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We construct the symmetric-gapped surface states of a fractional topological insulator with an electromagnetic
θ angle θem = π

3 and a discrete Z3 gauge field. They are the proper generalizations of the T-Pfaffian state
and Pfaffian/antisemion state and feature an extended periodicity compared with their “integer” topological
band insulator counterparts. We demonstrate that the surface states have the correct anomalies associated with
time-reversal symmetry and charge conservation.

DOI: 10.1103/PhysRevB.96.161109

Introduction. The three-dimensional topological band in-
sulator [1–4] is an electronic topological phase. Its discovery
embodies the remarkable progress in our understanding of
the interplay between the symmetry and topology of quantum
states of matter. Its topological nature manifests spectacularly
as a single gapless Dirac fermion living at its boundary, whose
existence is otherwise impossible. It has been thought for some
time that a single gapless Dirac fermion is the only allowed
surface state respecting time-reversal and charge conservation
symmetries. However, surprisingly, it turns out that there is
another option [5]: The surface can be gapped while respecting
the symmetries, at the cost of introducing topological order,
resulting in the T-Pfaffian state and the Pfaffian/antisemion
state [6–9].

In this Rapid Communication, we will consider the surface
of a fractional topological insulator (FTI). The fractional
topological insulator [10–15] is a symmetry-enriched topo-
logically ordered state of matter in three spatial dimensions,
which supports anomalous surface states protected by time-
reversal symmetry and charge conservation. The simplest
three-dimensional (3D) FTI [12] contains fractional excita-
tions such as gapped charge- 1

3 fermions and Z3 gauge fluxes.
It is characterized by a term in the effective action for the
electromagnetic response of the bulk with a fractional axion
angle θem = π

3 [12],

Lθ = θem

32π2
εμνλρFμνFλρ = 1

96π
εμνλρFμνFλρ. (1)

This state can be constructed by fractionalizing the electron
into three charge- 1

3 fermionic partons, i.e., �e = ψ1ψ2ψ3,
which, at the mean-field theory level, is described by the topo-
logical band insulator. The fractionalization of the physical
electron into multiple fermionic partons introduces unphysical
states in the Hilbert space and those states need to be projected
out. This projection is done efficiently by introducing a Z3

gauge field and making the partons ψj carry the unit charge
under this gauge field, i.e., under the gauge transformation,
the parton transforms as Z3 : ψj → ωψj with ω3 = 1. On
the other hand, the electron is locally gauge invariant, i.e.,
Z3 : �e → �e, as it should be. Here, we will assume that the
Z3 gauge theory is realized in its deconfined phases [16,17].
Several works on the theoretical constructions of 3D FTIs have

been written, and some of the physics of the bulk states is by
now reasonably well understood.

Compared to the bulk, the surface states of FTIs have been
less studied and are not well understood, largely because
of the strong interactions required for these states to occur.
The surface of a FTI is intrinsically strongly correlated and
thus the fate of the surface Dirac fermions, which result
in the mean-field description, is not a priori clear. In the
presence of strong interactions, there are several possible
scenarios to consider. The surface may break the symmetries
protecting the gaplessness spontaneously and be gapped. A
more interesting possibility is to have a transition to a phase
which is gapped while respecting all the symmetries. This
phase is the symmetric-gapped surface state, which lives
only on this (3+1)-dimensional state with symmetry-enriched
topological order. Such a surface state should realize the
symmetries in an anomalous fashion which cannot be realized
within strictly two space dimensions.

Here, we construct a gapped state on the surface of a 3D
FTI. This state is invariant under the Z3 gauge symmetry and
respects global electric charge conservation and time-reversal
invariance. Since it is gapped, this state should be stable against
interactions with moderate strength. This state is the general-
ization of the T-Pfaffian state of the 3D time-reversal-invariant
topological insulator [8] (see also Ref. [18]) to the more
general problem of the surface of a 3D FTI. More precisely, we
show that the generalization of the symmetric-gapped surface
states of an topological insulator have an extended periodicity,
which are forced by the Z3 gauge invariance. This extended
periodicity allows the surface of the FTI to have the correct
parity anomaly.

