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Quasiparticle energy bands and Fermi surfaces of monolayer NbSe2
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A quasiparticle band structure of a single layer 2H -NbSe2 is reported by using first-principles GW calculation.
We show that a self-energy correction increases the width of a partially occupied band and alters its Fermi surface
shape when comparing those using conventional mean-field calculation methods. Owing to a broken inversion
symmetry in the trigonal prismatic single layer structure, the spin-orbit interaction is included and its impact on
the Fermi surface and quasiparticle energy bands are discussed. We also calculate the doping dependent static
susceptibilities from the band structures obtained by the mean-field calculation as well as GW calculation with
and without spin-orbit interactions. A complete tight-binding model is constructed within the three-band third
nearest neighbor hoppings and is shown to reproduce our GW quasiparticle energy bands and Fermi surface very
well. Considering variations of the Fermi surface shapes depending on self-energy corrections and spin-orbit
interactions, we discuss the formations of charge density wave (CDW) with different dielectric environments and
their implications on recent controversial experimental results on CDW transition temperatures.
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I. INTRODUCTION

After the first experimental success in isolating various sin-
gle layers from layered materials such as graphite, hexagonal
boron nitrides, transition metal dichalcogenides (TMD), and
high-temperature cuprate superconductors [1], there have been
tremendous efforts to understand physical properties of two-
dimensional (2D) crystals [2–6]. Notably, owing to the reduced
spatial dimension compared to their bulk counterparts, the
Coulomb interaction in the 2D crystals as well as screening of
substrates on which they are placed have played very important
roles in modifying their electronic structures [3,5,7–11].
For example, it is now well established that many-body
interactions alter low-energy bands in graphene significantly
[5,12–17]. Moreover, the substrate screening also changes the
nature of Coulomb interactions in graphene on top of either
dielectric materials or metals and hence modifies the bands
further [13,18].

Besides graphene, several recent experiments have revealed
new interesting physical properties in a mono- and a few-
layer TMDs such as series of phase transitions and novel
superconductivity, being different from those shown in their
bulk forms [19–31]. Formation of charge density waves
(CDWs) in three-dimensional metallic TMDs has attracted
interests for the last couple of decades, and origins of CDWs
in some materials are still not settled yet [32,33]. Therefore,
the current efforts in investigating physical properties of
thin flakes of TMDs may shed light on the origin of CDW
phase in three-dimensional TMDs and open a way to find
the characteristic new collective phenomena in 2D crystals
[24–28].

Among metallic TMDs, the stacked trigonal prismatic
structure of niobium diselenide (2H -NbSe2) is one of the most
studied materials and an ideal system to study phase transitions
as functions of temperature and dopings. It has been known for
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a long time [32,33] that three-dimensional stacking structure
of 2H -NbSe2 is metallic at room temperature and undergoes a
CDW transition at 33 K before becoming a superconductor
[34,35] at 7.2 K although there has been the controversy
regarding the origin of CDW and the competition between
CDW and superconducting (SC) states [32,33,36–45]. After
a few earlier attempts to investigate physical properties of its
thin flakes [1,46,47], a couple of recent works have reported
successful isolations of its single layer form on top of various
substrates and measure their CDW and SC phase transitions
[27–31].

While all experiments [29–31,46,47] hitherto have shown
that the superconducting transition temperature decreases but
does not diminish completely when the thickness of 2H -NbSe2

decreases to a single layer limit, the transition temperature
(TCDW) from metal to CDW phase differs from each other
significantly [30,31]. The work by Xi et al. [30] measured
TCDW of 145 K, more than four times larger than the bulk TCDW

of 33 K whereas the work by Ugeda et al. reported that TCDW

is similar to or less than that of the bulk. Moreover, the former
attribute the strong coupling mechanism to the formation of
CDW at the very high temperature while the latter measured
a small CDW energy gap of 4 meV together with CDW
modulation under high biases pointing to the puzzling dual
nature (strong and weak) of CDW formation. It is noticeable
that the former measured the transition in a sample on top of
the silicon substrate while the latter on top of epitaxial bilayer
graphene (BLG) grown on the 6H -SiC(0001) surface.

