
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 161111(R) (2017)

Creating a bosonic fractional quantum Hall state by pairing fermions
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We numerically study the behavior of spin-1/2 fermions on a two-dimensional square lattice subject to a
uniform magnetic field, where opposite spins interact via an on-site attractive interaction. Starting from the
noninteracting case where each spin population is prepared in a quantum Hall state with unity filling, we follow
the evolution of the system as the interaction strength is increased. Above a critical value and for sufficiently low
flux density, we observe the emergence of a twofold quasidegeneracy accompanied by the opening of an energy
gap to the third level. Analysis of the entanglement spectra shows that the gapped ground state is the bosonic
1/2 Laughlin state. Our work therefore provides compelling evidence of a topological phase transition from the
fermionic quantum Hall state at unity filling to the bosonic Laughlin state at a critical attraction strength of the
order of the one-body spectrum linewidth.
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Topological phases of matter represent a subject of intense
research [1–5], offering the prospect of realizing fault tolerant
quantum computation [6]. The rapid growth of this field,
since the first observation of the quantum Hall effect, is
largely due to experimental progress in producing high quality
and purity materials [2,3]. In this context, ultracold quantum
gases, which feature clean, flexible, and well characterized
environments, appear as promising systems. Furthermore, as
they comprise electrically neutral particles that can be either
fermionic or bosonic, atomic quantum gases may provide a
new vista on the subject [7–10]. Notable achievements in this
direction include the creation of Bose-Einstein condensates
(BEC) in the lowest Landau level via fast rotation [11,12], the
realization of the Harper-Hofstadter [13–15] and Haldane [16]
models in optical lattices, and more recently the observation
of chiral currents in atomic ladders [17–19], as well as the
measurement of the second Chern number of a non-Abelian
Yang monopole [20]. These experimental progresses were
accompanied by numerous theoretical investigations of the
topological phases that may appear in optical lattices [21–34].

A remarkable feature of ultracold gases is the ability to
use tunable attractive interactions to convert, in real time, a
pair of distinguishable fermions into a tightly bound bosonic
molecule (BM) [35,36]. From the perspective of topological
matter, this feature opens unique possibilities [37,38]. Suppose
a two-dimensional (2D) spin-1/2 fermionic system is initially
prepared in an integer quantum Hall (IQH) state for each spin
component (↑ and ↓), with a filling factor ν↑ = ν↓ = n. As
the attraction strength is brought to the strong binding limit,
each fermion pair forms a BM that carries twice the fermion
(neutral) charge, and hence experiences twice the magnetic
flux seen by a fermion. As a result, the final many-body system
would be characterized by a filling factor ν↑,↓/2, provided all
bosons occupy the lowest band.
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Building upon this observation, Yang and Zhai pointed out,
almost a decade ago, the possibility of using a Feshbach
resonance to drive a transition between a fermionic IQH
state and a bosonic fractional quantum Hall (FQH) Laughlin
state [39]. Given their distinct topological natures, these phases
must be separated by a quantum phase transition [40] whose
critical behavior remains an important open question [41–43].
More recently, Ho proposed the use of a rapid sweep through
this transition to project fermionic IQH states onto the BEC
side of the Feshbach resonance in order to reveal the bosonic
FQH structure of its center-of-mass wave function [44]. A
key aspect concerns the value of the critical interaction,
which is crucial to the prospect of observing this transition
experimentally. Since this transition has not been supported
so far by a microscopic description, the order of magnitude of
this critical value remains an open question.

In this Rapid Communication, we numerically study the
behavior of spin-1/2 fermions on a 2D lattice subject to
a homogeneous magnetic field, with an attractive on-site
interaction between the ↑ and ↓ spins. Using energy and
particle entanglement spectroscopy on finite-size systems, we
provide evidence for the existence of a topological phase
transition from the fermionic IQH ν↑,↓ = 1 state to the 1/2
bosonic Laughlin state above a critical attraction strength of
the order of the linewidth of the one-body spectrum. The use
of a lattice in our model (which leads to a finite one-body
linewidth) is crucial in establishing the finite value of the
critical interaction and clearly distinguishes our work from
previous predictions [39,40,44] of the transition in continuum
models.

