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Chiral flat bands: Existence, engineering, and stability
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We study flat bands in bipartite tight-binding networks with discrete translational invariance. Chiral flat
bands with chiral symmetry eigenenergy E = 0 and host compact localized eigenstates for finite range hopping.
For a bipartite network with a majority sublattice chiral flat bands emerge. We present a simple generating
principle of chiral flat-band networks and as a showcase add to the previously observed cases a number of
new potentially realizable chiral flat bands in various lattice dimensions. Chiral symmetry respecting network
perturbations—including disorder and synthetic magnetic fields—preserve both the flat band and the modified
compact localized states. Chiral flat bands are spectrally protected by gaps and pseudogaps in the presence of
disorder due to Griffiths effects.
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Hermitian tight-binding translationally invariant lattices
with the eigenvalue problem E�l = −∑

m tlm�m and certain
local symmetries have been shown to sustain one or a few
completely dispersionless bands, called flat bands (FBs) in
their band structure [1]. The interest in FBs is due to the
macroscopic degeneracy they host. Almost any perturbation
will lift that degeneracy and thus lead to interesting new
physics: ground-state ferromagnetism [2], unusual localization
[3,4], Landau-Zener Bloch oscillations [5], to name a few
examples. Thus, it is important to know which conditions
have to be satisfied in order to obtain FBs, yet in practical
situations it will suffice to be close enough to an ideal FB case
in order to potentially realize new states of quantum matter.
Flat bands with finite range hoppings rely on the existence
of a macroscopic number of degenerate compact localized
eigenstates (CLS) {�l} at the FB energy EFB which have
strictly zero amplitudes outside a finite region of the lattice due
to destructive interference [6]. Flat-band networks have been
proposed in one, two, and three dimensions and various flat
band generators were identified [7,8], which harvest on local
symmetries. A recent systematic attempt to classify flat band
networks through the properties of CLS was used to obtain
a systematic flat band network generator for one-dimensional
two-band networks [9]. Experimental observations of FBs and
CLS are reported in photonic waveguide networks [10–15],
exciton-polariton condensates [16–18], and ultracold atomic
condensates [19,20]. FBs are obtained through a proper
fine-tuning of the network parameters. For experimental
realizations, the understanding and usage of FB protecting
symmetries is therefore of high priority.

The interplay of flat bands (or equivalently, CLS) and
additional symmetries was discussed in few publications so
far, which mostly focused on specific models. Nongapped
flat bands in a dice lattice model as a consequence of the
underlying chiral symmetry was reported by Sutherland [21],
as well as possible generalizations, that we work out and
extend in the present work. Bound states in the continuum
protected by chiral symmetry of a lattice with flat bands,
were studied by Mur-Petit and Molina [22]. Poli et al. [23]
examined the effect of partial breaking of chiral symmetry in
a two-dimensional Lieb lattice, which destroyed the flat band.
Leykam et al. [24] studied the one-dimensional diamond chain
with on-site disorder which is a case of weakly broken chiral

symmetry, and observed a finite localization length for states at
the flat-band energy, as opposed to strict compact localization
in the case of preserved chiral symmetry (see below). Green
et al. [25] speculated that time-reversal symmetry has to be
broken to gap away the flat band from dispersive bands,
which might be relevant in the presence of interactions. We
show below that gapped chiral FBs do not require broken
time-reversal symmetry. Recently, Read analyzed the existence
of CLS and, therefore, flat bands, and their relation to general
topological properties for generic Hamiltonians belonging to
the ten symmetry classes using algebraic K theory [26]. Below,
we thoroughly explore the implications of the chiral symmetry
on the existence and properties of flat bands.

Bipartite lattices separate into two A,B sublattices such
that E�

A,B
l = −∑

m tlm�B,A
m and possess chiral symmetry

(CS): if {�A,�B} is an eigenvector to eigenenergy E, then
{∓�A, ± �B} is an eigenvector to eigenenergy −E. We study
chiral flat bands (CFBs) with EFB = 0 in such systems, and the
ways the chiral symmetry is protecting them. Lieb’s theorem
[27] implies that chiral lattices with an odd number of bands
always possess at least one chiral flat band, and we present
a general method to compute the total number of CFBs. This
allows us to derive a simple CFB network generating principle
in various lattice dimensions. Disorder (or other perturbations)
which preserve CS also preserve the CFB, and we show that
CLS survive up to modifications. CFBs are generically gapped
away from other spectral parts; however, the gap is replaced
by a pseudogap in case of hopping disorder due to Griffiths
effects [28].

