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Effect of chiral selective tunneling on quantum transport in magnetic topological-insulator thin films
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The electronic transport properties in magnetically doped ultrathin films of topological insulators are
investigated by using Landauer-Buttiker formalism. The chiral selective tunneling is addressed in such systems
which leads to transport gap and as a consequence current blocking. This quantum blocking of transport occurs
when the magnetic states with opposite chirality are aligned energetically. This can be observed when an electron
tunnels through a barrier or well of magnetic potential induced by the exchange field. It is proved and demonstrated
that this chiral transition rule fails when structural inversion asymmetric potential or an in-plane magnetization is
turning on. This finding is useful to interpret quantum transport through topological-insulator thin films especially
to shed light on longitudinal conductance behavior of quantum anomalous Hall effect. Besides, one can design
electronic devices by means of magnetic topological-insulator thin films based on the chiral selective tunneling
leading to negative differential resistance.

DOI: 10.1103/PhysRevB.96.155440

I. INTRODUCTION

Topological insulators (TIs) which are a quantum state of
materials have been recently paid great theoretical and exper-
imental attention [1–7] for the new concepts in condensed-
matter physics leading to interesting phenomena such as
quantum anomalous Hall (QAHs) insulators [8,9] and also
potential applications in future electronic devices originating
from high conductivity and spin polarization of TI surface
states [10–12]. As a result of strong Rashba spin-orbit
interaction in these materials which gives rise to a spin-
momentum locking, dissipationless edge states are gapless and
protected against backscattering by time-reversal symmetry
(TRS), while their bulk spectrum has a small gap [12–14].
Such a Dirac-cone spectrum centered in the � point was
initially predicted and experimentally observed in the surface
states of the Bismuth-based materials such as Bi2Se3 and
Bi2Te3, namely as three-dimensional (3D) TIs [11,15]. An
ultrathin film of TIs leads to reduced scattering arising from
the bulk states as well as a gap opening originating from the
tunneling between the top and bottom surface states when
the TI’s thickness is thinner than 5 nm [16–18]. In fact, the
experimental spectrum of TI thin films was analyzed and
fitted based on the effective Hamiltonian derived in Ref. [17].
Furthermore, in TI thin films, a topological quantum phase
transition emerges from quantum spin Hall (QSH) insulator to
normal insulator when structural inversion asymmetry (SIA),
a potential difference between the top and bottom surfaces,
exceeds a critical voltage [19].

The QAH effect which is spin-polarized quantized trans-
port in the absence of external magnetic field, at first was
analytically proposed in Ref. [8] and experimentally observed
in transition metals doped of (Bi,Sb)2Te3 as magnetically
doped topological-insulator thin films [9,20,21]. Indeed, fer-
romagnetic ordering in these materials breaks time-reversal
symmetry and induces an exchange field M on TI’s sur-
faces which essentially can change the band gap [17]. In
enough strong exchange field (|M| > |�0|), a band inversion
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would occur in the band structure leading to a topologically
nontrivial phase [17,19,22]. Around the neutral point, the
Hall conductance shows a quantized plateau originating
from a topologically nontrivial conduction band, where the
longitudinal conductance is almost zero [9,20,21]. The sudden
drop of the Hall conductance is accompanied by a peak in
the longitudinal conductance which, as Lu et al. [22] showed,
is attributed to the concentrated Berry curvature and also the
local maximum of group velocity close to the band edge, re-
spectively. However, there are also other interpretations for the
experimental results of transport through QAH insulators. To
explain dissipative longitudinal conductance, the coexistence
of chiral and quasihelical edge states in magnetic TIs [23] and,
also in a microscopic view, the randomly magnetic domains
with opposite magnetizations [24] are considered. The role of
magnetic disorder in suppression of transmission by the edge
states accompanied by enhanced longitudinal transmission has
been numerically also verified [25].

Besides transport properties, the mechanism behind strong
ferromagnetic ground state in QAH insulators is, however,
still under debate [26]. One of the proposals is the existence of
magnetic impurities on the surface of TI thin film which can
enhance the local density of state in the band gap [27] and as a
consequence, the Ruderman-Kittel-Kasuya-Yosida interaction
in these materials [28] is intensified. On the other hand, the
application of topological insulator and its thin version as
the base ground for nanoelectronic devices has also attracted
attention [29–32]. Quantum transport properties through an
array of electrostatic potential barriers based on nonmagnetic
TI thin films was studied by Li et al. [32] showing the effect
of the gate voltage manipulation on conductance. However,
in this calculation, there is no Rashba splitting in the band
spectrum which is induced by SIA. An interplay between the
edge states due to inverted band structure and the edge states
due to Landau levels induced by applied magnetic field was
investigated in Ref. [33] leading to exotic transport properties
and band energy controlled by SIA.

