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The recently introduced self-learning Monte Carlo method is a general-purpose numerical method that speeds
up Monte Carlo simulations by training an effective model to propose uncorrelated configurations in the Markov
chain. We implement this method in the framework of a continuous-time Monte Carlo method with an auxiliary
field in quantum impurity models. We introduce and train a diagram generating function (DGF) to model
the probability distribution of auxiliary field configurations in continuous imaginary time, at all orders of
diagrammatic expansion. By using DGF to propose global moves in configuration space, we show that the
self-learning continuous-time Monte Carlo method can significantly reduce the computational complexity of the
simulation.
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Quantum Monte Carlo (QMC) is an unbiased numeri-
cal method for studying quantum many-body systems. A
standard QMC scheme for interacting fermion systems is
the determinantal QMC method [1–4]. This method uses
(1) the Hubbard-Stratonovich transformation to decompose
the two-body fermion interaction, and (2) the Suzuki-Trotter
decomposition of the partition function to discretize the
imaginary-time interval into a large number of time slices.
Monte Carlo sampling is performed in the space of auxiliary
Hubbard-Stratonovich fields. Recently, a continuous-time
modification of the fermionic QMC algorithm was developed
[5–8]. In this algorithm, the partition function is expanded
in the powers of interaction, and the Monte Carlo simulation
is performed by the stochastic sampling of the diagrammatic
expansion of interaction terms. Both the number and position
of interaction terms on the imaginary-time interval change
constantly during the simulation. For both determinantal and
continuous-time QMC methods, to compute the weight of each
configuration requires integrating out the fermions. This is
very time consuming and in practice limits the size of fermion
systems in QMC studies.

Recently, we introduced a general method, dubbed self-
learning Monte Carlo (SLMC), which speeds up the MC
simulation by designing and training a model to propose
efficient global updates [9–11]. The philosophy behind SLMC
is “first learn, then earn.” In the learning stage, trial simulations
are performed to generate a large set of configurations
and their weights. These data are then used to train an
effective model Heff , whose Boltzmann weight e−βHeff fits the
probability distribution of the original problem. Next, in the
actual simulation, Heff is used as a guide to propose highly
efficient global moves in configuration space. Importantly, the
acceptance probability of such a global update is set by the
detailed balance condition of the original Hamiltonian. This
ensures the MC simulation is statistically exact.

The SLMC method is ideally suited for QMC simulation
of fermion systems. In the determinantal QMC method,
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the weight of an auxiliary field configuration φ(x) is com-
puted by integrating out fermions, which is numerically
expensive. In contrast, the effective model Heff[φ(x)] is an
explicit functional of φ(x), and its Boltzmann weight can
be computed fast. Therefore, the SLMC method has a far
less computational cost than the original method, leading
to a dramatic speedup, as we demonstrated in previous
works [10].

In this Rapid Communication, we extend the SLMC to
continuous-time quantum Monte Carlo algorithms for fermion
systems. Based on a theoretical analysis and numerical study,
we demonstrate that our continuous-time SLMC reduces
the computational complexity of the simulation in the
low-temperature or strong-coupling regime, where the
autocorrelation time in the standard method becomes large.
The key ingredient of our method is an effective model
for the diagrammatic interaction expansion in continuous
time, which we term the “diagram generating function”
(DGF). The form of DGF is constrained by the symmetry
of the Hamiltonian under study. The parameters in DGF are
trained and optimized in the learning stage of SLMC. As
an example, we implement SLMC to simulate the single
impurity Anderson model [12], using the continuous-time
auxiliary-field (CT-AUX) method [7,8,13,14]. The DGF for
this model is found to take a remarkably simple form, and
reproduce with very high accuracy the exact distribution
of auxiliary fields in continuous time, to all orders of the
diagrammatic expansion. We demonstrate the speedup of
SLMC in comparison to the standard CT-AUX, and find the
acceleration ratio increases with the average expansion order.

This Rapid Communication is organized as follows: We
first briefly review the CT-AUX algorithm in the Anderson
impurity model, after which we give a detailed introduction to
the self-learning CT-AUX algorithm, and discuss the physical
ideas behind the DGF. Then, we show the performance of
our algorithm on the Anderson model. Finally, we analyze the
complexity of the algorithm. The technical details are shown
in the Supplemental Material [15].

