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We study the Haldane model under strain using a tight-binding approach, and compare the obtained results
with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving
pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy
of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain
removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The
latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for
a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant
contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the
dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and
zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical
point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in
quantum anomalous Hall systems.
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I. INTRODUCTION

The Haldane model (HM) [1] is a prominent representative
of a wider class of lattice models of two-dimensional (2D)
quantum anomalous Hall (QAH) insulators that capture the
essence of the quantum Hall effect (QHE). The QHE is
characterized by a nontrivial topological invariant, the Chern
number, which also characterizes the band structure of the
HM. A time-reversal invariant generalization of the HM
was introduced by Kane and Mele [2] who noticed that the
complex next-nearest-neighbor hopping in the HM (referred
to below as “Haldane mass”) can be related to the intrinsic
spin-orbit coupling (SOC) in graphene. The resulting Kane-
Mele model provides a minimal description for the quantum
spin Hall (QSH) effect, which has recently attracted much
experimental and theoretical attention [3–5]. Currently, the
search of experimental realizations of the Kane-Mele model
based on enhancing the SOC in graphene is also a very active
research field [6–9]. As for the Haldane model, no solid-
state realizations are available to date, although the model
has been recently realized using ultracold atoms in optical
lattices [10].

In the presence of a potential that breaks sublattice inversion
symmetry (henceforth referred to as “Semenoff mass” [11]),
the HM is also a paradigm for topological phase transitions
[1]. The Semenoff mass lifts the degeneracy between the two
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valleys and eventually drives the closing of the gap of the
topologically nontrivial phase, as shown in Fig. 1(d). As the
gap reopens upon further increase of the sublattice inversion
symmetry breaking potential, the Chern number characterizing
the bands of the topological phase vanishes [1]. It is interesting
to notice that a similar phenomenon takes place for nonuni-
formly strained graphene in a magnetic field: Strain induces
a time-reversal preserving pseudomagnetic field, which may
annihilate the real magnetic field at one valley, thus driving
the collapse of the gap between Landau levels (LLs) [12,13]
as shown in Fig. 2, and therefore the destruction of the Chern
invariant.

Rather than studying the possible modifications of the
Chern invariant due to nonuniform strain, here we adopt
a more practical approach. By relying on the bulk-edge
correspondence, we study the effects of strain on the dispersion
of the edge states for nonuniformly strained ribbons. We
analyze the effects of strain for the two canonical honeycomb
lattice terminations, namely the zigzag and armchair edges. As
shown below, nonuniform strain has different effects on these
two kinds of edges.

The possibility of engineering the electronic properties of
two-dimensional materials like graphene [14–19] and tran-
sition metal dichalcogenides [20,21] using strain (“straintron-
ics”) is currently a very active research field [22]. Interestingly,
to the best of our knowledge, the question of how nonuniform
strain affects the topological features of the HM and the
topological phase transition has received little attention so far.
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FIG. 1. Ribbon geometry (we take the number of atomic rows
N = 500 for both the zigzag and armchair ribbons). Ribbon band
structure for (a) pristine graphene, (b) graphene with sublattice-
inversion symmetry breaking Semenoff mass λS = 3

√
3t ′, (c) with

Haldane hopping (Haldane mass λH = 3
√

3t ′), (d) with both
Semenoff and Haldane masses λS = λH = 3

√
3t ′, and (e) λS >

λH = 3
√

3t ′, where t ′ = 0.02t . The red and blue curves show the
topological edge states localized at the top and bottom edges,
respectively. The vertical yellow stripes mark the position of K and
K ′ points.

Ghaemi et al. [17] briefly considered the effect of strain in the
HM in their work. However, they relied on a continuum-limit
(i.e., Dirac equation) description, which is not accurate away
from the Dirac points. In this work, we use a tight-binding
approach [23] to show that the effects of strain on the
topological gap are different from those of a Semenoff mass.
Tight-binding calculations are necessary in order to assess
the accuracy of the continuum approximation and to ascertain
other effects of nonuniform strain well away from the Dirac
points. Within the tight-binding approach we have found that
strain induces a tilt of the pseudo-Landau levels (pLLs). For
the lowest pLLs, the dominant contributions to this tilt are
different from those in strained graphene. Strain can also have
a weak effect on the magnitude of the band gap. However, this
does not strongly modify the dispersion of the edge states for

FIG. 2. Band structure of graphene zigzag ribbon (a) under
nonuniform strain corresponding to a pseudomagnetic field Bs =
15 T, (b) under a real magnetic field Bm = 15 T, and (c) under both
nonuniform strain and magnetic field Bs = Bm = 15 T. The green
colored subbands indicate the zeroth LLs.

both the zigzag and armchair edges. This shows that there is
no competition between strain and the Haldane mass, unlike
the case of the Semenoff mass. Indeed, the topological phase
transition can be regarded as a competition between the QAH
effect, induced by the Haldane mass, and the quantum valley
Hall effect (QVHE), induced by the Semenoff mass. In this
regard, it is worth noting that (nonuniform) strain also drives
the QVHE in graphene [14]. However, as shown below, the
strain-induced QVHE does not compete with the QAH induced
by the Haldane mass.

The rest of this article is organized as follows. In Sec. II
we introduce the Haldane model and briefly review the most
relevant results about it. We first consider the unstrained model
(cf. Sec. II A), before addressing the effects of nonuniform
strain using the continuum-limit approach. In the same section
we also discuss the tilt of the pLLs arising from next-to-leading
order corrections. In Sec. III we take up the study of the
lattice HM as realized in zigzag and armchair ribbons under
nonuniform strain. The effects of strain on the topological
transition are described in Sec. IV. Finally, in Sec. V we offer
the conclusions for this work. For the sake of completeness,
we have included some details of the analytical calculations in
the Appendix.