In this paper, to shed light on electronic transport in QAH
insulators, we address a chiral selective tunneling through
magnetic TI thin films with perpendicular ferromagnetic
ordering which is responsible for some transport gaps in the
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absence of SIA. It is well known that in carbon nanotubes,
conservation of the rotational symmetry of the incoming
electron wave function [34] and, correspondingly, in even
zigzag graphene nanoribbons [35–39], conservation of the
transverse reflection symmetry of the incoming and outgoing
wave functions result in some selection rules governing
quantum transport. Here, quantum blocking of transport occurs
when bands with opposite chiralities are aligned energetically
by means of antiferromagnetic manipulation of electrodes. At
zero SIA potential, the chirality attributed to each band is
affected by out-of-plane magnetic field and also hybridization
between states belonging to the upper and lower surfaces.
Such a chiral selective tunneling in magnetic TI thin films
fails by application of SIA potential or in-plane exchange
field induced by ferromagnetically doped TI. To elucidate this
selective tunneling, by means of Landauer-Buttiker formalism,
transmission and also conductance are calculated for magnetic
and electrostatic potential barriers and finally as an application
of this chiral selective tunneling, a p-n nanojunction switch
is designed on magnetic TI thin film which shows a negative
differential resistance in its I -V curve.

Organization of the paper is as the following: in Sec. II, a
Hamiltonian and its discretized version along the transport
axis are presented. Furthermore, based on this discretized
Hamiltonian, Transmission and conductance are calculated by
using a nonequilibrium Green’s function formalism. The band
structure and chiral selective tunneling will be presented in
Sec. III. The current voltage of a p-n nanojunction in magnetic
TI thin film is proposed in Sec. IV to show that there exists
negative differential resistance in such systems. Finally we
conclude in Sec. V.

II. HAMILTONIAN AND FORMALISM

A. Hamiltonian

The effective low-energy Hamiltonian for the hybridized
Dirac cones on the top and bottom surfaces of ultrathin films
of the magnetically doped (Bi,Sb)2 Te3 family of materials
near the � point is described by [40]

H (k) = h̄vf (kyσx − kxσy) ⊗ τz + �(k)σ0 ⊗ τx

+Vsiaσ0 ⊗ τz + (M · σ ) ⊗ τ0 (1)

in the basis set of |u,χ+〉,|u,χ−〉,|l,χ+〉,|l,χ−〉, where u, l

denote the top and bottom surface states and χ+, χ− stand for
up- and down-spin states. In addition, τi and σi (i = x,y,y)
refer to the Pauli matrices in the surfaces and electron-spin
space respectively while σ0 and τ0 are identity matrices. The
mass term, which is extracted by using the experimental data, is
mapped on the form of function �(k) = �0 + �1k

2 for those
TIs thinner than d = 5 nm for the Bi2 Se3 and [(Bi,Sb)2 Te3]
family [16,18]. The parameters �0 and �1 are the fitted
parameters of the band gap which depend on the thickness
of TI thin film. Here, k = (kx,ky), k = |k| is the wave vector
where its x component is conserved during electron transport
through a barrier which is constructed along the y axis. vf

shows the Fermi velocity which is considered to be structurally
symmetric on the top and bottom surfaces. The third term
represents the structural inversion asymmetry (SIA) Vsia which
can be originated to the perpendicular electrical field applied
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FIG. 1. Schematic view of a topological-insulator thin film’s
nanojunction consists of two domains with opposite magnetization
polarized along the z axis which is mediated by a central portion
including magnetization with arbitrary polarized direction M as well
as the structural inversion asymmetry (Vsia).

on the surfaces and also to the potential difference induced
by substrate [16]. This SIA potential leads to the Rashba-like
splitting of the energy spectra which introduces TI thin films
as a good candidate for spintronic devices controlling by
an electric field. The last term refers to the ferromagnetic
exchange field which comes from the finite magnetization
induced by magnetic impurities such as Ti, V, Cr, and Fe
which are doped in the Bi2Se3 and [(Bi,Sb)2 Te3] family [41].
The Landauer formalism presented in this paper is written in
a general form such that conductance can be calculated when
the induced ferromagnetism in TI thin films is directed along
an arbitrary direction.