While this work was being performed, a related work
[16] also extending SLMC [9,10,17] to a continuous-time
domain appeared. Unlike ours, that work uses an interaction
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expansion without an auxiliary field, and does not analyze
the computational complexity of continuous-time SLMC to
demonstrate its speedup.

CT-AUX method. The Hamiltonian of the single impurity
Anderson model is written as the combination of a free fermion
part and an interaction part [8],

H = H0 + H1, (1)

H0 = −(μ − U/2)(n↑ + n↓) +
∑
σ,p

(V c†σ ap,σ + H.c.)

+
∑
σ,p

εpa†
p,σ ap,σ + K/β, (2)

H1 = U (n↑n↓ − (n↑ + n↓)/2) − K/β, (3)

where σ = ↑, ↓, c†σ and a
†
p,σ are the fermion creation

operators for an impurity electron with spin σ , and that for
a bath electron with spin σ and momentum p, respectively.
nσ = c†σ cσ is the fermion number operator. β = 1/T is the
inverse temperature. K is an arbitrary chosen parameter that
controls the coupling strength of the auxiliary field and the
average expansion order, which we will see below.

In the CT-AUX method, the density-density interaction in
H1 is decoupled by an auxiliary Ising field s as

H1 = −
(

K

2β

) ∑
s=±1

eγ s(n↑−n↓). (4)

γ is the coupling strength between the fermion density
and the auxiliary field, and is determined by cosh(γ ) ≡
1 + (βU )/(2K). The partition function is expanded as

Z

Z0
= Tr

[
e−βH0Tτ e

− ∫ β

0 dτH1(τ )
]

=
∑
n=0

∫ β

0
dτ1 · · ·

∫ β

τn−1

dτn

(
K

2β

)n
Zn({si,τi})

Z0
. (5)

Here,

Zn({si,τi})/Z0 ≡
∏

σ=↑,↓
det N−1

σ ({si,τi}),
(6)

N−1
σ ({si,τi}) ≡ eVσ {si } − G

{τi }
0σ (eVσ {si } − 1),

where Z0 ≡ Tr e−βH0 , and eVσ {si } ≡
diag(eγ (−1)σ s1 , . . . ,eγ (−1)σ sn) with the notations (−1)↑ ≡ 1,
(−1)↓ ≡ −1, (G{τi }

0σ )
ij

= gσ (τi − τj ) for i �= j , and

(G{τi }
0σ )

ii
= gσ (0+). gσ (τ ) > 0 is the free fermion Green’s

function at the impurity site. The configuration space
for the MC sampling is hence the collection of all the
possible auxiliary spin configurations on the imaginary-time
interval and at all possible expansion orders n = 0,1,...,
c = {{τ1,s1} · · · {τn,sn}}, where 0 � τ1 < τ2 < · · · < τn < β

and si = ↑, ↓.
The corresponding weight wc is given by Eq. (6). Then, a

random walk c1 → c2 → c3 → · · · in configuration space is
implemented usually by inserting/removing random spins at
random imaginary times.

Self-learning CT-AUX. Here, we describe the self-learning
continuous-time auxiliary-field method. As other SLMC meth-
ods, it consists of two parts: (1) Learn an effective model or

DGF that approximates the probability distribution of auxiliary
spins in the imaginary-time interval {{τ1,s1} · · · {τn,sn}}, and
(2) propose a global move by executing a sequence of local
updates in the effective model [10].