II. MODEL AND ITS CONTINUUM LIMIT

In this section we review some of the most important results
for the HM. We also review its continuum-limit description
both in the presence and absence of strain.
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A. Model

The Haldane model (HM) describes the hopping of spinless
electrons (interactions are neglected) on a honeycomb lattice.
The Hamiltonian for HM reads

H = H0 + HT + HS, (1)

H0 = −
∑
i,j

tij [a†
i bj + H.c.], (2)

HT = −
∑
i,j

t ′ij [eiνij ψa
†
i aj + eiνij ψb

†
i bj ], (3)

where tij = t for i and j nearest neighbors (and zero
otherwise), and t ′ij = t ′ (= t/50 in this work) for i and j

next-nearest neighbors (and zero otherwise). In the above
expression, a

†
i corresponds to a creation operator for an

electron at site i on the A sublattice and b
†
i is a creation

operator for an electron on the B sublattice. Note that the
second-nearest-neighbor hopping is complex for ψ �= 0, where
νij = sgn(d1 × d2)z = ±1 [1,24]. Here d1,2 are the vectors
along the two bonds linking the second-nearest neighbors. In
Eq. (1), HS describes the Semenoff mass, which breaks the
sublattice inversion symmetry [11,25–28] and takes the form

HS = ε0

∑
i

[a†
i ai − b

†
i bi]. (4)

In the absence of this term (i.e., for ε0 = 0) and for ψ = nπ
2 ,

with n an odd integer, the HM exhibits particle-hole symmetry.
In order to describe strain in the tight-binding approach, the

hopping amplitudes t and t ′ in the HM [Eqs. (1) and (2)] are
shifted according to

tij → tij + βt

a2
(Ri − Rj ) · [u(Ri) − u(Rj )], (5)

t ′ij → t ′ij + β ′t ′

3a2
(Ri − Rj ) · [u(Ri) − u(Rj )], (6)

where i,j correspond to the nearest neighbors in the first
line and to the next-nearest neighbors in the second line; Rj

stands for the spatial position of site j , u(r) is the atomic
displacement field, and a is the carbon-carbon distance. The
Grüneisen parameters β = d log t

d log a
� −3, as for graphene [14–

16,22,29–31]. In addition, we estimate β ′ = d log t ′

d log
√

3a
� −1.

Notice that the value of β ′ depends on the particular physical
mechanism giving rise to the complex hopping term in the
HM. Currently there are no faithful solid state realizations of
the HM, and therefore our choice may appear rather arbitrary.
However, the conclusions of this work will not be qualitatively
altered by choosing a different value for β ′.

In addition, with the application of a real magnetic field
Bm, the vector gauge field Am yields a Peierls phase which

modifies the hopping amplitudes by a factor [23] e
i2π
φ0

	G(Rj ,Rk),
where

	G(Rj ,Rk) =∫ 1

0
(Rk − Rj ) · Am[Rj + λ(Rk − Rj )]dλ. (7)

Here we choose the gauge Am = (−Bmy,0) for the zigzag and
Am = (0,Bmx) for the armchair ribbons, respectively. Both
result in a perpendicular magnetic field Bm = ∇ × Am =
Bm ẑ.

B. Continuum description (unstrained system)

In the continuum limit, the electronic states in the neighbor-
hood of the K (K ′) points of Brillouin zone can be described
by the following Hamiltonian (henceforth we work in h̄ = 1
units):

H = vF (τzσxpx + σypy) − λHσzτz + λSσz, (8)

where vF = 3at/2 is the Fermi velocity, λH = 3
√

3t ′ sin ψ ,
and λS = ε0. In the above expression, the Pauli matrices
σx,σy,σz describe the sublattice pseudospin, and τz = +1
(τz = −1) for the states around the K (K ′) point.

In the neighborhood of K and K ′, the spectrum of bulk
states exhibits a gap which has the form

ελτz
( p) = s

√
v2

F | p|2 + 	2
τz
, (9)

where s = +1 (s = −1) for the conduction (valence) band,
and 	τz

= −τzλH + λS . The Chern number is determined by

ν = 1
2 [sgn(	−) − sgn(	+)]. (10)

Thus, for λH,S > 0 and τz = +1 (i.e., the K point), the bulk
gap closes for λH = λS . At such a point, the system becomes
a metal, as shown in Fig. 1(d). For λS < λH , the system is
adiabatically connected to the HM with λS = 0, which is
a Chern insulator with topologically protected gapless edge
states. On the other hand, for λS > λH , the system is a trivial
insulator for which the Chern number vanishes (i.e., ν = 0)
and no topologically protected edge states exist.

C. Continuum description (strained system)

To leading order, the effect of nonuniform strain on the
honeycomb lattice can be described by a pseudogauge field
A, which accounts for the shift in the foci of the Dirac cones
at the K and K ′ valleys. Thus, Eq. (8) becomes

H = vF [τzσx(px + gAx) + σy(py + gAy)]

− λHσzτz + λSσz, (11)

where A = 3β

4a
(uxx − uyy, − 2uxy)τz, where uαβ =

1
2 (∂αuβ + ∂βuα) is the strain tensor and g = 2

3 . Corrections
to this Hamiltonian, beyond the leading order, which have
previously been classified using symmetry arguments [31], are
discussed below and in Appendixes A 1 and A 3. Nonuniform
strain leads to a pseudogauge and pseudomagnetic field. The
bulk spectrum of the continuum Hamiltonian is introduced
at the outset of this section, and the position of the zeroth
pLLs (henceforth referred to as 0th pLLs) is computed in
Appendix A 2. It is shown there that, compared to the case
of a real magnetic field, the 0th pLLs are not degenerate in
energy. This is confirmed by the tight-binding calculations, as
we discuss in Sec. III.