The system of interest here is described by the Fermi-
Hubbard model with minimal coupling to a gauge field via
Peierl’s substitution. The Hamiltonian reads

H = −t
∑

〈r,r′〉,σ=↑,↓
(eiϕrr′ c†r,σ cr′,σ + H.c.) + U

∑

r

nr,↑nr,↓,

(1)
where 〈r,r′〉 denotes neighboring lattice sites r = (x,y), cr,σ

(c†r,σ ) annihilates (creates) a fermion with spin σ at site
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FIG. 1. (a) Schematic description of the HH model on a square
lattice with the Landau gauge in the y direction. Each plaquette is
pierced by a flux φ = 2πα, where α is the flux density defined in
the main text. The phase φ is proportional to ϕrr′ in Eq. (1). For
simplicity, we omit the minus sign in the tunneling. (b) The flux seen
by a BM is twice the one of a single fermion. (c) Possible scenario of
a phase transition induced by an attractive on-site interaction between
the fermions. At small |U |, the system is described by the ν↑,↓ = 1
IQH state. At large |U |, fermions bind into BMs and the system forms
the 1/2 Laughlin state.

r, nr,σ = c
†
r,σ cr,σ , and ϕrr′ = ∫ r′

r A · dl are Aharonov-Bohm
phases derived from the coupling to the underlying vector
potential A [see Fig. 1(a)]. Fermions of opposite spin interact
through an attractive on-site interaction of strength U � 0.
Without interactions, the spectrum of this model is the
Hofstadter butterfly [23].

We consider 2N fermions (N per spin state) distributed over
Ns sites of the square lattice and experiencing a total magnetic
flux Nφ�0, where �0 is the flux quantum. We define the flux
density α = Nφ

Ns
, meaning that the flux per lattice site is α�0.

We choose α = 1/q with q an integer, such that each magnetic
unit cell is composed of q lattice sites, and is characterized by
a single-particle spectrum with q bands. The filling factor per
spin state of the lowest band therefore reads ν↑,↓ = N/Nφ .
We allow the interaction strength |U | to take arbitrarily large
values and therefore take into account all q bands. While this
restricts the numerically accessible system sizes to 2N � 8, it
has the crucial advantage of including band mixing and band
dispersion effects, thus capturing all features of the Harper-
Hofstadter (HH) model. Our aim is to study the nature of the
many-body ground state (GS) as a function of flux density
and interaction strength. We focus on the situation where the
number of fermions per spin state is equal to the number of
flux quanta (N = Nφ), such that the filling factor per spin state
is ν↑,↓ = 1.

In order to build an intuition about the system’s possible
behavior, let us consider first the low flux limit α � 1, where
the HH model is similar to the continuum case. There, one can
anticipate that a system initially prepared in the ν↑,↓ = 1 IQH
state could evolve into the 1/2 Laughlin state [39]. Indeed,
for increasing attraction, ↑ and ↓ fermions will form pairs
of increasing binding energy and decreasing pair size. For
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FIG. 2. (a) Energy spectrum of 2N = 6 fermions for flux densi-
ties α = 1/8 (left column) and α = 1/10 (right column) and different
interaction strengths U = −t (upper panel) and U = −30t (lower
panel). The GS is not degenerate for U = −t while it is twofold
quasidegenerate for U = −30t . The even states under spin inversion
have an energy offset |U | and thus are not visible on the graphs.
(b) Evolution of the first (δ) and second (
) energy gaps, in black
and blue, respectively, with increasing interaction strength |U | for
2N = 4 and 2N = 6.

sufficiently large attraction, each fermion pair, whose size
becomes smaller than any other length scale, acts as a BM
experiencing a flux density α̃ = 2α. Therefore, the emerging
many-body system—composed of N BMs—could feature a
filling factor ν̃ = 1

α̃
N
Ns

= ν↑,↓
2 = 1/2 of the lowest band. This

scenario, depicted in Fig. 1, remains to be revealed via a
microscopic description in both the continuum and lattice
systems.

In lattice systems, it was shown that the 1/2 Laughlin state
may form in the HH model at low flux (α̃ � 1) for both
hard-core and finite repulsive interactions [45,46]. Therefore,
in the strong binding |U |/t � 1 and low flux α̃ � 1 limits,
the Laughlin state represents a reasonable candidate GS of
the Hamiltonian [Eq. (1)]. However, our model comes with
an additional difficulty: The composite nature of the bosons
is associated with the energy scale |U |, whose competition
with the other energy scales could favor competing phases.
In the following, we describe our analysis of the microscopic
Hamiltonian [Eq. (1)].