Since the number of auxiliary spins changes constantly with
the expansion order n in the sampling process, one may expect
that to reproduce the entire probability distribution at all orders
requires a highly sophisticated model with a huge number
of parameters. On the contrary, we introduce a DGF of a
remarkably simple form which fits the probability distribution
very accurately,

Zn({si,τi})/Z0 � e−βH eff
n ({si ,τi }), (7)

− βH eff
n ({si,τi}) ≡ 1

n

∑
i,j

J (τi − τj )sisj + 1

n

∑
i,j

L(τi − τj )

+ f (n). (8)

Several features of H eff
n deserve attention:

(i) DGF serves as an approximation to Zn in the weak-
coupling expansion, as is indicated in Eq. (7), whose functional
form could be obtained exactly if one could integrate out
fermion degrees of freedom exactly. This is indeed what is
done in the original CT-AUX algorithm. Here, in SLMC,
the DGF is instead constructed by a series expansion and
symmetry analysis. To be specific, Eq. (8) is the spin-spin
interactions satisfying the spin-flip symmetry si → −si up to
two-body terms. Since the performance of the DGF is already
good enough at this stage, we did not include fourth-order
interactions that are proportional to sisj sksl .

(ii) The interaction terms J (τ ) and L(τ ) are in principle
allowed to be different functions of τ at different expansion
orders n, which would result in vastly more parameters. Here,
this predicament is avoided by choosing the same functions to
all expansion orders.

(iii) The expansion-order-dependent factor 1/n in Eq. (7)
is crucial. It can be justified by considering the atomic limit
V = 0, where the interaction term H1(τ ) ≡ H1 in Eq. (5)
becomes independent of τi , and hence Zn ∝ Tr(Hn

1 ). For large
n, Tr(Hn

1 ) � εn
0 is dominated by the contribution from the

largest eigenvalue ε0, hence ln Zn/Z0 increases linearly with
n. On the other hand, H eff

n in Eq. (8) includes a summation of
n2 pairwise interactions at pairs of imaginary-time instances
(τi,τj ). Therefore, we must include the factor 1/n to match
the two results.

As we will show later, this simple DGF performs remark-
ably well.

The training procedure goes as follows. Given a set
of configurations {ci} taken from the Markov chain of
a MC simulation, we minimize the mean square error
(ln Zeff

n − ln Zn/Z0) on this training set by varying the func-
tional form of J (τ ), L(τ ), and f (n). In practice, we use
Chebyshev polynomials Tm(x) = cos[m arccos(x)] to expand
functions J and L, J (τ ) ≡ ∑mc,J

m=0 amT2m[x(|τ |)] and L(τ ) ≡∑mc,L

m=0 bmT2m[x(|τ |)] with x(τ ) ≡ 2τ/β − 1 [18–22], and use
a power series to expand the function f , f (n) = ∑mc,f

k=0 ckn
k .

Here, mc,J , mc,L, and mc,f are the truncation orders for the
respective functions. The rationale behind the choice of basis
functions is that the Chebyshev polynomial is close to the
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:Local fast update O(n2)
:Local determinant update O(n3)
:Local self-learning update O(n)

Original CTAUX

Self-learning CTAUX

Markov Chain Monte Carlo steps

FIG. 1. Schematic figure for the Markov chains in the original
and self-learning continuous-time Monte Carlo methods to obtain an
uncorrelated configuration. n denotes the average expansion order that
determines the size of the matrix Nσ ({si ,τi}), and further determines
the complexity of the simulation. See the last section of this Rapid
Communication for a detailed discussion.

minimax polynomial, minimizing the maximum error in the
approximation. In other words, the Chebyshev polynomials
approximate the original function uniformly [23]. In the simu-
lation, we always increase the truncation order until the results
converge. The total number of training parameters is thus
mc ≡ mc,J + mc,L + mc,f + 3 (summation starts from 0) [24].
Since the DGF H eff

n is a linear function of these parameters,
they can be trained simply with a linear regression [25]. We
have also exploited the iterative training procedure to improve
the efficiency [9], whereby Monte Carlo configurations and
weights generated by the self-learning algorithm are used as
training data to further train the DGF. This procedure can
be iterated until the DGF reproduces the exact probability
distribution sufficiently well. We note that training the effective
model can be regarded as supervised learning in a broader
context of machine learning, which recently has many fruitful
applications in physics [26–38].