The symmetries of the symmetric surface states of the 3D
FTI, at the quantum level, are realized anomalously, which
implies that this state can only occur on the surface of a
3D system with the correct bulk anomaly. The anomaly of
the surface that we are mainly concerned with is a fractional
parity anomaly with an associated surface Hall conductivity
σxy = 1

6 . This anomaly must either be canceled by the bulk or
by another surface state [19–21]. For example, the T-Pfaffian
state [8] has the same parity anomaly as the single Dirac
fermion, i.e., σxy = 1

2 [22,23]. To see this clearly, we note
that a single Dirac fermion alone is not invariant under
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large gauge transformations, and we need to regularize the
theory properly to restore the gauge symmetry at the cost of
breaking time-reversal symmetry, i.e., the properly regularized
theory comes along with a half level of the Chern-Simons
term − 1

8π
εμνλAμ∂νAλ, which explicitly breaks time-reversal

symmetry [22].
However, when coupled to the bulk of a topological

insulator, time-reversal symmetry at the surface is restored [23]
by the axion term in the bulk effective electromagnetic action
Lem = 1

32π
εμνλρFμνFλρ, whose boundary action cancels the

half-level Chern-Simons term generated from the regulariza-
tion of the Dirac fermion. The T-Pfaffian state also has the
same parity anomaly σxy = 1

2 which exactly matches this bulk
contribution [8]. In the fractional topological insulator case, the
axion angle Eq. (1) is θem = π

3 , which implies that the correct
boundary state should have a parity anomaly with σxy = 1

6 .
Hence, we look for states with Z3 gauge symmetry, global
electric charge conservation, time-reversal symmetry, and a
parity anomaly σxy = 1

6 .
Here, we construct such symmetric-gapped states with the

help of recently developed fermionic dualities in (2+1) space-
time dimensions [24–27]. One of the states that we construct
is a generalization of the T-Pfaffian state that exactly matches
the topological order that two of us found previously in an
anyon-theoretic construction [28]. Various heterostructures of
FTI thin films were considered and constrained the possible
structures to derive a symmetric-gapped state. Here, we present
a field-theoretic derivation of this state, and construct other
classes of the symmetric-gapped states for the FTI.

Generalization of the T-Pfaffian state. At the level of mean-
field theory, the surface state of the 3D FTI consists of three
partons, electric charge- 1

3 Dirac fermions

L =
3∑

j=1

ψ̄j i �DA/3ψj , (2)

where A is the background electromagnetic gauge field. Note
that there are no Chern-Simons terms for the A and the Z3

gauge fields [29]. As noted above, this theory is incomplete:
The partons must also be coupled to a Z3 dynamical gauge
field to reproduce the correct Hilbert space. The fluctuations
of the Z3 gauge field are gapped in deconfined phase and we
have suppressed their explicit contribution to the low-energy
effective theory. Nevertheless, the requirement of Z3 gauge
invariance will play a key role. On the other hand, two of the
three Dirac fermions can become massive without breaking
any of the symmetries of the theory and, generically, we are
left with only one massless Dirac fermion, whose mean-field
effective action is

L = ψ̄i �DA/3ψ. (3)

We should recall that the Dirac fermion ψ carries a unit Z3

charge, even though the gauge field is not shown explicitly in
this low-energy theory.

Another surface state can be obtained from the dual theory
of Eq. (3). Duality has provided a direct way to gap out the
Dirac fermion without breaking symmetries in the topological
band insulator case [24,25], and we will follow the same
strategy here. Upon the duality transformation, the dual theory

of Eq. (3) becomes

L = χ̄ i �Daχ + 1

12π
εμνλaμ∂νAλ. (4)

This duality is a short-hand representation which is sufficient
for our present purposes [30]. The new U (1) gauge field aμ

is introduced by the dual transformation and is unrelated to
the Z3 gauge field. Physically, the χ fermion corresponds to
a composite of the 4π flux (seen from the ψ fermion) and
ψ fermion [24,25]. Here, we would like to introduce a gap
while preserving the symmetries. We first introduce an s-wave
pairing field, i.e., a singlet pairing in the spinor index, to χ

fermions. Note that here the pairing is dynamical and originates
from strong correlations, contrary to the proximity effect in the
Fu and Kane model [31]. Because the χ fermion is explicitly
electrically charge neutral, the s-wave paired state of Eq. (4)
respects time-reversal symmetry and charge conservation. This
is the T-Pfaffian state of the parton ψ [29].

