conserved chiral
charge Q1, which assures that for � = 0, every state located in
one surface has a degenerate partner in the other surface [43].
A finite � couples these partners, producing two coherent
channels that interfere destructively (G = 0) for some
particular value of Vg . For NL = 4, the conductance is still
calculated between the top terminals (dashed lines in Fig. 3).
Overall, this yields a decrease of G whenever the top and
bottom surfaces are coupled (�-type confinement or � 
= 0).
In this situation, the channels involving the bottom surface
states are broadened by the bottom contacts, therefore they
act as incoherent channels, destroying the perfect inference.

Zigzag graphene nanoribbon. As a final application of our
proposal, we present the band structure of a zigzag graphene
nanoribbon around its K point in Fig. 4. This is a particularly
interesting case as it allows us to compare the numerical

results directly with well-known analytical solutions [52–55],
which are shown as black solid lines in Fig. 4(c). For the
numerical approach we start with graphene’s effective model
around K , HK = h̄vF σ · (k − K ), where k is measured from
the origin at �̄ in Fig. 4(b), and ky → −i∂y is discretized
into N = 100 sites. Around K ′, one obtains HK ′ replacing
σy → −σy and K → K ′, which compose our block-diagonal
H0 = HK ⊕ HK ′ . To regularize the boundary conditions for
the zigzag nanoribbon we consider a Wilson mass term HZ =
mz

a2

4 k2
y(τx ⊗ σy), where τx couples the K and K ′ subspaces,

and mz is chosen within the range set by the inequalities
discussed previously. The agreement between the numerical
band structure and the exact solution shown in Fig. 4(c) is
patent, which illustrates the effectiveness of our approach.

Conclusions. We have shown that the Wilson mass not
only eliminates the doublers in Dirac-like Hamiltonians, but
also allows us to control the hard-wall boundary conditions.
This contrasts with the high-energy physics, where neither the
broken symmetry nor confinement are desirable. Therefore,
for confined solid state systems, the NNT is easily bypassed.
Interestingly, these effects were overlooked in models that
already include the parabolic terms [11,21,56,57]. Indeed,
in the Bernevig-Hughes-Zhang (BHZ) model [56], for in-
stance, the term −Bk2σz plays the role of the Wilson mass,
with the Pauli matrix σz acting on the E1/H1 subspace, yield-
ing a Dirac mass-type hard wall [57]. In contrast, graphene
models are usually restricted to the linear terms, which limits
its use. Here, we have seen that a zigzag termination can be
well modeled by incorporating an appropriate Wilson’s mass.
For the armchair case, one can directly combine Ref. [35] with
our approach.

Applying our model to model Bi2Se3 quantum dots,
we have shown that numerical results satisfy all symmetry
constraints that are compatible with the chosen type of confine-
ment. Particularly, the �-type confinement is compatible with
thin films [11], yielding noninteracting conductance peaks
G = 2 e2/h, which is a necessary ingredient for the Kondo
regime suggested in Ref. [50]. As a final remark, notice that
Ref. [21] considers only a B-type mass, which breaks TRS,
and the confinement properties are not discussed. Therefore,
our model generalizes and improves their results.
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