To investigate the chiral selective tunneling, a nanojunction
consisting of two domains with opposite magnetization po-
larized along the z axis is considered such that it is mediated
by a region including magnetization with arbitrary polariza-
tion M = (Mx,My,Mz) = M(sin θ cos φ, sin θ sin φ, cos θ ) as
well as the structural inversion asymmetry. A schematic
view of a TI thin-film nanojunction under application of
perpendicular applied bias is depicted in Fig. 1. The band
spectrum arising from Hamiltonian (1) for those portions
which have only z axis magnetization θ = 0 is written as

E(k) = ±(
(h̄vf k)2 + [�(k)]2 + M2 + V 2

sia

±2
[
(h̄vf k)2V 2

sia + M2
(
[�(k)]2 + V 2

sia

)]1/2)1/2
. (2)

Note that Hamiltonian (1) which was written in the spin-
surface Hilbert space can be rearranged in terms of the spin-
orbital new basis set as |ψb,χ+〉,|ψab,χ−〉,|ψb,χ−〉,|ψab,χ+〉
under a unitary transformation, which ψb(ψab) denotes to
the bonding (antibonding) orbital state originating from the
hybridization between the top and bottom surface states,

H (k) =
(

h+(k) Vsiaσx + M sin θ eiϕσz

Vsiaσx + M sin θ e−iϕσz h−(k)

)
,

(3)

where the parity eigenstates have the following general
form [19]:

|ψb,χ±〉 = (|u,χ±〉 + |l,χ±〉)/
√

2,

|ψab,χ±〉 = (|u,χ±〉 − |l,χ±〉)/
√

2. (4)

In the absence of SIA potential (Vsia = 0) and while z-
axis magnetization (with Mz = ±M for θ = 0,π conditions)
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FIG. 2. (a) Band structure of magnetically doped TI thin film
when structural inversion asymmetry is zero. Here the exchange
field induced by magnetic impurities is assumed to be M =
0.015 eV and θ = 0. (b) Transmission coefficient in terms of Fermi
energy.

is applied, the above effective Hamiltonian [Eq. (3)] reduces
to two decoupled blocked diagonal matrices with opposite
chirality [42] as follows:

hα(k) = h̄vf (kyσx − αkxσy) + (�(k) + αMz)σz, (5)

where α is the chiral index [24,42,43] which has two different
signs ± corresponding to the upper and lower block diagonal
matrices in Eq. (3). Here the last term is the mass term whose
negative sign leads to topologically nontrivial band structure.
By diagonalization of the Hamiltonian (5), the following band
dispersions would be obtained as

Eα(k) = ±
√

(h̄vf k)2 + (�0 + �1k2 + αMz)2. (6)

The energy gap for each band is 2|�0 + αMz|. The bands
with positive mass term are trivial with a zero Chern number
if |Mz| < |�0| and the bands with negative mass term are
nontrivial with the Chern number as Mz/|Mz| if |Mz| > |�0|
[24].

Let us note that in the case of a nonmagnetic TI thin film
(M = 0) at zero SIA potential, h−(k) is the time reversed copy
of h+(k) such that h+(k) = h∗

−(−k) [44]. Although as it is well
known and seen in Eq. (5), the time-reversal symmetry breaks
when any magnetization is turned on; the system remains chiral
polarized even if out-of-plane magnetization is applied [43].
In fact, by application of z-axis magnetization, as shown in
Fig. 2, the degeneracy of the bands with opposite chiralities
breaks [45].

B. Landauer formalism for transport

In order to study transport properties of TI thin films, one
can numerically discretize the Hamiltonian in the spin-orbital
basis set H (k) [Eq. (3)] in a quasi-one-dimensional lattice
model with the new basis set (|kx〉 ⊗ |yi〉), where kx is the
x component of the wave vector [46]. In the tight-binding
representation, the Hamiltonian in real space can be written
as

H =
∑

i

[Hi,ic
†
i ci + (Hi,i+δyc

†
i ci+δy + H.c.)], (7)

where the diagonal term in the discretized Hamiltonian is

Hi,i = −taExσy + m̄ σz ⊗ β0 + Vsiaσx ⊗ βx

+ σz ⊗ (M · β) (8)

and their hopping terms are derived as follows:

Hi,i+δy = (−Baσz + itaσx) ⊗ β0. (9)

Here c
†
i (ci) is the creation (annihilation) operator of the

electron at the site index i and δy represents unit vectors
along the y directions. The lattice constant along the y axis is
a = yi + 1 − yi which is assumed to be 1 nm for all numerical
calculations. The Pauli matrices βi, i = x,y,z, which are
different than the spin or surface Pauli matrices, are defined
for the spin-orbital Hilbert space and β0 refers to the identity
matrix. Here the parameters Ex, ta, Ba , and m̄ are in relation to
the parameters in Eq. (1) as Ex = 2akx, ta = h̄vf /2a, Ba =
�1/a

2, and m̄ = 1
4BaE

2
x + 2Ba + �0. To calculate transport

properties, we applied the two terminal Landauer formula by
using the nonequilibrium Green’s-function formalism at zero
temperature [47]. Transmission is calculated numerically by

T (E,kx) = Tr[�LGr�RGa], (10)

where broadening of the energy states arising from the
attached electrodes is �R(L) = i(�r

R(L) − �a
R(L)), and �r(a)

p

is the retarded/advanced self-energy describing the coupling
between the right/left pth semi-infinite lead (p = L,R) and the
central region. We numerically evaluate the lead self-energies
using the iterative technique developed by Lopez Sancho et al.
[48]. Gr = (Ga)+ is the retarded Green’s function and can be
calculated by using the formula Gr (E) = [(E + iη)1 − Hc −
�r

L − �r
R]−1, where η is 0+. Here Hc is the Hamiltonian for

the central scattering region and 1 is the identity matrix.
Conductance is calculated by the angularly averaged trans-

mission which is projected along the current flow direction,

G(Ef )/G0 =
∫ π/2

−π/2
T (Ef ,η) cos ηdη, (11)

where η is the incident angle of electrons into the barrier
which is defined as η = tan−1(kx/ky). G0 is Ne2/h̄ where N

is the channel number. To check transmission calculations, all
results reported in Ref. [32] were derived as a special case of
our general model.

III. CHIRAL SELECTIVE TUNNELING

To present the chiral selection rule which governs transport
properties of magnetically doped TI thin films, at first, let us
calculate transmission in a special case of zero SIA, Vsia = 0
and also assuming magnetization to be directed along the z

axis. In this case, the Hamiltonian is block diagonal in the
spin-orbital basis set as presented in Eq. (3) and the bands
are decoupled from each other with opposite chirality α.
To describe the experimental spectrum, the fitted parameters
are taken of the values sorted in Table I. In this study, four
quintuple layers of (Bi0.1Sb0.9)2Te3 (�0 = −0.029 eV, �1 =
12.9 eV A2) with �0�1 < 0 is considered. However, it should
be noted that our proposal for the chiral selective tunneling is
still valid for the case of �0�1 > 0.
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TABLE I. The parameters of the 2D effective Hamiltonian in Eq.
(1) for low-energy physics in (Bi0.1Sb0.9)2Te3 thin films with different
thicknesses [19].

h̄vf (eV A0) �0 (eV) �1 (eV A2)
4QLs 2.36 −0.029 12.9
3QLs 3.07 +0.044 37.3

At the first stage, no barrier or step function is considered
along the current flow direction. The band spectrum in this case
is plotted in Fig. 2(a) in which each band is marked by its chiral
index (±) derived in Eq. (6). The inner/outer bands belong to
the +(−) index which is depicted by pink/blue solid/dashed
lines in the figure. The edges of the bands with the chiral index
α occur at energies ±|�0 + αMz|. Since both parameters �0

and Mz could be experimentally positive or negative values
[24], one can summarize determination of the chiral index
attributed to each band based on the following expression:
the chiral index of the inner bands is of the opposite sign to
the sign of �0Mz, while the chiral index of the outer bands
corresponds to the sign of �0Mz. As an example, the index of
the inner bands in Fig. 2(a) is α = +1 because �0Mz < 0.

For the case of �0�1 < 0, the band branches with opposite
chiralities cross each other at a finite k = √|�0/2�1| [22] as
seen in Fig. 2(a).