We review a few facts about the T-Pfaffian state that are
needed for our construction. The effective low-energy theory
of the T-Pfaffian has a charge sector and a neutral (Ising) sector
[8]. The excitations of the charge sector are labeled by their
vorticity k mod 8, and are charge- k

4 anyon excitations of the
filling ν = 1

8 state of the charge-2 boson. The excitations of
the Ising sector are the Abelian boson I , fermion f , and the
non-Abelian anyon σ . In the T-Pfaffian state, excitations with
even vorticity k = 2n are bound with the Abelian anyons I and
f of the Ising sector, and excitations with odd vorticity k =
2n + 1 are bound to the non-Abelian anyon σ . The resulting
states are respectively denoted below as Ik , fk , and σk . I8

is a boson braiding trivially with all the other anyons. Its
presence truncates the spectrum of the theory to 12 excitations
[8,24]. The main difference from the T-Pfaffian state of the
topological band insulator is in the electric charge carried by
the excitations: The vorticity k excitation carries the electric
charge k

12 instead of k
4 as in the charge of excitations of the

topological band insulator.
Without theZ3 gauge field, this T-Pfaffian state of the parton

could have been a legitimate symmetric surface state. However,
here we need to be more careful because of the internal Z3

gauge field. To see this, we first identify the Z3 gauge charge
of the excitations. We first assign the Z3 gauge charge q to the
smallest excitation, σ1. Then, the excitation of the vorticity k

carries the Z3 gauge charge k × q mod 3. Since the fermion
f4 has the same quantum numbers as the parton ψ [8,24], i.e.,
electric charge- 1

3 and unit Z3 charge, we obtain the constraint

4q = 1 mod 3. (5)

One solution to Eq. (5) is q = 1. (Below, we will come back to
the other solution, q = 1

4 mod 3.) From this, we read how the
excitation Vk of the vorticity k transforms under the Z3 gauge
transform, i.e., Z3 : Vk → ωkVk .

This has a striking effect on the anyon theory: The T-Pfaffian
of the parton ψ breaks Z3 gauge symmetry because the
supposedly “transparent” boson I8 [8] transforms nontrivially
under the Z3 gauge transformations, i.e., Z3 : I8 → ω2I8. The
boson I8 is nonlocal because it has a nontrivial braiding phase
with theZ3 flux. Hence, the anyon contents can no longer have
period 8 if the internal gauge invariance Z3 is to be respected.
If we enforce the periodicity to be 8, then we need to break Z3
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gauge symmetry completely and remove the Z3 flux from the
excitation spectrum. Physically, the boson I8 corresponds to
the pair field of the fermion ψ , which carries charge-2 under
Z3 gauge group and electric charge 2

3 . Thus, the T-Pfaffian
of the parton is not compatible with the internal Z3 gauge
symmetry.

There are two options to restore the Z3 gauge symmetry
to this state. One is simply to remove the pairing in the χ

fermions and to go back to the metallic state of Eq. (3). The
other option is to enter into a new topological state, and this is
the direction that we pursue. The new topological state features
an extended periodicity of the anyon contents enforced by Z3

gauge symmetry.
We start by noting that the triple of I8, i.e., I24 ∼ (I8)3, is

neutral under the Z3 gauge field, and thus it has trivial braiding
phases with all the anyons, including the Z3 gauge fluxes.
Thus, we can truncate the anyon contents at k = 24 instead of
at k = 8. Therefore, the Z3 gauge symmetry can be restored
simply by extending the periodicity of the anyon content of the
vorticity from 8 to 24. For this state, time-reversal symmetry
as well as charge conservation are inherited directly from the
“parent” T-Pfaffian state of the parton ψ . Hence, this state
respects all the required symmetries to be the legitimate surface
state of the fractional topological insulator.