Previous theoretical studies have shown that the bulk CDW
phase of 2H -NbSe2 does not have a prominent sharp peak at
the specific CDW wave vector, rather showing a broad peak
in the real part of the bare susceptibility and its imaginary
part does not peak at the CDW wave vector at all [48–50].
These suggest a possible strong electron-phonon coupling
mechanism to form the CDW phase [40–45], ruling out the
Fermi surface nesting mechanism [36–39], or the saddle-point
singularity driven CDW phase [51,52]. A recent first-principles
calculation using a semilocal exchange-correlation functional
predicts the CDW instability in the single layer structure
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with an enhancement of the electron-phonon interaction at
a specific CDW wave vector differing from that of the bulk
[53]. However, the predicted 4 × 1 CDW state is inconsistent
with the recent measurement showing 3 × 3 CDW state by
Ugeda and coworkers [31]. Another recent calculation using
the similar method also suggests a good metallic behavior
for a monolayer undistorted structure [54] while a transport
measurement shows a semimetallic nature [1].

Considering significant changes in the low energy bands of
the semimetallic and semiconducting 2D crystals with a proper
inclusion of electronic self-energy correction as well as its
modification by the substrate screening [5,7,10,12–18], a plain
mean field calculation is not sufficient and it is necessary to
investigate effects of suitable corrections from the many-body
Coulomb interactions on the low energy bands of monolayer
NbSe2. Although the CDW formation is quite sensitive to
a shape of Fermi surface, its variation with the self energy
corrections and alternations by the substrate screening have
not been investigated yet fully. In this paper, motivated by
recent rapid progress in this field and experiments reporting
different CDW formations [30,31], we report first-principles
density functional calculation and GW approximation results
of single layer NbSe2 in its normal metallic state which provide
comprehensive pictures of the low energy electronic structures,
a prerequiste to understanding the controversial CDW features.

This paper is organized as follows. In Sec. II, we introduce
a model system and calculation details. In Sec. III, our
calculation results for the low energy band structures based
on mean-field calculation methods and GW approximation
with and without spin-orbit interactions are presented. The
doping dependent variations of Fermi surfaces are also
discussed within various levels of approximations. The bare
susceptibilities with calculated energy band structures are also
presented in this section. Conclusions and discussion on CDW
formation mechanism in the single layer are in Sec. IV. In
addition, the effects of including semicore orbitals, detailed
derivation of atomic SOCs in this system, constructions
of a tight binding Hamiltonian within the three-band third
nearest neighbor hopping between d orbital of niobiums fit
for the DFT-GGA and GW energy bands, respectively, and
discussions on GW energy bands of the bulk 2H -NbSe2 are
presented in the appendix.

II. SYSTEMS AND CALCULATION DETAILS

Figure 1 displays the crystal structure of a single layer of
2H -NbSe2. The single layer is composed of three sublayers: a
triangular lattice of Nb at the center, which is sandwiched by
two outermost layers of Se triangular lattice, forming a trigonal
prismatic structure. The two Se sublayers of the 2H structure
are mirror symmetric to each other with respect to the plane of
the Nb layer as shown in Fig. 1(a). From a top view, the single
layer of 2H -NbSe2 looks like a hexagonal lattice.

We simulate the single layer of 2H -NbSe2 by taking a
vacuum layer of 12 Å. We increase the vacuum layer up to
20 Å and find no changes in calculation results. Our relaxation
calculation gives that the lattice constant of the layer is a =
3.45 Å and the distance between Nb and Se sublayers is 1.68 Å,
agreeing well with the previous studies [53,54].
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FIG. 1. Crystal structure and Brillouin zone of a single layer of
2H-NbSe2. (a) 2H structure of NbSe2. A transition metal atom (Nb,
blue sphere) is surrounded by six chalcogens (Se, yellow sphere).
Three of them lie on the upper plane, and the other three on the lower
one. (b) Crystal structure from a top view. Primitive lattice vectors a1

and a2 are denoted. (c) The first Brillouin zone and reciprocal lattice
vectors b1 and b2.

We performed density functional theory (DFT) calculation
by adopting the PBE generalized gradient approximation
(GGA) [55] for the exchange-correlation functional and the
norm-conserving pseudopotential [56] with a nonlinear core
correction [57]. Considering a crucial role of core levels
in estimating self energy [58,59], we treated the semicore
4s24p6 electrons of Nb atoms as valence electrons and discuss
its impact on the quasiparticle energy bands in Fig. 11 in
Appendix A. We used the plane-wave DFT code QUANTUM-
ESPRESSO [60] with a cutoff of 55 Ry, a 40×40×1 k-point
grid, and a smearing temperature kBτ = 0.005 Ry. Quasi-
particle energies were calculated within the level of G0W0

approximation [61,62] implemented in the BERKELEYGW code
[63] (hereafter, we will call the quasiparticle bands from G0W0

approximation as GW energy bands for convenience). The slab
truncation scheme was used to treat the Coulomb interaction
for the single layer geometry [63]. We used unoccupied bands
up to 5 Ry above the Fermi energy for the dielectric function
calculation to achieve the convergence of calculations.