We start with a reminder of a well-known theorem on the
existence of zero-energy states for bipartite lattices [21,27]. It
states that if the number NA of the majority A-sublattice sites
is larger than the corresponding number NB of the minority
B sublattice, then there are at least �N = |NA − NB | states
{�A,0} at energy E = 0 [21,27], which occupy the majority
sublattice only.

These results naturally lead to the systematic classification
of chiral flat bands: Consider a translationally invariant d-
dimensional bipartite lattice, odd number ν of sites per unit
cells, and 1 � μB < μA < ν. The μA A sites in any unit cell
are only connected with nonzero hopping terms tlm to the
remaining μB B sites (possibly belonging to other unit cells).
The general band structure is given by dispersion relations
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FIG. 1. Modifications of known CFB networks and their band
structure (see, e.g., [1,6]). Majority and minority sublattice sites
are shown with circles and squares, respectively. Solid lines: t = 1;
dashed lines: t = 2. CLS amplitudes (not normalized) are shown in
color code. (a) Diamond, (b) 1d Lieb, (c) stub, (d) 2D Lieb, and
(e) T3 (dice).

Eμ(�k) with the band index μ = 1, . . . ,ν and �k a d-component
Bloch vector scanning the Brillouin zone. It follows already
by general CS that at least one of the bands must either cross
E = 0 (finite number of zero energy states) or be a FB at
E = 0 (macroscopic number of zero-energy states), since any
band which does not cross E = 0 is either positive or negative
valued, and has a symmetry related partner band. Due to the
odd number of bands, there is at least one unpaired band
which therefore must transform into itself under CS action.
In the following, we focus on a Hermitian system, but the
concepts can be carried over to non-Hermitian systems as
well. Further, since ν is odd, the difference in the number of
sites on the A and B sublattices �N = Nuc(2μA − ν) �= 0,
where Nuc ∼ Ld is the number of unit cells, and L is the
linear dimension. This implies a macroscopic degeneracy at
E = 0, which is only possible with precisely (2μA − ν) FBs
at E = 0. This observation suggests a natural classification of
CFBs by the imbalance of minority and majority sites, and will
be used for a CFB generator as we illustrate below. Therefore,
by fixing the space dimension and the Bravais lattice, and
looping over the number of sites ν and the number of sites
of the majority sublattice μA as well as the hopping range,
one can systematically explore all the possible chiral flat-band
models.

We now illustrate the first few steps in this classification: Let
us first discuss d = 1. For ν = 3 there is only one possibility
μA = 2. A known example is the diamond chain structure
shown in Fig. 1(a). The cutting of one bond leads to the stub
structure, Fig. 1(c). For ν = 5 there are two possibilities: μA =
3,4. The case μA = 3 leads to a generalized Lieb structure,
Fig. 1(b). Cutting a bond produces a generalized stub3 lattice,
Fig. 2(b). The second case μA = 4 arrives at a new network
structure which we coin double diamond chain [Fig. 2(a)].

For the d = 2 and ν = 3 case the only partitioning is again
μA = 2, yet there are different choices of Bravais lattices. For

FIG. 2. Novel CFB examples (with dispersion relations). Major-
ity and minority sublattice sites are shown with circles and squares,
respectively. CLS amplitudes (not normalized) are shown in color
code. (a) Double diamond, (b) stub3, (c) 2D stub, and (d) decorated
Lieb.

the tetragonal Bravais lattice we find a generalized 2D Lieb
structure [Fig. 1(d)]. The hexagonal Bravais lattice yields, e.g.,
the T3 or dice lattice [21,29,30] [Fig. 1(e)]. Cutting two bonds
in each unit cell of the T3 lattice yields a novel 2D stub lattice
[Fig. 2(c)]. For ν = 5, there are again two partitionings, μA =
3,4. The case μA = 3 leads to an edge-centered honeycomb
lattice [31]. In the second case μA = 4 with three CFBs and
two dispersive bands [decorated Lieb lattice, Fig. 2(d)]. For
d = 3 and ν = 3 we obtain a novel generalized 3D Lieb
structure (Fig. 3).

The above approach can be extended to larger odd band
numbers. Further, the approach is not restricted to odd band
numbers only. Any even band number ν � 4 works as well, as
long as μA > μB . For instance, μA = 3 and μB = 1 is the first
nontrivial CFB case with the smallest number of four bands,

FIG. 3. A d = 3 CFB example of the generalized 3D Lieb
structure (with dispersion relation at fixed kz = 2π/3). Majority
and minority sublattice sites are shown with circles and squares,
respectively. CLS amplitudes (not normalized) are shown in color
code.
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FIG. 4. A d = 2 CFB example with four bands and three
degenerated CFBs, coined 2D RAF lattice (with dispersion relation).
Majority and minority sublattice sites are shown with circles and
squares, respectively. CLS amplitudes (not normalized) are shown in
color code.

with two degenerated CFBs. A two-dimensional realization of
such a structure is the 2D RAF (or bond-centered triangular)
structure in Fig. 4.