Energy spectra. For our numerical calculations, we apply
periodic boundary conditions in both directions and choose
the number of sites in each direction such that the aspect ratio
is close to one. The momenta (Kx,Ky) are defined by the
translations of the magnetic unit cell on the lattice [47]. The
Hamiltonian is block-diagonal in these quantum numbers as
well as in the total magnetization Sz and spin inversion parity
ε for Sz = 0. We performed the exact diagonalization of the
Hamiltonian of Eq. (1) at ν↑,↓ = 1 up to q = 10 using these
symmetries. Our results are plotted in Fig. 2 for α = 1/8 and
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α = 1/10. When U = 0, the fermions completely fill up the
lowest band of the HH model and realize the ν↑,↓ = 1 IQH
state. It is characterized by a single GS in the (Kx,Ky) = (0,0)
sector separated by a large gap δ from higher energy states.
A moderate interaction (U = −t) does not change this picture
[Fig. 2(a)]. Conversely, when |U |/t = 30 [Fig. 2(a)], the gap
δ is small compared to the energy difference between the
second and third lowest energy eigenstates 
. This twofold
quasidegeneracy is characteristic of the ν̃ = 1/2 Laughlin state
on a torus (here the lattice with periodic boundary conditions).
The quasidegenerate GSs are found in the (Kx,Ky) = (0,0),
Sz = 0 sector, and ε = (−1)N spin inversion parity sector,
which is consistent with this interpretation. We computed these
spectra for various interaction strengths U and the results
are summarized in Fig. 2(b). The gap δ is seen to persist
for attractive interactions as strong as U 	 −10t , a regime
at which 
 starts to increase. 
|U | eventually saturates at
|U |/t 	 30. Note that for α > 1/8, we do not observe any
twofold quasidegeneracy at any value of U even for system
sizes as large as 2N � 8, which is probably due to a larger
lattice effect. This is reminiscent of the bosonic calculations,
where the Laughlin state is not observed for α̃ � 1/3 [45,46].
Interestingly, the closing of the IQH gap δ and opening of
the Laughlin gap 
 seem to coincide for all system sizes
considered here, suggesting a direct phase transition between
the two phases. The critical value of U shows very little
dependence with system size and flux density and is of the
order of the one-body linewidth (approximately 8t). In the
continuum, given the unbounded nature of the Landau level
spectrum, a careful study including multiple Landau levels
would be necessary to probe this transition. We computed
the formation cost of a BM in the lowest Landau level [48].
This energy can be roughly related to the lower bound for Uc,
the critical value of U . It suggests an increasing value of Uc

with system size, and thus possibly an infinite value in the
thermodynamic limit. This raises the question of the fate of
this transition in the continuum, which we do not address here.

As complementary evidence to the GS degeneracy, we
also checked the degeneracy of the quasihole excitations [48].
However, in a finite system, a charge density wave (CDW) can
have the same low energy spectrum as the Laughlin state (and
likewise concerning their respective excitations). The precise
nature of the phase can be determined using entanglement
spectroscopy [49,50], which is the purpose of the following
section.

Entanglement spectroscopy. In order to establish the nature
of the twofold GS at large |U |, we use the particle entan-
glement spectrum (PES) [50]. The entanglement spectrum
was originally introduced to extract the edge spectrum from
the GS wave function [49]. The PES uses a similar method
to reveal the nature of bulk quasihole excitations and was
crucial to fully establish the emergence of FQH states in Chern
insulators [28]. Unlike the number of quasihole states in the
energy spectrum, it can distinguish between FQH and CDW
states in Chern insulators [51] and identify superfluid phases in
the HH model [52]. The PES is the spectrum of − log ρA, where
ρA = TrBρ is the reduced density matrix obtained by tracing
over NB ≡ 2N − NA particles, the labels A and B referring
to two complementary parts of the whole system. Thus, ρA

commutes with the total momentum (Kx,A,Ky,A) and the spin
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FIG. 3. (a) Entanglement spectrum for 2N = 8 fermions, |U | =
30t and α = 1/8 (left) and α = 1/10 (right), with a particle partition
NA = 4 in the sector SA

z = 0. The low entanglement energy levels
are all even (blue) under spin inversion which reveals the existence
of a pairing gap. The horizontal black line indicates the midgap
energy. The number of states below this line is 20 (6,4,6,4), which
is the expected counting for the Laughlin state. (b) Evolution of the
entanglement gap of the IQH (
IQH

ξ ) and Laughlin (
ξ ) states with
increasing pairing strength |U | for 2N = 6 and NA = 3, α = 1/8
(left) and α = 1/10 (right).

SA of the subsystem A, as well as the spin inversion parity εA

when Sz,A = 0. When the GS is almost twofold degenerate,
we consider ρ = 1

2

∑2
i=1 |�i〉〈�i |, where |�1〉,|�2〉 are the

two GSs. Generically, the PES has low entanglement levels
separated from higher entanglement levels by an entanglement
gap, which is infinite for model FQH states, but finite in the HH
model [52]. The number of levels below the entanglement gap
is related to the number of quasihole states and is a fingerprint
of a given topological phase.