III. RESULTS

A. Band structure

Figure 2 shows electronic band structures calculated by
DFT-GGA (red dashed line) and GW approximation (blue
solid line), respectively, along symmetric lines of the irre-
ducible Brillouin zone (IBZ). Our DFT-GGA band structure
shows a quite good agreement with previous studies [53,54].
We note that there are noticeable differences in a partially
occupied band (up to spin degeneracy) around the Fermi
level in the two calculation schemes. First, the energy band
minimum, which is located in the middle of the �M line
in the DFT-GGA calculation, moves toward the M point
and becomes lowered, when the GW correction is included.
Second, the saddle point of the GW band on the �K line
(indicated by black arrow in Fig. 2) is closer to the Fermi level
than that of DFT-GGA. It is still slightly lower (−77 meV) than
the Fermi level (EF ) while the DFT-GGA value for the point
is much lower (−123 meV) from the EF . This close proximity
of the saddle point to the charge neutral point is important
in discussing CDW phase later. The shape of unoccupied
DFT-GGA band structure and their GW corrections shown in
Fig. 2 looks quite similar to those of MoS2 [10] although the
semiconducting MoS2 has a significant band gap enhancement
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FIG. 2. Electronic band structures of monolayer NbSe2 along the
IBZ boundary. Red solid line and blue dashed one represent DFT-
GGA and GW band structures, respectively. The Fermi energy is set
to be zero. Black arrow indicates the saddle point of the partially
occupied band.

from the self-energy corrections [10]. Here, the spectral gap
between the partially occupied band and unoccupied bands
does not increase with the GW correction, but the bandwidth
of partially occupied band crossing the EF is enlarged by 17%
with GW approximations.

B. Fermi surface

The Fermi surface also changes when the GW correction is
added to the DFT-GGA result. As shown in Fig. 3, calculated
Fermi surfaces using the two methods basically contain two
distinct hole pockets at the K and � points, respectively. In
the DFT-GGA Fermi surface shown in Fig. 3(a), a hexagonal
hole pocket is at the � point and a rounded triangular
hole pocket at the K point agreeing well with previous

FIG. 3. Fermi surfaces of DFT-GGA (red solid line) (a) and GW

(blue dashed line) energy bands (b).

FIG. 4. The real part of the noninteracting susceptibility χ ′
0(q)

of (a) DFT-GGA and (b) GW bands within the constant matrix
approximation (in arbitrary units). The susceptibility is calculated
at kBT = 10 meV.

calculations [48–50,53,54]. In contrast, the triangular hole
pockets in the DFT-GGA band become a rounded hexagonal
pocket in the GW band as shown in Fig. 3(b). So, flat sides
of triangular pockets facing corners of hexagonal ones in
the DFT-GGA Fermi surfaces protrude toward the � point
with GW corrections. Then, the distance between the two
band crossing points along the �K line decreases with GW

corrections. This corresponds to the fact that the saddle point
of the GW band in the MK line shifts up, as seen in Fig. 2, thus
enabling one approach to the saddle point easier with slight
hole doping.

C. Noninteracting susceptibility

In order to investigate the implication of the change in the
electronic structure on a formation of the charge density wave,
we have calculated the real part of the noninteracting static
susceptibility χ ′

0(q) [50,53,64–68],

χ ′
0(q) =

∑
n,n′

∑
k

f (εnk) − f (εn′k+q)

εnk − εn′k+q
|〈nk|eiqr |n′k + q〉|2,

(1)

where εnk and |nk〉 are the energy of the nth band at the
crystal momentum k and its corresponding Bloch state, and
f (εnk) is the Fermi-Dirac distribution function. Other quantum
numbers such as spin are implicitly included in n. In principle,
the matrix element [50,66–68] is needed to calculate but it is
known that the constant matrix approximation [50,53,67,68],
in which the matrix element is set to be unity, is good for the
transition metal dichalcogenide [68]. The k-point grid used for
the calculation is 300 × 300 × 1.