After completing the training process, we use the trained
DGF to propose highly efficient global moves on the Markov
chain in actual simulations. Here, we adopt the general pro-
cedure of cumulative update introduced in Ref. [10]. Figure 1
illustrates how self-learning CT-AUX proposes global moves,
in comparison with the original CT-AUX method. Starting
from a configuration ci , we perform a sufficiently large number
(denoted by Meff) of local updates by inserting/removing
random spins at random imaginary times based on the
weights of the DGF, until reaching a configuration cj

that is sufficiently uncorrelated with ci . The global move
ci → cj is then proposed, and its acceptance rate p is
calculated from the exact weight of the original model,
p = min {1,(wcj

weff
ci

)/(wci
weff

cj
)}, where wci

and weff
ci

are
weights of configuration ci computed from the original model
Eq. (5) and effective model Eq. (7), respectively. As shown
previously [10], this cumulative update procedure fulfills the
ergodicity condition and obeys the detailed balance principle.
Since computing the weight of DGF is much faster than
computing the fermion determinant in the original method,
our method significantly reduces the computational cost
of the simulation. A detailed discussion on the choice of
the cumulative update length Meff and the computational
complexity of self-learning CT-AUX method is presented in
the last section of this Rapid Communication.
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FIG. 2. Effective interactions for different U with β = 10, V = 1,
and K = 1.

Performance on Anderson model. Now we are ready to
show the performance of self-learning CT-AUX on the single
impurity Anderson model. We consider a bath with a semicir-
cular density of states ρ0(ε) = [2/(πD)

√
1 − (ε/D)2] and set

the half bandwidth D = 1 as the energy unit. The chemical
potential is set to be μ = U/2 to maintain a half filling.

In the simulation, we use 5 × 104 configurations as the
training data set. Throughout the parameter regime in our
calculations, a total of 30 training parameters (mc,J = mc,L =
12, mc,f = 3) is enough to guarantee the convergence of the
DGF. After training, we obtain the interaction functions J (τ )
and L(τ ) in the DGF (8), as shown in Fig. 2. They become
more localized at τ = 0 and β with increasing U . To evaluate
the accuracy of the DGF, we plot in Fig. 3 the distribution
of the weights of the DGF and those of the original model
exactly computed. The two distributions look very similar. To
quantitatively measure the goodness of fit, we evaluate the
quantity R2 ∈ [0,1] which is introduced as the “score” of the
self-learning Monte Carlo method in general [10]. Here, we
find the DGF for the Anderson impurity model (with U = 5,
β = 10, V = 1, and K = 1) has a score of R2 = 99.9%.
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FIG. 3. For 5 × 104 independent configurations on the Markov
chain of the original CT-AUX, the histogram is the distribution of the
difference ln Wi − ln W eff

i . The upper-left and upper-right insets are
distributions of ln Wi and ln W eff

i , respectively. Here, U = 5, V = 1,
β = 10, and K = 1.
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FIG. 4. Left: U dependence of the autocorrelation time of
the original CT-AUX with β = 10. Right: β dependence of the
autocorrelation time with U = 2. The other related parameters are
V = 1 and K = 1. In both figures, the unit time is a local update
(inserting/removing a auxiliary spin) in the original CT-AUX method.

Owing to the success of our DGF, a global move proposed by
a cumulative update between two uncorrelated configurations
has a very high average acceptance rate around 0.68.

To demonstrate the speedup of the self-learning CT-AUX
method, we compute the autocorrelation function of the
auxiliary spin polarization defined by m ≡ (1/n)

∑n
i=1 si .

Figure 4 shows the autocorrelation time of the original CT-
AUX method, defined in terms of the number of local updates.
It is clear that the autocorrelation time increases rapidly with β

and U , rendering the algorithm inefficient at low temperatures
and in the strong-coupling regime. In contrast, the performance
of the self-learning CT-AUX method is shown in Fig. 5. The
autocorrelation function decays rapidly with the number of
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FIG. 5. Autocorrelation function of the auxiliary-spin magneti-
zation for a system with β = 10, V = 1, and K = 1. The unit time is
defined in the main text. Inset: U dependence of the autocorrelation
time in the self-learning CT-AUX. We set the number of local updates
on DGF to be Meff = 2 × 103 (U = 1,2,3,4) and Meff = 5 × 104

(U = 5,6).

global moves proposed by the DGF. This is because (1) a
single global move is the cumulative outcome of Meff local
updates, where Meff is taken to be so large that the proposed
configuration is sufficiently uncorrelated from the current one,
and (2) the average acceptance rates for such global moves
are high enough—greater than 0.6 for all the data points in
Fig. 5. The inset shows the U dependence of the autocor-
relation time t0, which is estimated from the initial slope of
the autocorrelation function 〈m(t)m(t + 
t)〉 ∼ e−
t/t0 . It is
worth noting that with increasing Meff , the autocorrelation time
of our self-learning algorithm saturates to a small value even
for very large U .