Let us first consider normal incident electrons hitting into
the step function with kx = 0, although our expression about
selective tunneling can be extended to the case of kx �= 0.
Depending on the channel number in each Fermi energy,
transmission through such a magnetic TI thin film is divided
into three regions in Fig. 2(a). The transport gap originating
from the band gap occurs around the band center in a range
[−|�0 + Mz|,|�0 + Mz|]. This gap region is called the region
type I. Besides, there are ranges [|�0 + Mz|,|�0 − Mz|]
and [−|�0 − Mz|, − |�0 + Mz|] with transmission coeffi-
cient T = 1 which corresponds to one transport channel with
(+) chiral index. This range is called region type II. Finally
transmission reaches its maximum value T = 2 for the energy
region III in which there are two allowed transport channels.
To have a complete view, a 3D contour plot of transmission in
terms of Fermi energy and the incident angle of electrons (kx)
are depicted in Fig. 3(a). This graph shows that transmission
follows the band spectrum. Moreover, in this case, it was
checked that conductance as a function of Fermi energy has
the same behavior as transmission.

Now, to demonstrate the forbidden electron transition
through the bands with opposite chirality, let us design a
step function of magnetic potentials as depicted in Fig. 1
without the central portion such that at the region y < 0,
the magnetization vector is (0,0,M) with θ = 0 and for the
region y > 0, we have (0,0, − M) with θ = π meaning that
the magnetization direction is becoming inverted along the step
function. This band engineering causes alignment of energy
states with opposite chiralities belonging to different sides of
the step function.

Figure 4 shows the band structure of the left and right
sides of the magnetic step, as well as transmission coefficient
through this magnetic step in terms of Fermi energy. In turn,
the transmission gap is increased to 2(|�0| + |Mz|) while still

FIG. 3. 3D contour plot of transmission in terms of Fermi energy
and incident angle of electrons (kx) for TI thin film described in (a)
Fig. 2 and (b) Fig. 4.

there exist band states inside energy region II. In region III,
transmission reaches its maximum value T = 2 according to
two transport channels. The 3D contour plot of transmission
in terms of the Fermi energy and kx in Fig. 3(b) reveals to us
that the forbidden electron transition between two band states
with opposite chiralities would be preserved at other incident
angles kx �= 0, too.

Transition rule. Focusing on region II shows that the transi-
tion probability (t) from the energy state with (−) chiral index
ψ− = (ψbχ+,ψabχ−)† to the state with the opposite chiral
index ψ+ = (ψbχ−,ψabχ+)† through the z-axis magnetic step
potential can be written as

t = 〈�L|(2Mσz ⊗ βz)|�R〉 = 0, (12)

where the state belonging to the left electrode is �L = (ψ+,0)†

and the right state is �R = (0,ψ−)†. Therefore, the transition
probability is apparently zero. So the transmission (T ∝ |t |2)
is blocked in energy region II. However, we will show later that
these forbidden transport channels are opened if an in-plane
magnetic step potential is applied on TI thin films.
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FIG. 4. Band structure of magnetically doped-TI thin film when
structural inversion asymmetry is zero. Here the exchange field
induced by magnetic impurities is assumed to be M = 0.015 eV with
(a) θ = 0 for the left side of the step function and (b) θ = π for the
right side of the step function.
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To realize conservation of the chirality, one can define the
following unitary operator in the spin-orbital basis set,

C = σ0 ⊗ βz, (13)

where C2 = 1. This operator in the spin-layer basis set is
proposed to be σz ⊗ τx which commutes with the Hamiltonian
Eq. (1) at Vsia = 0 and θ = 0. The same also occurs for the
Hamiltonian Eq. (3) which commutes with the C operator,

[H (k),C] = 0, (14)

leading to a conservation rule in the chirality. The gate
voltage also preserves this conservation rule. Therefore,
the transition rate between the energy states with opposite
chiralities is blocked through an application of the gate voltage,
〈�L|(Vgσ0 ⊗ β0)|�R〉 = 0. However, one can verify that in
the presence of the SIA potential, the Hamiltonian does not
commute with the C operator which leads to the bands with a
mixture of different chiralities,

[Vsiaσx ⊗ βx,C] �= 0. (15)

Correspondingly, in the presence of SIA, one can check that
the transition rate from the left-side states to the right-side
states with opposite chiralities is not zero giving rise to break
the conservation rule of α,

〈�L|(Vsiaσx ⊗ βx)|�R〉 �= 0.