We now investigate the consequences of an extended
periodicity, k ∼ k + 24. In this theory, the topological spins
and the action of time-reversal symmetry T still repeat with
period 8. The charges are assigned as follows,

Qem,k = k

12
, and Z3 : Vk → ωkVk, (6)

where Vk represents the anyons with vorticity k, with k ∼
k + 24. Also, Ik and fk with k ≡ 2 mod 4 are exchanged
under time reversal. For example, there are two types of
anyons Vk , i.e., I18 and f18, carrying electric charge 3

2 , and
are exchanged under time-reversal symmetry, as in the usual
T-Pfaffian state. There are two excitations to which we pay
particular attention. The first is the electron quasiparticle �,
i.e., f12, which carries electric charge 1, is neutral under Z3,
and has T 2 = −1. The second is the (singlet) Cooper pair of
electrons, which is identified with I24: a boson that has electric
charge 2 and is a Kramers singlet.

We now come to the parity anomaly. Without referring back
to the field-theoretic derivation, we can read off the anomaly
directly from the anyon content of the theory. This way of
reading off the anomaly will be useful when discussing the
generalization of the Pfaffian/antisemion state. In the case of
the T-Pfaffian state of the topological band insulator, the period
is 8 and the vacuum is identified with the charge-2 boson I8.
This implies that σxy = ν × Q2 = 1

8 × 22 = 1
2 , where ν is the

inverse of the periodicity (more precisely, it is the period of
the bosonic charge sector, which is equivalent to the period of
the anyon contents in this T-Pfaffian state.) and Q is the charge
of the transparent boson. Hence, we see that the T-Pfaffian state
has the correct parity anomaly σxy = 1

2 . Now, for the surface
state of the FTI, the period 24 with charge-2 boson I24 implies
that the surface has a charge response with Hall conductivity
σxy = ν × Q2 = 1

24 × 22 = 1
6 . This is precisely the expected

parity anomaly of the FTI, which will be canceled by the
bulk axion term. A more accurate statement is that the charge

sector of this anyon theory is U (1)24, as was shown explicitly
in Ref. [28].

It is now clear that the other solution q = 1
4 to Eq. (5)

generates the same anyon content as the q = 1 solution
because, in the above analysis, only the Z3 gauge charge
of I8 is important. Obviously, the Z3 gauge charge of I8 is
the same in both solutions. The fractionalization of the Z3

gauge charge by q = 1
4 , which extends the Z3 gauge theory to

the Z12 gauge theory only at the surface, does not break the
Z3 gauge symmetry, charge conservation, and time-reversal
symmetry. Hence, this state is also another legitimate surface
state of fractional topological insulators. The two solutions,
q = 1

4 mod 3 and q = 1 mod 3, can be distinguished by the
braiding with the Z3 flux and the surface excitations because
the surface excitations have nontrivial statistics with the
flux.

In our system, the Z3 gauge theory is not coupled with
the electromagnetic field. For instance, a Z3 flux does not
necessarily carry a nontrivial magnetic flux. Furthermore,
because of time-reversal symmetry, when it intersects the
symmetric surface, it does not carry an electric or gauge charge.

We now discuss the topological degeneracy on the open
3-manifold D2 × S1 of this fractional topological insulator
with a symmetric-gapped topologically ordered surface, where
D2 × S1 is the filled spatial torus. We note that there is only
one noncontractible loop along S1 along which we have three
possible degeneracies labeled by the Z3-charge Wilson loop
around this S1. On the other hand, given a Z3 charge, there
are six possible anyonic loops living purely on the surface of
D2 × S1. So, the total degeneracy is 18 [29,32–34].

Relation with the paired FQH state at filling ν = 1
6 . It

has been conjectured from the link between the half-filled
composite Fermi liquid and the surface of the topological band
insulator [35,36] that the particle-hole symmetric version of
the T-Pfaffian state, the PH-Pfaffian [35], can be realized in a
half-filled Landau level. This state is essentially equivalent
to the T-Pfaffian in terms of symmetries and excitations
but time-reversal symmetry is replaced by the particle-hole
symmetry of the half-filled Landau level (in the large cyclotron
energy limit). We can ask if our exotic surface state of the FTI
can be realized in a Landau level. From the charge response
σxy = 1

6 of the surface state, it is natural to compare this
state with a putative paired FQH state at ν = 1

6 . However,
contrary to the half-filled case, we do not have an obvious
particle-hole symmetry at ν = 1

6 . This implies that the surface
state of the FTI does not have a natural partner in a fractionally
filled Landau level. In fact, the excitations of the paired
FQH state at the filling ν = 1

6 can be generated by tensoring
of the charge sector U (1)24 and the neutral Ising sector,
quotiented by an extended symmetry. However, as discussed
in Ref. [28], to restore time-reversal symmetry, another neutral
Z3 sector is needed, which is absent in the paired FQH
state.