The most general way to generate CBFs is to simply set
the numbers ν,μA,d and to pick a Bravais lattice. Any values
of hoppings between majority and minority sublattices are
allowed. The hopping range can be anything, from compact
(or nearest neighbor) as chosen in the above examples, to
exponentially decaying, or algebraic decaying, or not decaying
at all in the lattice space. For noncompact hoppings, CLS
states are not expected to persist in general and turn into
exponentially, algebraically, or completely extended flat band
eigenstates, since the number of equations to be satisfied
turns macroscopic. Our generator therefore provides a straight-
forward path of generating flat bands which lack compact
localized state support.

For compact or nearest-neighbor hopping it is always
possible to construct a suitably sized CLS for a CFB, as
follows from a simple counting of equations and variables.
The nonzero CLS amplitudes must always be located on
the majority sublattice and are the variables to be identified.
The embedded and surrounding minority sites have amplitude
zero and constitute the set of equations to be satisfied. This
immediately gives an estimate of the number ne of lattice
equations to be satisfied by the CLS: ne = veL

d
CLS + seL

d−1
CLS

and the number of variables nv = vvL
d
CLS . Both numbers

scale proportionally to the volume Ld
CLS of the CLS, with

vv > ve, and an equation surface contribution with some
proportionality factor se. For large enough volume Ld

CLS the
number of equations will always be less than the number of
variables, and the CLS can be constructed. It would be inter-
esting to combine the chiral generator with the generic CLS
generator [9].

The above examples of periodic CFB structures show that
in general the CFB is gapped away from dispersive bands.
While for some cases we observe conical intersections at
E = 0 and zero gaps, this happens for highly symmetric
hopping parameter sets (e.g., like all hoppings equal). We
checked that all models discussed above show gap openings
upon changing the hopping values in the corresponding sets
(without destroying the network class and periodicity). This
is due to removal of accidental degeneracy of states from dis-

persive bands. Dispersive bands in CS networks are symmetry
related, and can touch at zero energy only for discrete sets
of wave-vector values. These touchings (not crossings) are
additional degeneracies which are removed by perturbations,
even those that respect CS. The CFB, however, remains at zero
energy.

Conical intersection points in two-dimensional chiral net-
works without majority sublattices (μA = μB) are known to
be protected by the very chiral symmetry. Indeed, in this
case the Hamiltonian in k space is taking the form H (k) =
( 0 T (k)
T †(k) 0 ) where T (k) is a square matrix of rank μA = μB .

Conical intersection points in H (K) are protected since the
zeros of the analytical function det T (k) [and hence the zero
modes of T (k)] survive under small perturbations of the
hoppings.

However, in the case of CFBs μA �= μB and therefore T (k)
is a rectangular matrix. Yet we can always represent a CFB
Hamiltonian in the form

H (k) =

⎛
⎜⎝
D1(k) Q(k) 0

Q†(k) D2(k) 0

0 0 EFB

⎞
⎟⎠. (1)

In order to have a symmetry protected conical intersection
point, we have to request bipartite symmetry in the subsystem
of the dispersive states, i.e., D1,2(k) = 0. That results in μB

functions of k which have to vanish, with only a finite number
of variables (the hopping set) at hand. Therefore the conical
intersections observed for CFB are not protected by symmetry,
although they might be preserved upon perturbations along a
subset of the hopping control parameter space.

The CFB is protected even when destroying translational
invariance while keeping CS. This can be easily done by
randomizing the hoppings, e.g., using random uncorrelated
and uniformly distributed variables εij ∈ [−W/2,W/2] such
that tij → tij (1 + εij ). We first consider the 1D diamond chain
from Fig. 1(a) with W = 10, which is much larger than the
gap of the ordered case, and would be expected to smear
out the gap completely. Figure 5 shows the density of states
for this case. We clearly observe a persistent and protected
CFB with ρ(0) = ∞ due to flat bands and pseudogap behavior
ρ(E → 0) → Eα with model dependent exponent α. The CLS
persist and have a structure similar to the clean case shown in
Figs. 1 and 2 but with amplitudes which are derived from the
random hopping values tij which are connecting CLS sites with
the minority sublattice. Consequently, CLS are now different
in different parts of the chain. In Fig. 5 we show the analogous
results for the 2D Lieb lattice. Again the CFB is protected by
a gap, and CLS states persist, which have a structure similar
to the one shown in Fig. 1(d). Finally, in Fig. 5 we show the
density of states for the disordered T3 lattice. Clearly in all
the above cases the CFB persists in the presence of symmetry
preserving hopping disorder, and is protected from other states.
Notably the gap is smeared and replaced by a pseudogap
due to Griffiths effects, due to rare regions that are almost
translationally invariant or contain conical intersections. The
pseudogap scaling close to E = 0 is shown in the inset in
Fig. 5.