Computational complexity. Finally, we discuss the actual
calculation cost of the self-learning CT-AUX method. Fig-
ure 1 shows schematically the Markov chains to obtain two
uncorrelated configurations. Roughly speaking, self-learning
CT-AUX is faster than the original CT-AUX because the
computational cost of each local move in the Markov chain
is smaller than that in the CT-AUX. A detailed analysis is
given as follows. In order to compare the two methods on an
equal footing, we consider the cost to obtain an uncorrelated
configuration from a given one. In this way, the two methods
give the same error bar for the measured observables. The cost
of inserting/removing a vertex with the use of fast updates
is O(〈n〉2) in the original CT-AUX simulation [8]. 〈n〉 is the
average expansion order that determines the size of the matrix
Nσ ({si,τi}). To obtain an uncorrelated configuration, τori such
local updates are needed. (This is actually the definition
of autocorrelation time in the original method.) Thus, the
total cost is O(〈n〉2τori). On the other hand, the cost for
inserting/removing a vertex is O(mc〈n〉) in the effective model.
Recall mc is the number of the training parameters in the DGF.
The scaling of 〈n〉 is different from that in the original CT-AUX
because the weight of DGF is computed directly without
calculating the fermion determinant. The number of local
updates using DGF Meff should be τori in order to obtain an
uncorrelated configuration. And we need one more calculation
of the determinant to decide the weight of the proposed
global move, whose computational cost is O(〈n〉3). Note that
the global move is not always accepted; there is additional
τSL overhead, which is the autocorrelation time measured in
Fig. 5. Thus the total calculation cost of the self-learning
algorithm is O[(〈n〉3 + mc〈n〉τori)τSL]. Since 〈n〉 ∼ βU [8]
and the autocorrelation time τori is approximately proportional
to U 4β3 as shown in Fig. 4, the second term in the parenthesis
mc〈n〉τori dominates. This is indeed the case shown in the inset
in Fig. 5. In fact, in our computation 〈n〉 is less than 30 while
the τori can be up to of order 106. In this way, the actual speedup
ratio ts is expressed by

ts ∼ 〈n〉
mcτSL

. (9)

As long as the DGF is good enough, τSL is O(1). Since mc

hardly scales with U and β, the self-learning CT-AUX method
is generally faster than the original CT-AUX, especially in the
low-temperature and strong-coupling regime when 〈n〉 ∼ βU

is large.
Conclusion. We developed the continuous-time version of

the SLMC with an auxiliary field, which trains an effective
model (DGF) to propose different uncorrelated configurations
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in the Markov chain, with a high acceptance rate. The DGF for
the Anderson impurity model is found to take a remarkably
simple form, and reproduce very well the exact distribution
of auxiliary fields in continuous time to all orders of the
diagrammatic expansion. Our method reduces the computa-
tional complexity of the simulation in the low-temperature or
strong-coupling regime, where the autocorrelation time in the
standard method becomes large.

Our self-learning CT-AUX method has many potential
applications. It can be used as an impurity solver for dynamical
mean-field theory, and is ideal for studying systems near the
critical point [39–41], where standard methods suffer from

a severe critical slowing down. Our method can also be
generalized straightforwardly to fermion lattice models.

The calculations were performed by the supercomputing
system SGI ICE X at the Japan Atomic Energy Agency. The
work at MIT was supported by DOE Office of Basic Energy
Sciences, Division of Materials Sciences and Engineering
under Award No. DE-SC0010526. Y.N. was supported by JSPS
KAKENHI Grant No. 26800197, the “Topological Materials
Science” (No. JP16H00995) KAKENHI on Innovative Areas
from JSPS of Japan. H.S. is supported by MIT Alumni
Fellowship Fund For Physics.
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