Other symmetric-gapped surface states. On establishing the
generalization of the T-Pfaffian state at the surface of FTIs, we
now address if we can construct the generalization of another
symmetric-gapped state of a topological band insulator, i.e.,
a Pfaffian/antisemion state [6,8]. For this, we note that the
essential step in our generalization of the T-Pfaffian state is to
identify f4, the electron in the topological band insulator case,
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with the minimal parton ψ carrying unit Z3 gauge charge.
This state breaks the internal Z3 gauge symmetry which
can be restored by extending the periodicity of the anyon
content from 8 to 24. This strategy, “extending periodicity”
to restore the internal gauge symmetry, straightforwardly
generalizes to the other symmetric-gapped surface order, e.g.,
the Pfaffian/antisemion state. This state [6,8], which is realized
at the surface of a topological band insulator, respects time-
reversal symmetry and charge conservation. Its excitations are
labeled by {Ik,Iks,σk,σks,fk,fks} with vorticity k ∼ k + 8
(here, s is the antisemion), and carry electric charge k

4 . In
this state, f4 is the electron, i.e., a Kramers doublet charge-1
fermion, and the singlet Cooper pair I8 is “transparent” to all
the anyons, as in the T-Pfaffian state.

On the surface of the fractional topological insulator, we
imagine putting the parton ψ first into the Pfaffian/antisemion
state. Temporarily ignoring the Z3 gauge symmetry, we find a
theory respecting all the symmetries. The only difference is the
electric charge carried by the anyons. Now, the excitation with
vorticity k carries electric charge k

12 since the “elementary”
excitation ψ has fractional electric charge 1

3 . Obviously,
bringing the Z3 gauge symmetry back into the discussion, we
see that I8 is no longer local and braids with theZ3 fluxes since
it carries charge 2 under the Z3 gauge field. However, we can
restore the Z3 gauge symmetry by extending the periodicity
once again from 8 to 24, i.e., k ∼ k + 24. In this state, the
charge sector has period 24 and the identity boson carries
electric charge 2. Hence the parity anomaly associated with this
state is again σxy = 1

6 , the correct anomaly to be on the surface
of the fractional topological insulator. Furthermore, it obeys
time-reversal symmetry and charge conservation, inherited
from the original Pfaffian/antisemion theory.

Conclusions and outlook. In this Rapid Communication,
with the help of fermion-fermion duality, we constructed

symmetric-gapped surface states of FTIs with the electromag-
netic axion angle θem = π

3 , whose excitations are the fractional
parton and the discrete Z3 gauge flux. The symmetric-gapped
surface states are generalizations of the T-Pfaffian state and the
Pfaffian/antisemion state but with an extended periodicity. We
showed that the surface states respect the required symmetries
of charge conservation, time-reversal symmetry, and Z3 gauge
symmetry, and that they have the correct parity anomaly, i.e.,
σxy = 1

6 , which matches the axion angle θem = π
3 . At the heart

of finding these surface states, the identification of the electron
in the symmetric-gapped surfaces of a topological band
insulator by the nonlocal fermionic parton plays an essential
role. This requirement forced us to extend the periodicity of the
anyon content so as to restore the internal Z3 gauge symmetry.
Here, we focused on the case of FTIs with θem = π

3 , but it is
straightforward to generalize our construction to other FTIs
with an angle θem = π

2n+1 and a Z2n+1 gauge field. We end by
noting that the structure we used (“extending periodicity”) will
arise in the construction of symmetric-gapped surface states
for other various bosonic and fermionic FTIs. Generically, we
expect that they will inherit their global symmetries from their
counterparts in the “integer” bosonic and fermionic topological
insulators.
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