SIA potential. To demonstrate the above proposition, let us
focus on the transmission coefficient shown in Fig. 5. A portion
which is under the application of the SIA potential is placed
between two magnetic electrodes with opposite perpendicular
polarizations. The band gap of the central portion is justified to
be nearly equal to the electrode’s energy gap. What is clear of
Fig. 5(d) is that the SIA potential can change the chiral index
(α) of the state. In region II in which there exists a transport
gap in Fig. 4, by turning the SIA potential on, transmission
would be nonzero and equal to unity arising from one transport
channel accessible in this region. To have a complete view, at
kx = 0, a 3D contour plot of transmission in terms of Fermi en-
ergy and SIA potential is depicted in Fig. 5(e) to show the open-
ing of some transport channels inside the gap. The overall band
gap is increased by the SIA potential after a critical SIA po-
tential in which the band gap in the central portion exceeds the
transport gap of electrodes. As it is shown in this figure, trans-
mission oscillates with the SIA potential without decay which
originates from the resonance condition in the central portion.

In-plane magnetization. To end this section, let us look at
the effect of in-plane magnetization on transition rule. As it is
seen in Eq. (3), in-plane magnetization leads to a mixing of
different chiralities α with each other. The in-plane magneti-
zation along the x and y axes in the spin-orbital basis set are
represented as Mx = σz ⊗ βx and My = σz ⊗ βy , respectively.
One can simply check that [Mx,C] �= 0 and [My,C] �= 0 which
means that in-plane magnetization does not preserve α. This
fact can be confirmed by calculation of the transition rate
between two states with opposite chiralities in the presence of
an in-plane magnetization, 〈�L|Mx/y |�R〉 �= 0.

A confirmation of such claims is displayed in Fig. 6 in which
the transmission is plotted in terms of Fermi energy for a nano-
junction consisting of a portion with an in-plane magnetization
Mx tilted with θ = π/2 sandwiched between two electrodes
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FIG. 5. Band structure of a nanojunction designed on magnet-
ically doped TI thin film when structural inversion asymmetry is
applied on the central portion sandwiched in between two elec-
trodes with opposite z-axis magnetization. Here the central portion
(b) is assumed to be nonmagnetic M = 0 but with nonzero structural
inversion asymmetry Vsia = 0.07 eV. The exchange field induced
by magnetic impurities inside the electrodes is assumed to be
M = 0.015 eV where for the left electrode θL = 0 (c) and for the
right electrode θR = π . (d) Transmission coefficient in terms of
Fermi energy is plotted for kx = 0. For comparison, transmission
for the magnetic step of Fig. 3 is also plotted by dashed lines.
The length of the central portion is considered to be 80 nm. (e) 3D
contour plot of transmission in terms of Fermi energy and structural
inversion asymmetry at kx = 0; the area between two white dashed
lines belongs the transport gap.

with opposite z-axis magnetization (θL = 0 and θR = π for
the left and right side electrodes). Again one can observe
that in region II of Fig. 6(d), where it is expected to have
blocked transport channels, in-plane magnetization causes it
to induce nonzero transmission. Conductance which is defined
as the incident angle averaged transmission projected along the
current flow direction is calculated in Fig. 6(e) in respect to the
polar angle when magnetization is rotated in the x-z coordinate
plane. As long as the polar angle θ tends to π/2, the transport
blocking induced by conservation of chirality is failing and
conductance is enhanced. However, transport is blocked when
magnetization tends to orient along the out-of-plane direction.

The magnetic band gap which is opened for out-of-plane
magnetization would be closed if magnetization is in plane.
However, at normal incident kx = 0, there exists a band gap
which is depicted in the band structure of the central portion
shown in Fig. 6(b). In the presence of in-plane magnetization
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FIG. 6. Band structure of a nanojunction designed on magnet-
ically doped TI thin film when the x-axis magnetization (Mx) is
applied on the central portion sandwiched in between two electrodes
with opposite z-axis magnetization. Here in the central portion,
Mx = 0.05 eV with θ = π/2,φ = 0 and for Vsia = 0. The exchange
field induced by magnetic impurities inside the electrodes is assumed
to be M = 0.015 eV where (a) for the left electrode θL = 0 and
(c) for the right electrode θR = π . (d) Transmission coefficient
in terms of Fermi energy is plotted for kx = 0. For comparison,
transmission for the magnetic step of Fig. 4 is also plotted by dashed
lines. The length of the central portion is assumed to be 55 nm. (e) 3D
contour plot of conductance G/G0 in terms of Fermi energy and polar
angle θ at kx = 0 when magnetization is rotated in the x-z coordinate
plane (φ = 0). The area between two white dashed lines belongs to
the gap in the electrodes band structure. (f) 3D plot of band structure
in terms of kx and ky for Mx = 0.05 eV.