Figure 4 shows the real part of the bare static suscep-
tibility χ ′

0(q) of (a) DFT-GGA and (b) GW calculations.
We have checked that χ ′

0(q) of DFT-GGA has a broad
maxima extending approximately from 2/5�M to 4/5�M .
Our calculation agrees well with other previous studies on the
bulk structure [48–50] as well as the single layer [53]. With
GW approximation, a general shape of χ ′

0(q) is quite similar to
that with DFT-GGA [Fig. 4(b)] in spite of apparent differences
between Fermi surfaces from the two calculation methods. We
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FIG. 5. The real part of the noninteracting susceptibility χ0(q) of
(a) DFT-GGA and (b) GW bands along the IBZ boundary (�MK)
for several temperatures [kBT = 10 (purple), 20 (blue), 30 (yellow),
40 (green), and 50 (black) meV]. To clarify, the curves are shifted
vertically by proper amounts.

note that a peak is at ( 1
3 �a1 + 1

15 �a2) point of IBZ not along the
high symmetric line unlike the case with DFT-GGA.

In order to see the temperature dependence of χ ′
0(q), we

have repeated χ ′
0(q) calculations by changing temperature

kBT . Figure 5 shows the bare susceptibility χ ′
0(q) along the

IBZ boundary at several temperatures. At kBT � 10 meV,
the maximum plateau of the DFT-GGA susceptibility has
a subpeak at q ≈ 2/5�M . As temperature increases, this
subpeak disappears and the broad plateau between 2/5�M and
4/5�M remains. For the GW case, the trend is quite similar to
those with DFT-GGA along the high symmetric lines of BZ.

D. Doping effects

Next we consider the doping effect on the bare static
susceptibility. The doping effect might be taken into account
by rigidly shifting the Fermi energy. δεF denotes the Fermi
energy shift with respect to the charge neutral level due to
the doping effect. Figure 6 shows Fermi surfaces for two
p-doped cases [(a) δεF = −150 meV, (b) δεF = −77 meV],
the undoped case [(c) δεF = 0 meV], and two n-doped cases
[(d) δεF = 80 meV, (e) δεF = 150 meV]. First we consider
p-doped cases [Figs. 6(a) and 6(b)]. As seen in Fig. 2, the
saddle point becomes closer to the Fermi level as the system
is more p doped. Thus, one can expect that the distance
between the two hole pockets gets shorter. In particular,
Fig. 6(b) displays the special case where the Fermi level
touches the saddle point on the �K line. In this case, two
hole pockets (triangle and hexagon) are connected to each
other. The Fermi surface in Fig. 6(b) is exactly the same
one discussed in Ref. [51]. So, a slight hole doping enables

FIG. 6. Fermi surfaces (blue solid lines for the hole doped
case and red for electron) of the single layer where the Fermi
energy is rigidly shifted by δεF due to doping from the charge
neutral one (black): (a) δεF = −150 meV, (b) δεF = −77 meV,
(c) δεF = 0 meV, (d) δεF = 80 meV, and (e) δεF = 150 meV.

the system to undergo CDW phase transition through the
logarithmic divergence of the susceptibility at the CDW wave
vector connecting the saddle points [51]. Being more p doped,
the topology of the Fermi surface is totally different from that
of the undoped one. As shown in Fig. 6(a), triangular and
hexagonal hole pockets are no longer observed, but there is
only one rounded rectangular electron pocket, thus changing
its carrier type. In contrast, as shown in Figs. 6(d) and 6(e),
the topology of the n-doped system does not change compared
with the undoped case, except for the fact that the size of the
two pockets is reduced.

Such a difference between Fermi surfaces of p-doped
and n-doped cases leads to a qualitative change in the bare
static susceptibility χ ′

0(q). For the n-doped cases where the
topology of the Fermi surface does not change, the landscape
of the noninteracting susceptibility χ ′

0(q) resembles that of
the undoped system. See Figs. 7(c) and 7(d) for χ ′

0(q) of
δεF = 80 meV and 150 meV, respectively. Compared with
the undoped case, the minor difference is that the peak moves
slightly toward the �M line, and the broad maximum from
3/5�M to 4/5�M is enhanced.

On the contrary, for the p-doped cases where the relative
position of the saddle point is critical, the topological change
in the Fermi surface gives rise to a qualitatively different
susceptibility pattern. For low doping, i.e., δεF > −77 meV,
the susceptibility pattern does not greatly deviate from that
of the undoped system [see Fig. 7(a)]. However, when the
system is more p doped such that the Fermi energy is below the
saddle point, quite a different pattern emerges. For example,
see Fig. 7(b) where δεF = −150 meV. As shown in the Fermi
surface for the case of δεF = −77 meV, the peak of χ ′

0(q) for
this case is at the M point indicating its logarithmic divergence
shown in Fig. 7(a). One noticeable change for the case of
further p doping is that the largest peak lies neither at the M

155439-4



QUASIPARTICLE ENERGY BANDS AND FERMI SURFACES . . . PHYSICAL REVIEW B 96, 155439 (2017)

FIG. 7. χ ′
0(q) of p-doped cases for GW bands: (a) δεF =

−77 meV and (b) δεF = −150 meV. χ ′
0(q) of n-doped cases for

GW bands: (c) δεF = 80 meV and (d) δεF = 150 meV.

point nor on the �M line [Fig. 7(b)]. Rather, the main peak is
found on the �K line for the case of δεF = −150 meV.