Next we consider the possible strain profiles that can give
rise to uniform pseudomagnetic fields in a ribbon geometry,
which also allows us to study the edge states. To this end, we
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consider the lattice limit described by the tight-binding model
in a ribbon geometry. Preserving translational invariance in
the direction along the ribbon edge allows us to work with
smaller matrix sizes. Requiring translational invariance along
the ribbon edge constrains the kind of nonuniform strain that
we can study. Thus, for a displacement field u(r), taking the
ribbon edge along n̂(n̂2 = 1), requires the atomic displacement
along the edge, i.e., u‖ = n̂ · u, to be a constant (which we
take to be zero in what follows). In addition, we must require
that the displacement perpendicular to the edge, i.e., u⊥ =
| ẑ · (n̂ × u)| ( ẑ is the unit vector perpendicular to the ribbon),
is independent of the coordinate along the edge, i.e., n̂ · r .

In what follows, we specialize the above considerations
to the two most general types of edge terminations of the
honeycomb lattice, namely the zigzag and the armchair. First,
let us consider a zigzag edge (cf. Fig. 1) along the x direction
(i.e., n̂ = x̂). The armchair direction corresponds to the y axis
(cf. Fig. 1). For the zigzag edge, we require that u‖ = ux = 0
and u⊥ = uy = uy(y), which implies that the strain tensor
components are uxx = 0 and uxy = 0, and uyy = ∂yuy(y).
In order to obtain a constant pseudomagnetic field, we use
a nonuniform strain of the form uyy = ∂yuy = 2C(y − L

2 ),
where the ribbon width is L = 3

2aN , where N is the number
of atomic rows (cf. Fig. 1). For this choice, the zigzag
ribbon remains unstrained (clamped) at the center, but it is
stretched at the top and compressed at the bottom edge.
The strain gauge field is A = − 3β

4a
uyy(1,0)τz, which results

in a uniform pseudomagnetic field Bs = 3β

2a
Cτz ẑ. Note that,

unlike a real magnetic field, the pseudomagnetic field has
opposite sign at opposite valleys (i.e., Bs ∝ τz) because strain
does not break time-reversal symmetry.

For the armchair edge, translational invariance requires
that ∂yu‖ = ∂yuy = 0 and ∂yu⊥ = ∂yux = 0. Thus, we choose

uy = C(x − L
2 )2 where the ribbon width L =

√
3

2 aN . The
strain tensor components are uxx = uyy = 0 and uxy = C(x −
L
2 ), and therefore the strain in this case is pure shear strain as
the strain tensor is traceless. Since the lattice displacement
is along y, the ribbon is thus bent like a Corbino, with the
maximum strain taking place at the right edge, vanishing at
the ribbon center, and becoming negative at the left edge. This
strain gives rise to a gauge field A = − 3β

2a
uxy(0,1)τz and thus

Bs = − 3β

2a
Cτz ẑ.

Notice that for the zigzag ribbon the strain tensor is uniaxial,
that is, not traceless: uxx + uyy = uyy �= 0. Thus, together with
the pseudogauge field A, the following terms are also present
in the continuum Hamiltonian in Eq. (11):

H′ = (uxx + uyy)(γ σ0 + γ ′σz + γ ′′τzσz), (12)

where σ0 is the unit matrix in the sublattice pseudospin. For
example, for the HM with the nearest and next to the nearest-
neighbor hopping γ = 3

2β ′t ′ cos ψ (see Appendix A 1), which
vanishes for ψ = nπ

2 . The expressions for γ ′ and γ ′′ for the
HM are given in Appendix A 1. However, specific physical
realizations of the HM will contain longer range hopping
terms, which lead to modified values for γ ′ and γ ′′. In
particular, the deformation potential ∝ γ σ0 has been shown
to lead to the collapse of the Landau levels for large values
of γ [19]. A similar collapse is also expected to take place
for the HM. Here we show that the nonvanishing trace of the

strain tensor introduces further corrections to the continuum
Hamiltonian [31], which account for the tilt of the pseudo-
Landau levels (see Appendix A 3 for detailed discussion of
this point and Sec. IV for a discussion of their effect on the
tight-binding band structure).

Beyond the leading order Hamiltonian, Eq. (11), the
following corrections are obtained [31]:

H′′ = α(uxx + uyy)(τzσxpx + σypy)

+ α′[(uxxτzσxpx + uyypyσy)

+ uxy(σypx + τzσxpy)], (13)

where α = 3
8aβt and α′ = 2α for the HM. The first term (∝ α)

is an isotropic correction to the magnitude of vF [31], whereas
the second term (∝ α′) is an anisotropic correction to it [31].

As we show in detail in Appendix A 3, Eqs. (12) and (13)
lead to momentum dependent corrections to the pLL energy:

	ε′
n±(τz) = 〈�n±(τz)|H′|�n±〉 ∝ (β ′t ′)(px�), (14)

	ε′′
n±(τz) = 〈�n±(τz)|H′′|�n±〉 ∝ (βt)(pxa), (15)

where |�n±(τz)〉 are the pLLs eigenfuctions (see Appendix A 2
for details) and � = (2gBs)−1/2 is the pseudomagnetic length.
Explicit expressions for these energy corrections are given
in Eqs. (A29) and (A35) in Appendix A 3. Notice that
even though β ′t ′/(βt) � 1

150 � 1, the continuum limit ap-
proximation requires that �/a  1 and also 	ε′′

n± become
small for n → 0, whereas 	ε′

n± approaches a constant. Thus,
	ε′

n±(τz)/	ε′′
n±(τz) ∼ 10 for the lowest pLLs, that is, the tilt

arising from the deformation potential of Eq. (12) dominates
over the correction arising from the correction to vF [cf.
Eq. (13)]. Furthermore, when considering the 0th pLLs, we
find 	ε′′

0 (τz) = 0 and 	ε′
0(τz) �= 0. Nevertheless, for graphene

	ε′
n± = 0, so that the tilt observed in the pLLs with n > 0,

Fig. 2(a), arises entirely from the corrections to vF , Eq. (13)
[see also Eq. (A29) in Appendix A 3]. Also, the tilt does not
appear for a real magnetic field because no terms similar to H′
and H′′ are present in this case.