Mx and My , the band spectrum is written as the following:

E(k) = ±(
(h̄vf k)2 + M2 + (�0 + �1k

2)2

±2
[
(h̄vf kx)2

(
M2

x + M2
y

)
+ (�0 + �1k

2)2(M2)
]1/2)1/2

, (16)

where M2 = M2
x + M2

y + M2
z . The edges of the conduction

and valence bands at kx = 0 occur at ±||�0| − M|. The
band structure as function of kx and ky , which is presented
in Fig. 6(f), gives us a whole view of the spectrum for
topological-insulator thin films with a magnetization directed
along the x axis. The closing of the band gap is clear, however,
it is gapful at normal incidence kx = 0.

Edge states in nanoribbons of TI thin films. Since the
width of the system is limited, the boundary effects are
usually unavoidable in experiment. So the validity of the chiral
selective tunneling in the presence of the edge states would be
questionable, especially in the nontrivial topological phase.
Let us remind that at half filling, the system is topologically
nontrivial provided that the exchange field would be stronger
than the band gap |Mz| > �0 [24]. In weak exchange fields
where the band structure is topologically trivial, it seems that in
nanoribbons with smooth edges, the chiral selective tunneling
is still preserved during transition between subbands. In this
regime, the Chern number is zero and there is no edge current.
However, in a strong enough exchange field, depending on
the direction of the z-polarized exchange field, the Chern
number would be +1 for upward and −1 for downward
magnetizations. So, in the system composed of two opposite
z-axis magnetizations, there will be two opposite loops of
the edge current which cancel each other at the edges of
nanoribbon. Therefore, at half filling and at the neutral point,
the net edge current would be zero.

The chiral selective tunneling occurs at energies belonging
to the conduction or valence bands. The setup presented in this
paper is applicable to explain the experimental results [9] on
QAH effect at the coercive magnetic field where the magnetic
domains are randomly switched from upward to downward
magnetization. In this field, the net magnetization is zero where
there are no edge states or Hall resistance.

IV. NEGATIVE DIFFERENTIAL RESISTANCE

Recently, a proposal for possible manipulation of transistor
devices on TI thin films was designed and presented by Wang
et al. [19] which is based on the metallic dissipationless
edge states appearing in the QAH phase. Indeed, the SIA
potential can induce a phase transition from the QAH to NI
phase which makes having an on and off current feasible.
The on current arises from the chiral edge states while the
off current originates at the band gap in NI. However, in this
work, a nanoswitch is engineered by means of magnetic TI
thin films in which its off current is dominantly caused by
the forbidden transition between quantum states with opposite
chiralities.

Let us consider at first a p-n nanojunction which is
composed of two electrodes with opposite z-axis magne-
tization mediated by a nonmagnet portion where there is
no Rashba splitting of the spectrum arising from the SIA
potential. Although, based on the band gap emerging in
electrodes, one can design an Esaki-like diode [49] to search
for a nanoelectronic switch [32], we try to seek a negative
differential resistance (NDR) induced by the chiral selective
tunneling. The left electrode is gated to the higher voltage as
Vg = 0.114 eV compared to the right electrode. The Fermi
energy is set to be Ef = 0.075 eV which leads to a p-type
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FIG. 7. (a)–(c) The band structure of three regions of a p-n
nanojunction composed of two electrodes with opposite z-axis
magnetic field mediated by a nonmagnetic portion. Here, the normal
incident is studied, kx = 0. (d) Transmission coefficient in respect to
energy at special source-drain bias Vsd = 0.04 eV shown as dashed
vertical line in 3D plot of panel (f). (e) Local density of states on
each site for Vsd = 0.04 eV and all three regions. (f) 3D contour
plot of transmission as function of energy and source-drain bias Vsd .
Pink solid lines show the energy integration window of transmission
coefficient. Diamond marks refer to those blocked transport channels
which are induced by the chiral selection rule. (g) Current-voltage
(I -Vsd ) characteristic curve for different Fermi energies.