E. Effect of spin-orbit coupling

So far the effect of spin-orbit coupling (SOC) has not
been taken into account. Unlike the bulk 2H structure where
the combination of time-reversal and inversion symmetries
prohibits band splitting due to SOC [69], a single layer of the
2H structure can be significantly affected by SOC, since there
is no center of inversion symmetry. One might expect that a
new feature can emerge on the Fermi surface, depending on
whether the band splitting due to SOC is comparable to the
energy of the saddle point with respect to the Fermi level.

For DFT calculations fully relativistic pseudopotentials
are used. SOC are included on the final stage of the GW

approximation by adding DFT-SOC results since the effect
of SOC to GW results is marginal as shown in Ref. [70].
We also note that a similar calculation method for the SOC
effects has been used for explaining optical spectrum of a
single layer MoS2 successfully [10,11]. Figure 8 shows the
electronic band structure corrected by SOC around the Fermi
energy from (a) DFT-GGA and (b) GW schemes. As expected,
the single band around the Fermi level is splitted to two bands
for both cases. Note that the electronic band on the �M line
is not affected by SOC for both cases. This can be understood
by the fact that there is a mirror symmetry with respect to
a plane perpendicular to the lattice vector a1 in Fig. 1(b).

FIG. 8. Partially occupied bands splitted by SOC along the IBZ
boundary: (a) DFT-GGA and (b) GW bands. Red dashed lines and
blue solid ones indicate electronic bands without and with SOC,
respectively.

This mirror symmetry together with time-reversal symmetry
prohibits band splitting due to SOC along the �M line.

With SOC corrections, we found that the general shape of
energy bands are quite similar for both calculation methods
except the local Fermi surfaces shape near the saddle point.
As shown in Fig. 9(a), SOC introduces two rounded triangular
pockets around K and two hexagons around � to the Fermi
surface of DFT-GGA, which are just two copies of the Fermi
surface without SOC. In contrast, with GW approximation,
the two pockets along the �K line protrude toward each other
further reducing the distance between the two pockets. So,
from the GW Fermi surface with SOC [Fig. 9(b)], we expect
that the small amount of p doping can push the Fermi energy
down to 34 meV below the charge neutral point connecting two
rectangular pockets through saddle points between them. This

FIG. 9. Fermi surfaces of electronic bands corrected by SOC: (a)
DFT-GGA and (b) GW bands. Red dashed lines and blue solid ones
indicate Fermi surfaces without and with SOC, respectively.
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FIG. 10. The real part of the noninteracting susceptibility χ ′
0(q)

of SOC-corrected electronic bands from (a) DFT-GGA and (b) GW

methods.

also ensures the logarithmic divergence of the susceptibility
making CDW phase a possibility [51].

We also emphasize that the Fermi surface of DFT-GGA
with SOC [Fig. 9(a)] is not a general result for a single layer
of other metallic 2H -TMDs. For example, a single layer of
2H -TaSe2 shows the Fermi surface similar to Fig. 9(b) except
for that the orientation of the triangular pocket is inverted
[69]. Thus, the Fermi surface of a single layer 2H -TMD is
determined by competition between the energy of the saddle
point measured from the Fermi level and SOC-induced energy
correction, which varies material by material.

We next consider the bare static susceptibility χ ′
0(q) for

bands corrected by SOC. Special cares are needed when
the constant matrix approximation is applied to Eq. (1) for
the SOC-corrected band structure. For spin-degenerate bands
without SOC, the oscillator strength matrix element between
different spin components is obviously zero. Thus, the spin
degree of freedom, which is implicit in Eq. (1), just gives the
factor two to χ ′

0(q). In contrast, the electronic bands corrected
by SOC cannot be labeled by a definite spin quantum number
over k space, but generally have a spin texture varying on k
space. Thus it is likely that the interband matrix element of the
oscillator strength might vanish for some points or regions of
k space. It might not be correct to replace the interband matrix
element of the oscillator strength just as unity for the whole k
space without justification.