Using the expressions provided in Appendix A 3 for
	ε′

n±(τz) and 	ε′′
n±(τz), the following relations can be es-

tablished: For the HM in the presence of Semenoff mass, the
total energy shift 	εn±(τz) = 	ε′

n±(τz) + 	ε′′
n±(τz) obeys

	εn±(τz) = −	εn∓(τz). (16)

That is, the tilts of the pLLs splitting of the conduction and
valence band have opposite signs. In addition, in the absence of
Semenoff mass and for ψ = nπ

2 which is relevant to the tight-
binding calculations that we report in the following section,
we have

	εn±(τz) = 	εn∓(−τz), (17)

which relates the tilts of the pLLs in opposite valleys.
Combining Eqs. (16) and (17), we obtain

	εn±(τz) = −	εn±(−τz). (18)

This result implies that pLLs with the same indices (n,±) at
opposite valleys are tilted in opposite directions. In Sec. III A
these results are confirmed numerically by diagonalizing the
tight-binding Hamiltonian of a zigzag ribbon under uniaxial
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FIG. 3. Band structure of a zigzag ribbon described by the
Haldane model with a Haldane mass λH = 3

√
3t ′ subject to (a) a

nonuniform uniaxial strain leading to a constant pseudomagnetic field
Bs = 15 T and (b) a real magnetic field Bm = 15 T. In both cases, the
position of the zeroth Landau levels is highlighted in green.

strain. It is also worth noting that, in a general case (e.g.,
ψ �= nπ

2 and nonzero γ ′), there will be extra contributions
to energy shift 	ε′

n±. The latter do not respect the last two
of the above relations, namely Eqs. (16) and (17), which are
violated by the correction to the Semenoff mass, i.e., by the
term proportional to γ ′ in Eq. (12).

In the strained armchair ribbons, the energy of the pLLs
does not get corrected to leading order. Since the strain profile
leads to purely shear strain, and therefore uxx + uyy = 0,
there is no contribution to the energy shift from H′ and
the first term of H′′ (i.e., the isotropic correction to vF ).
However the anisotropic correction to vF (second term ofH′) is
finite because uxy �= 0. The details of derivation of this result
are provided in Appendix A 3, after taking into account the
boundary conditions for the armchair edge, which mix the two
valleys. Therefore, for the armchair ribbons described by the
HM, we expect no linear tilt in the pLL dispersion unlike for
the zigzag case. This prediction is in agreement with the results
obtained from the tight-binding approach discussed below.

III. TIGHT-BINDING APPROACH

In this section we discuss the results obtained by studying
the HM in strained ribbons using the tight-binding approach.
We show that this approach, which yields the full band
structure of the ribbon, confirms the results obtained from the
continuum model, but it also provides detailed information
about the dispersion of the edge states away from the K

and K ′ points. We first focus on the case for which the
sublattice inversion-breaking potential (i.e., the Semenoff
mass) is absent. In the following section, we discuss the effect
of the combination of strain and Semenoff mass at the critical
point of the topological phase transition.

A. Zigzag ribbon

In Fig. 3(a) we show the spectrum of a zigzag ribbon
described by the HM under nonuniform (uniaxial) strain. For

the zigzag direction, the (crystal) momentum along the edge
(kx) is a good quantum number and the K and K ′ valleys
are projected at opposite kx points relative to the center of
the ribbon Brillouin zone (BZ). As shown in Fig. 3(a), the
position of the 0th pLLs at opposite valleys K and K ′ is
symmetrically located in energy relative to the center of the
band gap. This should be contrasted with the case of a real
magnetic field shown in Fig. 3(b) [32], for which the 0th
LLs at the two valleys are degenerate in energy (the levels
split off the bottom of the conduction band for our choice of
model parameters). Notice that a perpendicular magnetic field
preserves the 2D inversion symmetry (understood as a 180 deg
rotation about an axis perpendicular to the center of the ribbon,
which maps x → −x and y → −y but z → z and K ↔ K ′).
In the absence of sublattice symmetry breaking, this symmetry
is responsible for the degeneracy of the bulk spectra in the HM
at K and K ′, of which the degeneracy of the 0th LL is just one
manifestation. However, the uniaxial strain profile applied to
the zigzag ribbon does not respect the 2D inversion symmetry
of the ribbon.

Besides the different position of the 0th pLLs at opposite
valleys, strain also introduces a tilt of the pLLs, as it can be
seen in Fig. 3(a). This tilt is absent for the ribbon subject to
a perpendicular magnetic field. The tilt has also the opposite
sign for the pLLs splitting off the conduction and valence
bands. In addition, for the same band with the same n, pLLs
at opposite valleys are tilted in opposite directions. These
observations are in agreement with the relations (16) through
(18), derived in Sec. II C from the continuum-limit approach.

Nonuniform strain slightly modifies the dispersion of
edge states, as shown in Fig. 3(a). However, despite the
modification, the integrity of the topologically protected states
on the zigzag edge is not affected by the application of uniaxial
strain. Nevertheless, notice that, compared to the case of a
real magnetic field, the bands of edge states corresponding
to different edges disperse differently and are no longer
symmetric about the center of the BZ. The top edge band
connects the 0th pLLs and exhibits a different dispersion
from the bottom edge band. Indeed, from an analysis of the
wave functions, we observe that the latter band is localized at
the bottom edge for all values of kx and does not mix with
the pLLs. However, for the top edge, the edge states evolve
into bulk states for kx in the neighborhood of K and K ′,
where they mix with the 0th pLLs. This can be understood as
follows. In the continuum approach, for a real magnetic field
the guiding center of the LLs is y0(px,τz) = px�

2, where � is
the magnetic length. Thus, independently of the valley from
which they originate, the states with px > 0 (i.e., y0 > 0) and
px < 0 (i.e., y0 < 0) are localized on opposite sides relative
to the center of the ribbon (which corresponds to y0 = 0
in the continuum limit). As kx ∼ px shifts away from the
center of the BZ, the two edge-state bands at opposite edges
evolve into the two 0th LLs at opposite valleys, which are
degenerate because of inversion symmetry [cf. Fig. 3(b)]. On
the other hand, for nonuniform strain, the guiding center is
y0(px,τz) = τzpx�

2 [cf. Eq. (A30)]. Hence, going from one
valley to the other (i.e., τz → −τz) is akin to px → −px , and
therefore y0(px, − τz) = y0(−px,τz) = −y0(px,τz). That is,
from one valley to the other, the guiding center changes sign
relative to the center of the ribbon. This requires that the same
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FIG. 4. Band structure of an armchair ribbon described by the
Haldane model subject to nonuniform shear strain. Model parameters
are the same as in Fig. 3.

band of edge states (here, the top edge one) evolves into the 0th
pLL at both valleys and thus crosses the gap connecting them.
However, the other edge band does not mix with the pLLs
and does not cross them either. In this regard, our observations
differ from the conclusion reached by Ghaemi et al. [17], who
solved the Dirac equation and argued that the edge-state bands
should be connected to high energy states and cross the 0th
pLL without hybridizing with it. As shown in the following
section, such a description is also not accurate for the armchair
ribbon.

B. Armchair ribbon

Along the armchair direction, the K and K ′ points are pro-
jected on ky = 0, i.e., at the center of the BZ. In the continuum
limit, the armchair boundary conditions couple the K and K ′
valleys to each other [30,33]. Therefore, unlike the zigzag
ribbon, there is only one conduction band minimum and one
valence band maximum at ky = 0. The gap between the two
bands is controlled by the Haldane mass. Inside the gap, a pair
of topologically protected edge-state bands, corresponding to
the edge states at the left and right edge, intersect at ky = 0.

The band structure of a strained armchair ribbon described
by the HM is shown in Fig. 4. Application of nonuniform shear
strain in this case also leads to the appearance of pLLs, see
Fig. 4(a). Unlike the case of a real magnetic field [cf. Fig. 4(b)],
the 0th pLLs split from the bottom and top of the conduction
and valence band, respectively, and are therefore located
symmetrically relative to the center of the gap. However, notice
that the pLLs do not exhibit a linear tilt and their dispersion
with ky is rather flat. This is in agreement with the expectations
from the continuum-limit model, as discussed in Sec. II C and
Appendix A 3. As mentioned above, for pure shear strain, the
corrections to energy of the pLLs stem from the second term
in H′′ [cf. Eq. (13)]. The latter is proportional to the Grüneisen
parameter β. By computing the band structure of strained
ribbons with increasingly large values of β (from β = 3 to
β = 6) we have checked that no tilt linear in ky is present

FIG. 5. Pseudo-Landau levels (pLLs) for an armchair ribbon sub-
ject to nonuniform shear strain for different values of the Grüneisen
parameter β, which controls the magnitude of the corrections to the
leading order pLL energy. Notice that the corrections of the flat
dispersion of the pLLs seem to be at least quadratic in ky .

(cf. Fig. 5). Indeed, numerically the leading order correction
appears to be quadratic. The latter should result from the
second order term in the perturbation series in H′′. However,
the analytical computation of such corrections beyond first
order lies beyond the scope of this work.

Similar to the zigzag ribbon, we find that strain does not
strongly modify dispersion of the edge-state bands. However,
unlike the zigzag ribbon, in this case none of the edge state
connects to the 0th pLLs (and they also do not cross the 0th
LLs without hybridizing as suggested in Ref. [17]). Figure 4(a)
shows that the effects of shear strain are also qualitatively
different as the energy of the in-gap states is not shifted near
ky = 0, as it happens when the ribbon is subject to a real
magnetic field, see Fig. 4(b) (however, notice that in this case
the edge-state bands are connected to high energy states and
do cross the 0th LLs without hybridizing with it).

It is also interesting to notice that in the armchair case the
penetration of the edge states into the bulk is much larger
than for the zigzag edge (cf. Fig. 6). Indeed, for the armchair

FIG. 6. Normalized spatial wave function (on sublattice A) of
edge states, showing that the penetration from the topological edges
into the bulk is very different for the zigzag and armchair edges. The
edge state taken is a quarter way between K and K ′ for the zigzag
case and ky = 0 for the armchair case.
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FIG. 7. Effect of nonuniform strain on the band structure of a
zigzag ribbon at the topological critical point. (a) Under nonuniform
strain leading to a pseudomagnetic field, pseudo-Landau levels
emerge, with the edge bands becoming degenerate near the K point.
(b) Under a real magnetic field, the degeneracy of the edge bands
is lifted. Parameters are the same as for Fig. 3. However, the value
of the inversion symmetry breaking potential is tuned to the critical
point of the topological transition where λS = λH [cf. Eq. (8)].

edge, the penetration is determined by the band gap (i.e., t ′),
whereas for the zigzag edge, the edge states are already present
for t ′ = 0, and the penetration is determined by the bandwidth
(∼t). Nevertheless, despite the larger penetration length for
the armchair edge, nonuniform strain has a very weak effect
on the dispersion.

IV. EFFECTS OF STRAIN AT CRITICALITY

Finally, in this section, we shall study the effects of
nonuniform strain on the critical point of the topological
phase transition, i.e., for λS = λH . The Semenoff mass breaks
(sublattice) inversion symmetry and lifts the degeneracy
between the two valleys [cf. Fig. 1(d)]. At the critical point, the
gap closes at one of the valleys [cf. Fig. 1(d)] and the system
becomes a metal.