(b)

(a)

FIG. 8. (a) Current-voltage characteristic curve (I -Vsd ) for a
p-n nanojunction composed of two electrodes with opposite z-axis
magnetic field mediated by a nonmagnet portion under application
of different structural inversion asymmetry (SIA) potentials. (b) 3D
contour plot of transmission coefficient in respect to the energy and
SIA potential at special source-drain bias Vsd = 0.04 eV. Vertical
lines correspond to three SIA potentials shown in panel (a). Horizontal
dashed line represents the Fermi level.

semiconductor in the left and n-type semiconductor in the
right electrode. Since the SIA potential is absent in the middle
portion, there is no Rashba splitting in the spectrum as shown
in Fig. 7(b) while the left and right electrodes are energetically
gate shifted against each other to seek an energy alignment
between two states with opposite chiralities. A transport gap
at the Fermi energy is seen in Fig. 7(d) for the case of kx = 0.
This blocked channel would be opened if the magnetization
in the electrodes is parallel. A source-drain bias Vsd is applied
along the system such that the bias voltage applied on the
nonmagnetic and the right electrode portions is supposed to
distribute as Vsd/2 and Vsd , respectively. The local density
of states of this structure is plotted in Fig. 7(e) in which
white solid lines are drawn to guide the eyes to the potential
profile. The valley around the edge of the potential barriers
refers to the band gaps of each region. However, thanks to the
the chiral selective tunneling, around the Fermi level where a
transport gap emerges, resonant states with opposite chiralities
in electrodes disappear while there exist significant resonant
states in the nonmagnetic portion (the middle one). This region
corresponds to the region II shown in Fig. 2.

The transport properties of such a p-n junction is affected by
Vsd . A 3D contour plot of transmission in respect to the energy
and Vsd is represented in Fig. 7(f). In this figure, in addition
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to the three band gaps (blue regions) belonging to the three
portions, there exist some regions marked by diamonds where
transmission is blocked due to the transition rule. By increasing
the source-drain bias, the left electrode’s gap is fixed while
the middle and right side gaps are shifted linearly in energy
with Vsd/2 and Vsd , respectively. We have also checked that
these diamondlike regions are filled with the opened transport
channels for the case of parallel magnetization in electrodes.

The current-voltage characteristic curve is presented in
Fig. 7(g) for different values of Fermi energy. Negative
differential resistance occurs at a voltage corresponding to
the region marked by a diamond in Fig. 7(g). It means that
this NDR originates with conservation of the chiral index.
By increasing the Fermi energy, NDR disappears. Indeed, an
increase in Fermi energy causes the blocked transport region
(induced by the conservation of chirality α) to fall out of the
integration window [EF ,EF + Vsd ]. It was also checked that
NDR disappears if magnetization in the electrodes is parallel
with each other.

By application of the structure inversion asymmetry on
the middle part of this system, however, it is expected that
the chiral selective tunneling giving rise to open the blocked
transport channels [shown in the diamond-shape marks of
Fig. 7(f)] will fail. In this case, as we explained in Fig. 7,
the band structure is the Rashba splitting while the system
is not chiral polarized and contains a mixture of chiralities.
The current-voltage characteristics curve presented in Fig. 8(a)
demonstrates that NDR is getting weak as long as the SIA
potential is increasing. However, this is not the whole picture,
because by looking at the 3D plot of transmission coefficient
in terms of energy and SIA potential [Fig. 8(b)], it is seen

that transmission at the Fermi energy has an oscillating
behavior with the SIA potential without decaying arising from
topological surface states [32]. This oscillation is related to the
resonant states which give rise to constructive and destructive
interferences depending on the SIA potential.

V. CONCLUSION

The quantum transport properties through a thin film
of magnetically doped topological insulator is investigated
by using Landauer formalism. The main message of this
work is addressing a chiral selective tunneling appearing
when out-of-plane magnetization of neighboring regions is
directed in the opposite. In this case, transition between band
states with opposite chiraities is blocked. These quantum
transport gaps induced by conservation of chirality will be
as open channels if an in-plane magnetization is turning on.
Moreover, this transition rule fails when a structural inversion
asymmetry is present. Based on this selective tunneling one
can design a p-n nanojunction in which transport gaps result in
negative differential resistance emerging in the current-voltage
characteristics curve. By applying the SIA potential on the p-n
nanojunction, it is demonstrated that this NDR is getting weak.
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