For the single layer of metallic TMDs, the bare suscep-
tibility is mainly determined by two bands splitted by SOC
around the Fermi level. It is known that these bands are
composed primarily of dz2 , dxy , and dx2−y2 orbitals of transition
metal [71–75]. In this effective subspace {dz2 ,dxy,dx2−y2}, the
SOC term does not mix spin components. In other words,
the two bands splitted by SOC have the opposite spin over
k space. Therefore, interband components of the oscillator
strength between the two bands might vanish, and the constant
matrix approximation can be applied to intraband components.
Note that this is the zeroth approximation, and this argument
might be modified when p orbitals of chalcogens and their
SOC are involved. For detailed discussions on the effective
tight-binding model of d orbitals and the atomic SOC, see
Appendices B and C.

Figure 10 shows the bare susceptibility χ ′
0(q) calculated

from DFT-GGA and GW methods based on the above

argument. The bare susceptibility of SOC-corrected bands
looks similar to that of electronic bands without SOC in
Fig. 4 except for that there are more substructures for the
SOC-corrected bands. For example, the maximum plateau of
DFT-GGA bands on the �M line has more steps as shown in
Fig. 10(a). For GW bands, the bare susceptibility follows a
similar variation with the case of DFT-GGA [Fig. 10(b)].

IV. DISCUSSION AND CONCLUSION

Having established the quasiparticle energy bands and the
Fermi surface of a monolayer NbSe2 using GW approxima-
tion, now we discuss their implications on a possible CDW
phase in the single layer on top of various substrates. Following
previous discussions about effects of Coulomb interactions
on the low energy bands of graphene on top of substrates
[13,18], we consider alternations of the static screened
Coulomb interaction in the momentum space [61–63] WGG′ =
ε−1

GG′(q)v(q + G′) by approximately including environmental
static dielectric screening (εenv) in the dielectric matrix (εGG′)
within the random phase approximation (RPA) such as,

εGG′(q) � εenvδGG′ − v(q + G)χGG′(q), (2)

where v(q + G) = 4π/|q + G|2 is the bare Coulomb
interactions, χGG′ is the noninteracting polarizability, q is a 2D
vector in the IBZ, and G is a 2D reciprocal-lattice vector. Here,
εenv ≡ (εvac + εsub)/2 where εvac = 1 is a dielectric constant
of vacuum and εsub is a static dielectric constant of substrate
[13,18]. We consider two different substrates, the silicon oxide
substrate used in Ref. [30] and the BLG/6H -SiC substrate in
Ref. [31]. For the former, εenv = 2.45 where εsub = 3.9 for the
silicon oxide [76] so that, like graphene on top of BN, SiC, or
quartz substrates [13,18], the weak substrate screening would
not change the GW band structure. Therefore, we expect that
the proximity of saddle points near the Fermi level in our
GW -SOC calculations may introduce the new type of CDW
phase. For the latter, there are some ambiguities in using the
approximation of Eq. (2) because the dielectric function of
bilayer graphene has a strong q dependence [3] and because
BLG on 6H -SiC(0001) surface is usually n doped with electric
field perpendicular to the plane [77–79]. Considering a large
lattice mismatch between NbSe2 and BLG and rotational
disorders between them [31], we can assume no strong
interlayer coupling so that the q dependence of BLG dielectric
function may be neglected. Taking into account the doped BLG
on top of 6H -SiC(0001) surface [77–79], εsub becomes large
for the in-plane polarization. Such a large substrate screening
indicates that the Fermi surface and quasiparticles bands of the
system follow those obtained from DFT-GGA calculations,
thus favoring the bulklike (strong electron-phonon coupling
induced) CDW phase transition [53]. We also note that a
similar situation can occur in the bulk NbSe2. As shown in
Fig. 14(e) of Appendix D, our GW bands calculation of bulk
2H -NbSe2 shows a quite similar Fermi surface shape near
around A and H points compared with those from a single
layer DFT-GGA calculation. Such a similarity of Fermi surface
shape is due to the relatively large screening effects of adjacent
layers in the bulk. Although a large screening of the substrate
could reduce the effects of strong Coulomb interaction, there
may be a still considerable mismatch between the dispersion
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with a relatively large substrate screening and the DFT-GGA
energy bands as shown in a previous study on the low energy
quasiparticle energy bands of graphene [18]. So, we expect
that the Fermi surface of the latter system could not entirely
follow those from the mean-field calculation but that it could
be a mixture between those two calculation schemes. So,
subtle changes in the Fermi surface from the weak correction
of GW approximation could change the CDW periodicity
different from the recent DFT-GGA calculation [53].