Nevertheless, even though the band gap closes in one of
the valleys (here K), the band structure near K is still very
different from strained graphene [cf. Fig. 2(a)]. For the strained
zigzag edge, Fig. 7(a) shows that the 0th pLL is tilted. The
origin of this tilt is again the shift 	ε′

n±(τz = +1) discussed in
Sec. II C [cf. Eq. (14)], which originates from the deformation
potential that corrects the (topological) band gap [i.e., the term
proportional to γ ′′τzσz in Eq. (12)]. Note that, although in the
present tight-binding calculation the other terms (γ and γ ′) are
set to zero, this result will not change for nonvanishing γ and
γ ′ unless fine tuning of these deformation potentials nullifies
the correction arising from H′ in Eq. (12).

In Fig. 7 we also compare the effects of a real magnetic
field and nonuniform strain for the zigzag edge. Notice that,
whereas the magnetic field splits the degeneracy between the
edges state bands at opposite sides of the ribbon and opens
a (small) gap, strain does not. Thus, it seems that the system

FIG. 8. Band structure of a zigzag ribbon described by the
Haldane model at the topological phase boundary (i.e., for λS =
λH = 3

√
3t ′) subject to a pseudomagnetic fieldBs = 15 T originating

from nonuniform uniaxial strain generated by (a) uyy = 2C(y − L),
(b) uyy = 2C(y − L

2 ), and (c) uyy = 2C y.

remains gapless after the application of nonuniform strain.
In order to further investigate whether the band touching is
robust against the type of strain profile, we consider three
different types of strain profiles corresponding to different
parts of the ribbon being clamped and strained, respectively
shown in Fig. 8. The strain profile used in Figs. 7(a) and 8(b),
i.e., uyy = 2C(y − L

2 ), corresponds to the center of the ribbon
being clamped while one of the edges is stretched and the
other compressed. In this case, the bottom-edge band touches
the 0th pLL in the neighborhood of the K point and the system
remains gapless. However, for the strain profile corresponding
to uyy = C(2y − 2L), for which the upper edge at y = L is
clamped and the bottom edge is compressed, the bottom-edge
band crosses the 0th pLL. Finally, for uyy = 2Cy (bottom edge
clamped and lower edge stretched), a small gap opens in the
neighborhood of K and the behavior of the lowest subbands
under strain is reminiscent of the case of a real magnetic field.
Thus, we conclude the band touching is not robust and actually
depends on the type of strain profile applied to the ribbon.

V. CONCLUSIONS

Nonuniform strain induces a pseudomagnetic field and
pseudo-Landau levels in the band structure of strained ribbons
described by the Haldane model. However, unlike a real
magnetic field, the band structure of ribbons under such a strain
shows distinct features. One such feature is the absence of
degenerate zeroth (pseudo-)Landau levels at different valleys
that is characteristic of a real magnetic field [1]. Unlike
an inversion-symmetry breaking staggered potential (i.e., a
“Semenoff mass”), strain only modifies weakly the magnitude
of the band gap and does not affect strongly the topologically
protected edge states. This indicates that the topologically
nontrivial phase is robust against strain, thus confirming an
observation made earlier by Ghaemi and co-workers, [17] who
relied on the continuum-limit Dirac equation.

However, departing from the conclusions reached in
Ref. [17], we observe a very different interplay of the edge
state bands with the pseudo-Landau levels. For instance, our
tight-binding results show that the topologically protected
edge-state bands in both zigzag and armchair ribbons do not
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cross the zeroth pseudo-Landau level without hybridizing with
it (as it happens for a real magnetic field in the armchair edge).
In addition, for the zigzag ribbon one of the branches of the
edge state smoothly evolves into bulk states by connecting the
two zeroth pseudo-Landau levels, whereas the other branch
remains entirely localized at the edge. We also observe
that the pseudo-Landau levels are tilted along the zigzag
direction, which lifts the degeneracy of the bulk states with the
pseudo-Landau level. The dominant contribution to this tilt for
the lowest pseudo-Landau levels arises from the deformation
potential that also modifies the size of the gap under uniaxial
strain. For higher Landau levels, the strain-induced correction
to the Fermi velocity which accounts for the tilt in graphene
becomes dominant. For the armchair ribbon, the dispersion of
the in-gap states is barely modified from their unstrained form,
despite their large penetration into the bulk. In this case, as for
the zigzag ribbon, we also find that the edge bands do not cross
the zeroth pseudo-Landau level.

Finally, at the critical point of the topological phase
transition where one of the valleys becomes gapless, we have
shown that nonuniform strain has different effects on the
pseudo-Landau levels than for the purely gapless graphene.
Some of the differences, like the tilt of the zeroth pseudo-
Landau level, can be traced back to the deformation potentials
that are present in the Haldane model but not in graphene.
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APPENDIX: DETAILS

1. Band gap and Fermi velocity corrections

Within the k · p approach, in the absence of strain, the
next-nearest-neighbor hopping term [cf. Eq. (3)] yields the
following contribution to the continuum Hamiltonian:

Hg = 3t ′(cos ψσ0 +
√

3 sin ψτzσz). (A1)

The term Hg gives rise to the Haldane mass, which gives rise
to the band gap Eg = 6

√
3t ′ sin ψ . The contribution due to the

strain arising from the second-neighbor hopping reads

H′
g = 3

2
β ′t ′(uxx + uyy)(cos ψσ0 +

√
3 sin ψτzσz), (A2)

H′′
g =3

√
3

4
aβ ′t ′[−(uxx − uyy)px + 2uxypy]

× (
√

3 cos ψτzσ0 − sin ψσz), (A3)

where we have taken β ′ = d log t ′

d log
√

3a
� −1 as the Grüneisen

parameter for the next-nearest-neighbor hopping (t ′). H′
g

yields correction of the size of the band gap for the zigzag
ribbon. However, for the armchair ribbon with ψ = π/2

and uxy �= 0, H′
g = 0 and therefore the band gap of the

strained armchair is not affected by strain. To leading other in
perturbation theory,H′′

g does not lead to momentum dependent
corrections to the energy of the pLLs.