We computed the PES at small and large |U |, starting
respectively from the unique and the twofold degenerate GS.
We focused on the fluxes α = 1/8 and α = 1/10 for which
quasidegeneracies were observed. Here, we provide evidence
that the large |U | phase shows all features of the Laughlin
state from the PES perspective. Additionally, we use the
entanglement gap as a witness of the phase transition. Further
details of the PES analysis are provided in Ref. [48].

The nature of the phase at large |U | can be settled by
investigating the NA = 4 partition. Indeed, it is the smallest
partition with multiple (two) BMs in the subsystem A, and the
PES will reveal their interaction. Figure 3(a) shows the PES
obtained at strong attraction (|U | = 30t) for 2N = 8 with a
particle partition NA = 4 in the sector SA

z = 0. Below the
entanglement gap, there are 20 states (6,4,6,4), which is the
expected counting for the ν̃ = 1/2 Laughlin state, as known
from the generalized exclusion principle [53]. This constitutes
strong evidence of the emergence of Laughlin state behavior
in this system. Given the large Hilbert space dimension and
the smallness of the energy gap, we used a truncated Hilbert
space (corresponding to the projection onto the space with
at least three tightly bound BMs) to obtain the eigenvectors
of these two systems before computing their PES (see the
Supplemental Material [48] for a quantitative justification).
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FIG. 4. Scaling of the energy gap above the twofold quasidegen-
erate GS of the hard-core bosonic model Eq. (2) with inverse particle
number for various flux densities α̃. There is no quasidegeneracy
for α̃ > 1/4. The finite-size effects are important for α̃ = 1/4,
but become smaller for α̃ < 1/4, suggesting a finite gap in the
thermodynamic limit.

The entanglement gap 
ξ can be used to monitor the phase
transition, providing complementary evidence to the energy
spectra. In Fig. 3(b) we plot 
ξ as a function of the interaction
strength for 2N = 6 fermions and NA = 3, which corresponds
to a reasonable computation time. It reveals the transition from
an IQH entanglement gap to a Laughlin entanglement gap.
Remarkably, the transition point is found for |U | 	 10 t , in
agreement with the result extracted from the energy spectra
[Fig. 2(b)].

System size effects. In order to characterize the phase
transition from a fermionic IQH state to the candidate bosonic
phases, it is necessary to reliably extrapolate our results to the
thermodynamic limit, which requires large N values. However,
the spinful fermionic model Eq. (1) limits us to systems with
only a few pairs of fermions. As a compromise, we focus here
on the large U limit, where the model Eq. (1) can be mapped
onto the following hard-core bosonic Hamiltonian,

Hbos = −t̃
∑

〈r,r′〉
(e2iϕrr′ a†

rar′ + H.c.), (2)

where t̃ = t2

|U | and a
†
r (ar) creates (annihilates) a hard-core

boson at site r. This Hamiltonian allows us to evaluate
finite-size effects by simulating larger systems as well as
to investigate a larger range of α̃. In this limit, we will

thus treat the bosonic model Eq. (2) with N bosons at flux
density α̃ = 2α as the analog of the model Eq. (1) with 2N

fermions at flux density α. The 1/|U | scaling of the gap in
the large |U | limit [Fig. 2(b)] supports this approximation for
|U |/t > 50. We computed the low energy spectrum of the
Hamiltonian Eq. (2) for 1/8 � α̃ � 1/3 and all numerically
accessible particle numbers, extending by up to four bosons
the computations in Ref. [45]. For α̃ � 1/4, we found that
the GS is twofold quasidegenerate. The gap 
 between the
second and third lowest energy states is shown in Fig. 4, and
displays a smooth behavior as a function of N for α̃ < 1/4,
which suggests a finite value at the thermodynamic limit. As
expected, the finite-size effects decrease as α̃ approaches the
continuous limit α̃ � 1 and they appear to still be important
at α̃ = 1/4. For α̃ � 1/4, the PES analysis yields a number
of states below the entanglement gap that is the one expected
for the Laughlin state, in agreement with our findings on the
fermionic model at even NA.

Conclusion. In this Rapid Communication, we showed that
attractive interactions between opposite spin fermions trigger
a phase transition between a ν↑,↓ = 1 fermionic IQH state
and a bosonic Laughlin state in the Harper-Hofstadter model.
The transition occurs for a critical interaction strength of the
order of the full linewidth of the one-body spectrum. The
extrapolation of this result to the continuum is unclear since
the Landau level spectrum is unbounded, calling for an in-
depth numerical study of this case. Our work demonstrates
that dynamical fermion pairing, as realized in quantum gas
experiments, opens unique possibilities for the exploration of
topological matter. Combined with the techniques developed
for the realization of topological matter with ultracold atoms,
this feature might provide a different pathway to create and
probe nontrivial topological phases [54].
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