The Fermi surface variation within the GW approximation
alone cannot explain the large discrepancy of TCDW between
the two experiments [30,31]. Since a giant phonon softening
should occur in the vicinity of M point when the saddle points
touch the Fermi energy [51], this will enhance the transition
temperature beyond the simple mean-field estimation, but the
more comprehensive studies to understand electron-phonon
interaction with strong Coulomb interaction are needed to
understand this phenomena that is beyond the scope of current
work. A recent detailed calculation [80] for the single layer on
top of graphene indicates a negligible interlayer interaction
between them. Contrary to the experiment interpretation
[31], the detailed density of state analysis using DFT-GGA
calculation [80] suggests a strong coupling mechanism for the
CDW in the single layer limit, but the origin of small energy
gap at the Fermi energy is still not clear yet.

In conclusion, we have calculated quasiparticle band struc-
tures of a single layer 2H -NbSe2 by using first-principles GW

calculation. We found that the width of a partially occupied
band increases and its Fermi surface shape changes compared
with those obtained using DFT-GGA calculation method. The
SOC changes the Fermi surfaces further and the resulting
energy bands have the singular saddle points very close to the
Fermi surface, enabling the system to undergo CDW phase
transition. We also discuss the variation of Fermi surface
depending on the environmental screening and their relation
with recent experiments on the phase transitions. Considering
a relatively easy control of charge doping in 2D crystals,
we think that the present system is particularly interesting in
realizing doping-dependent phase transition. We also provide
a simple tight-binding model with a basis of three d orbitals
of niobium that can be useful for many-body calculation
of large hybrid systems involving NbSe2 and other layered
systems.
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APPENDIX A: EFFECTS OF SEMICORE STATES
ON GW APPROXIMATIONS

Here we compare band calculation results of the GW

approximation with and without including Nb semicore states
in the pseudopotential. It has been investigated that GW

FIG. 11. (a) GW bands for a single layer NbSe2 with and without
semicore levels of 4s24p6 of Nb atom, which are denoted by blue
solid lines and red dashed ones. (b) Fermi surfaces of GW bands
with semicore states (blue solid lines), GW without semicore states
(red dashed lines), and DFT-GGA bands (black dotted lines).

energy bands can be significantly changed by the inclusion
of core states of the transition metal, for example, in II-
VI semiconductors like CdS [58] or bulk copper [59]. In
these materials, usual DFT band structures rarely change by
including core states whose binding energies are well separated
from those of valence states. Despite a distinct separation
between core and valence states, when core states have a large
spatial overlap with valence states, core states can strongly
interact with valence states when the exchange part of the GW

self-energy is calculated. This strong interaction between core
and valence states indeed leads to a significant modification
on the GW band structure [58,59].

Regarding this effect, we have generated pseudopotentials
of Nb atoms with the semicore 4s24p6 electrons as valence
ones and without them, and we have applied the GW approx-
imation to the two cases. Almost flat bands originating from
4s and 4p states are located at about 54.03 eV and 30.39 eV,
respectively, below the Fermi level, which are separated from
4d bands around the Fermi level. All-electron calculation of
the Nb atom reveals that radial wave functions of 4s, 4p, and
4d states mostly spread over the similar radial range, thereby
implying that there is a strong interaction between core (4s

and 4p) and valence (4d) states in the exchange interaction of
the GW approximation.

Figure 11(a) shows the resulting GW band structures of the
NbSe2 monolayer by using pseudopotentials with and without
4s and 4p semicore states. One distinguished feature induced
by the inclusion of semicore states is the shape of the partially
occupied band in the neighborhood of the symmetric point M .
Without semicore states the minimum of the partially occupied
band is located at M . It is in a sharp contrast to the fact that the
partially occupied band has the energy minimum at the middle
of the �M line in the GW approximation with semicore states.
The energy difference of the two cases at M is approximately
233 meV. Fermi surfaces of GW bands with and without
semicore states are shown in Fig. 11(b) together with the Fermi
surface of DFT-GGA bands. Due to the energy shift around
M caused by semicore states, the crossing point of this band
with the Fermi level on the MK line moves toward the M

point, resulting in a rounded hexagonal Fermi surface around
M . Without semicore states, the Fermi surface around M looks
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like a triangular shape whose flat sides face the M point, so
the triangular pocket is distinguished from that of the DFT-
GGA calculation in terms of the orientation. Except for the
energy correction around M , energies and shapes of partially
occupied bands from the two calculations are almost the same.