2. Zeroth Landau level in strained Haldane

In the presence of strain, the Haldane model in the
continuum limit takes the form

H = v(τzσx�x + σy�y) − λHσzτz + λSσz, (A4)

where � = p + gA and A is the pseudogauge field. In terms
of the strain tensor

A ∝ τz(−uxx + uyy,2uxy). (A5)

For the zigzag direction, uy ∝ y2, this leads to a pseudomag-
netic field:

Bs = ∇ × A = −Bsτzẑ. (A6)

For the above choice of the atomic displacement field, the
problem of diagonalizing H in each valley is akin to solving
the 2D Dirac equation for the (pseudo-)Landau level (pLL) in
the Landau gauge, i.e.,

A = τz(Bsy,0). (A7)

Thus, the Hamiltonian takes the matrix form (g = 2
3 )

H=
( −λHτz + λS v[τz(px + gBsτzy) − ipy]

v[τz(px + gBsτzy) + ipy] λHτz − λS

)
.

(A8)

Note that, in the Landau gauge, px is a constant of motion, i.e.,
[px,H] = 0. The operators

π± = 1√
2g|Bs |

(τzpx + gBsy ± ipy) (A9)

obey

[π+,π−] = sgn(Bs). (A10)

Thus, the sign of Bs determines which operator of the pair �±
behaves as the raising and lowering operator, e.g., for Bs >

0, π+ (π−) behaves as the pLL lowering (raising) operator.
It is convenient to introduce the cyclotron frequency ωc =
v
√

2g|Bs | and 	τz
= λHτz − λS , which allows us to write

H =
(−	τz

ωcπ
−

ωcπ
+ 	τz

)
. (A11)

Hence,

H2 =
(

	2
τz

+ ω2
cπ

−π+ 0

0 	2
τz

+ ω2
cπ

+π−

)
. (A12)

Let us consider the two possible cases, i.e., Bs < 0 and Bs >

0. For Bs > 0, we can identify a = π+ (i.e., lowering) and
a† = π− (i.e., raising). Hence,

H =
(−	τz

ωca
†

ωca 	τz

)
, (A13)

H2 =
(

	2
τz

+ ω2
cn 0

0 	2
τz

+ ω2
c (n + 1)

)
. (A14)

155446-8



HALDANE MODEL UNDER NONUNIFORM STRAIN PHYSICAL REVIEW B 96, 155446 (2017)

Hence, the eigenvectors are

|�n±(τz)〉 = 1√
2
[
1 + λ2

n±(τz)
]
( |n〉

λn±(τz)|n − 1〉
)

, (A15)

where

λn±(τz) =
	τz

±
√

	2
τz

+ ω2
cn

ωc

√
n

, (A16)

and energy eigenvalue ε±
n = ±ωc

√
	2

τz
+ ω2

cn for n �= 0.
However, the 0th pLL requires a separate treatment. In such
case, the following state:

|�0(τz)〉 =
(|0〉

0

)
, (A17)

which satisfies

H|�0(τz)〉 = −	τz
|�0(τz)〉, (A18)

is an eigenstate with energy ε0 = −	τz
= −λHτz + λS . On

the other hand, for Bs < 0, we have a = π− (i.e., lowering)
and a† = π+ (i.e., raising), which leads to

H =
(−	τz

ωca

ωca
† 	τz

)
, (A19)

H2 =
(

	2
τz

+ ω2
c (n + 1) 0

0 	2
τz

+ ω2
cn

)
. (A20)

Focusing again on the 0th pLL, which is described by the state:

|�0(τz)〉 =
(

0

|0〉
)

, (A21)

we have

H|�0(τz)〉 = 	τz
|�0(τz)〉 (A22)

and hence ε0 = λHτz − λS . The above results can be summa-
rized in the following expression:

ε0 = −	τz
sgn(Bs) = (λS − λHτz)sgn(Bs), (A23)

which implies that, for given sgn(Bs) and λS = 0, the 0th
pLLs have opposite energy (relative to the middle of the gap)
in opposite valleys. It is also worth noticing that the wave
functions of pLLs in both valleys have the same sublattice
structure.

On the other hand, repeating the calculation for real
magnetic field in the Landau gauge field, i.e.,

Am = (−Bmy,0), (A24)

yields (for λS = 0)

ε0 = λH sgn(Bm), (A25)

which implies that the 0th LLs in different valleys are
degenerate in energy. In addition, the wave functions of the
LLs on different valleys have the opposite sublattice structure,
which is different from the case of strain.

Finally, let us note that the discussion in this Appendix is
adapted to the zigzag edge (see below for the armchair case)
although the boundary conditions (BCs) for the latter,

〈x,y = 0|ψAτ 〉 = 0, (A26)

for τ = K,K ′, have not been explicitly enforced. When the
BCs are enforced, the eigenvalues of the operator n = a†a
are no longer integers and become dependent on px ; the
spectrum of the eigenstates localized near the edge reflects
the effects of confinement and no longer takes the simple form
ε±
n = ±

√
	2

τz
+ v2n. However, ε±

n is still the limiting value
for energy of states that are localized in the bulk of the ribbon,
to which most of the analytical considerations in this work
apply. In addition, it is worth noting that, for the zigzag edge,
the above boundary conditions do not couple the two valleys.
This can be made even more explicit by rewriting them as
(1 − τz)〈x,y = 0|�〉, which commutes with τz.

3. Tilt of pseudo-Landau levels

a. Zigzag edge

In order to explain the tilt exhibited by the pLLs in the
zigzag edge, which is not present for the LLs [cf. Fig. 2(b),
for the zigzag edge], we need to take into account the lowest
order treatment of the strain, introduced in Sec. II C.