In order to demonstrate the importance of the chiral
symmetry protection, we computed densities of states for
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FIG. 5. The density of states ρ(E) versus energy E for disordered
CFB networks (see text for details): The thick black curves in the main
plot show the density of states for the diamond chain (solid line), 2D
Lieb lattice (dashed line), and T3 lattice (dotted line) in the presence of
CS preserving hopping disorder. The thin gray curves in the main plot
show the density of states for the same systems, but in the presence of
CS breaking on-site disorder. Clearly the FB is destroyed, densities
turn finite, and the Lifshitz tails are removed. The inset shows the
details of the vanishing of the density of states for small but nonzero
energies [log-log plots for diamond chain (red squares), 2D Lieb (blue
circles), and T3 (black triangles) lattice].

the modified eigenvalue problem, (E − εl)�l = −∑
m tlm�m,

with diagonal (on-site) disorder. The random uncorrelated
on-site energies εl break the CS and the CFB is destroyed,
and the pseudogap and δ peak at E = 0 are smeared
(Fig. 5).

Finally, let us discuss the possibility of linear dependence
of the CLS. To enforce linear dependence of the set of all
CLS, we need to zero at least one linear combination of
them, which leads to NμA equations with only N variables
(coefficients) available. This is in general impossible, unless
additional constraints are met. Therefore the set of all CLS is
generically linearly independent and spans the entire Hilbert
space of the CFB.

That is at variance with flat bands in systems lacking
chiral symmetries, e.g., for the kagome and 2D pyrochlore
(checkerboard) lattices [24]. In these cases, the CLS set is
linearly dependent [32]. The search for one missing state leads
to the existence of two different compact localized lines. The
unexpected additional state at the flat band energy is therefore

due to band touching. A similar linear dependence of the CLS
set happens also for nongapped CFBs, e.g., for the 2D Lieb
lattice with all hoppings being equal, or for the dice lattice in
Fig. 1. Reducing the symmetry in the hopping network {tlm}
while keeping the chiral symmetry preserves the flat band,
opens a gap, and turns the CLS set into a linearly independent
one. It is an interesting question whether similar reductions of
the symmetry of the hopping networks for nonchiral systems
with band touchings will preserve the flat band, gap it away
from dispersive states, and make the CLS set complete.

Turning the hopping matrix elements complex will destroy
time-reversal symmetry, and may correspond to the introduc-
tion of synthetic magnetic fields in the context of Bose-Einstein
condensates [33–40], and of light propagation in waveguide
networks [41,42]. These changes preserve CS and therefore,
the CFB persists also together with the CLS. This has been
shown for the one-dimensional diamond chain in Ref. [5],
where a magnetic field preserves the CFB, the CLS, and
opens a gap. Further, we can even leave Hermitian grounds
and consider dissipative couplings [43]. Still the CFB will
be protected due to the above reasoning of having a majority
sublattice. Therefore CFBs can be realized even in dissipative
non-Hermitian settings.

To conclude, we presented the theory of chiral flat bands.
We study flat bands in chiral bipartite tight-binding networks
with discrete translational invariance. Chiral flat bands are
located at the chiral symmetry eigenenergy E = 0 and host
compact localized eigenstates. For a bipartite network with
a majority sublattice degenerated chiral flat bands exist. We
derived a simple generating principle of chiral flat band
networks and illustrated the method by adding to the previously
observed cases a number of new potentially realizable chiral
flat bands in various lattice dimensions. We have also pointed
out the possible constructions of flat-band models with no CLS.
Chiral symmetry respecting network perturbations—including
disorder, synthetic magnetic fields, and even non-Hermitian
extensions—preserve the flat band and compact localized
states, which are only modified. Chiral flat bands are thus
protected; however, the gaps are replaced by pseudogaps in the
presence of disorder, due to the contribution of rare regions.
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