For the zigzag edge under uniaxial strain (i.e., uxx = uxy =
0 and uyy = 2Cy �= 0), Eq. (13) reduces to

H′′ = 3
8 (βt)uyy(τzσxpxa + 3σypya). (A27)

Thus, to leading order in perturbation theory, the energy shift
in the pLL energy is [we have dropped constants and terms of
O(p2

x)]

	ε′′
n±(τz) = 〈�n±(τz)|H′′|�n±(τz)〉 (A28)

= −3

2
C�βt

τzλn±(τz)
√

n

1 + λ2
n±(τz)

(pxa), (A29)

where � = (2gBs)
−1/2 is the (pseudo-)magnetic length. In

Eq. (A9) we have used (see Appendix A 2) that (recall that
px is a constant of motion)

y = �(a + a†) − 2τzpx�
2, (A30)

py = (a − a†)√
2i�

. (A31)

In the above expressions, a (a†) is the lowering (raising)
operator for pLLs. Note that the correction in Eq. (A29) is
linear in px and proportional to τz. Since the expression of
λn±(τz) diverges for n → 0, the 0th pLLs require a separate
treatment, and thus

	ε′′
0 (τz) = 0, (A32)

which could have be obtained from Eq. (A29) by taking
λn±(τz) → 0 for n → 0.

In addition, since y contains a term proportional to px

[cf. Eq. (A30)], there is a linear in px contribution to the energy
shift of the pLLs arising from the deformation potentials in
Eq. (12). For the zigzag HM ribbon with ψ = nπ

2 and ε0 =
0, we show in the following Appendix that the deformation
potential takes the form

H′ = 3
√

3

2
β ′t ′τzσzuyy. (A33)
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To linear order in px , the energy shift resulting from this term
reads

	ε′
n±(τz) = 〈�n±(τz)|H′|�n±(τz)〉 (A34)

= −3
√

3C�
(
β ′t ′

)(1 − λ2
n(τz)

1 + λ2
n(τz)

)
(px�), (A35)

where λn±(τz) is given in Eq. (A16). It can be seen that
	ε′

n±(τz) = 	ε′
n∓(τz). However, note the 0th pLL energy

correction 	εn=0(τz), which can be also obtained by setting
λn±(τz) = 0 in Eq. (A35), remains finite.

In order to prove the other relations given in Eqs. (17) and
(18), we first observe that, for λS = 0,

λn±(τz) = −λn∓(−τz). (A36)

Therefore, τzλn±(τz) = τzλn±(−τz). This allows us to prove
the second equation, i.e., Eq. (17).

b. Armchair edge

For the armchair edge, there is no contribution from the
deformation potential [Eq. (12)] as the strain profile is traceless
in this case (i.e., uxx + uyy = 0). However, the corrections to
the Fermi velocity [Eq. (13)] do not vanish since uxy ∝ x �= 0
and yield

H′′ = 3
4 (βt)uxy(τzσxpya + σypxa). (A37)

In order to compute the energy shifts caused by this term,
we need to obtain the eigenstates of the pseudo-Landau level
problem. The latter can be solved in a similar way as done in
Appendix A 2 for the zigzag edge, first by noticing that A ∝
τz(0,2uxy) = τz(0, − Bsx) and recalling the that the armchair
edge is located along x, it is therefore py (rather than px) that
commutes with the continuum-limit Hamiltonian H. Except
for this difference, the solution of the pLL problem proceeds
along the same lines by introducing the operators:

π± = 1√
2g|Bs |

(τzpx ± ipy ∓ gτzBsx), (A38)

which allow us to bring the Hamiltonian to a form identical to
Eq. (A11).

However, the BCs on the armchair edge (i.e., 〈x =
0,y|ψαK〉 + 〈x = 0,y|ψαK ′ 〉 = 0 for α = A,B) are different

and mix the two valleys. This can be seen by rewriting them
as follows [33]:

(1 + τx)〈x = 0,y|�n±〉 = 0, (A39)

where τx is the Pauli matrix acting on the valley pseudospin
which flips between the two possible orientations of the latter
(i.e., K and K ′). Thus, although τz commutes both with H [cf.
Eq. (A4)] andH′ [cf. Eq. (A37)], the BCs do not commute with
τz because they mix the two valleys. Nevertheless, for the pure
Haldane model for which λS = 0, the eigenstates localized
in the bulk at both valleys are degenerate in energy because
	2

τz
= λ2

H , that is, ε±
n becomes independent of τz. Thus, the

BCs in Eq. (A39) can be satisfied if the eigenstates of the
Landau level problem are taken to be eigenstates of τx with
eigenvalue +1, rather than eigenstates of τz as for the zigzag
edge. Thus can be achieved by defining

|�n±〉 = 1√
2

[|�n±(τz = +1)〉|χ (τz = +1〉

−|�n±(τz = −1)〉|χ (τz = −1〉], (A40)

which satisfies the BCs (A39) [|χ (τz)〉 are the eigenstates of
τz]. Note that, like for the zigzag edge, by enforcing BCs
(A39) are enforced for |�n±〉, the eigenvalues of n = a†a are
no longer integers and become functions of the momentum
along the edge py . Therefore, it follows that the leading order
energy shift arising from Eq. (A37) is

	ε′′
n± = 〈�n±|H|�n±〉 (A41)

= 1

2

∑
τz=±1

〈�n±|H′′|�n±〉. (A42)

Choosing Bs > 0 allows us to identify a = π+ and a† = π−,
and using (A38) yields

x = iτz�(a† − a) − 2ipy�
2, (A43)

px = τz(a† + a)

2�
, (A44)

and yields 〈�n±|H′′|�n±〉 = 0 (we again drop constant cor-
rections), and hence 	ε′′

n± = 0, which shows that there is no
tilt in the case for the armchair edge.
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