When it comes to energy bands far from the Fermi level,
it is first found that four lowest unoccupied bands originating
from 4d orbitals of Nb do not significantly change. In contrast
higher unoccupied bands and fully occupied ones below the
Fermi energy are shifted upwards overall.

APPENDIX B: ATOMIC SPIN-ORBIT COUPLING IN MONOLAYER NbSe2

We here discuss the effect of SOC and the spin texture of the partially occupied band. Here we consider SOC as the atomic
one that gives only on-site terms,

Hso = λTMŜ ·
∑
m∈Nb

L̂m + λCHŜ ·
∑
m∈Se

L̂m, (B1)

where λTM and λCH are SOC constants for transition metal and chalcogen, respectively, Ŝ is the spin 1/2 operator, and L̂m is the
angular momentum operator of an atom m. First of all, for the d-orbital space, the SOC term at transition metal atom m reads

λTMŜ · L̂m=̇λTM

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 i
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2 −i
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2 − 1
2 − i

2 0 0

0 0 0 − i
2 0

√
3

2
i
2 − 1

2 0 0

0 0 0 i
√

3
2

√
3

2 0 0 0 0 0

0 0 0 − 1
2 − i

2 0 0 −i 0 0

0 0 0 i
2 − 1

2 0 i 0 0 0

−i
√

3
2

1
2 − i

2 0 0 0 0 0 0 − i
2

−
√

3
2

i
2

1
2 0 0 0 0 0 i

2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

with the basis {|dz2 ,↑〉,|dxy,↑〉,|dx2−y2 ,↑〉,|dyz,↑〉,|dxz,↑〉,
|dz2 ,↓〉,|dxy,↓〉,|dx2−y2 ,↓〉,|dyz↓〉,|dxz,↓〉}. Here |↑〉 and |↓〉
are spin eigenstates of the Ŝz operator.

Without SOC, it is shown that two subspaces of d orbitals
{dz2 ,dxy,dx2−y2} and {dyz,dxz} are not coupled in the group-
theoretical construction of the d-orbital TB model [71,72].
Equation (B2) tells us that SOC leads to mixing of the two
subspaces {dz2 ,dxy,dx2−y2} and {dyz,dxz}. Furthermore, |↑〉
and |↓〉 are no longer spin eigenstates, since 〈ψ1,↑(↓)|Ŝ ·
L̂m|ψ2,↓(↑)〉 = 0 in which ψ1 ∈ {dz2 ,dxy,dx2−y2} and ψ2 ∈
{dyz,dxz}.

When we consider the partially occupied band around the
Fermi energy coming from {dz2 ,dxy,dx2−y2}, this band is well
separated from the other four bands at least by 2 eV. Therefore,
from the viewpoint of the perturbation theory, the mixing
term of Eq. (B2) between {dz2 ,dxy,dx2−y2} and {dyz,dxz} might
give a negligible contribution to the partially occupied band.
In the subspace {dz2 ,dxy,dx2−y2}, the SOC term [Eq. (B2)]
approximately reads

λTMŜ · L̂m ≈ λTM

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 i 0 0 0
0 −i 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −i

0 0 0 0 i 0

⎤
⎥⎥⎥⎥⎥⎦

, (B3)

which is written in the order of {|dz2 ,↑〉,|dxy,↑〉,
|dx2−y2 ,↑〉,|dz2 ,↓〉,|dxy,↓〉,|dx2−y2 ,↓〉}. Clearly, Eq. (B3) has

no mixing term between |↑〉 and |↓〉. Thus |↑〉 and |↓〉 can be
regarded as good spin eigenstates for the partially occupied
band in the effective d-orbital TB model discussed in Sec. C.

However, spin eigenstates for the real system might be
modified, since there is the SOC term of p orbital from
chalcogens. The partially occupied band of our interest
is approximately described in terms of three d orbitals
{dz2 ,dxy,dx2−y2}. However, it is an effective description, but the
real band involves contribution from p orbitals of chalcogens.
In fact, according to the orbital-projected density of states
calculation, the wave function of the partially occupied band
contains p orbitals of chalcogens by about 20%.

The SOC term on a chalcogen m is

λCHŜ · L̂m ≈ λCH

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − i
2 0 0 0 1

2
i
2 0 0 0 0 − i

2

0 0 0 − 1
2

i
2 0

0 0 − 1
2 0 i

2 0

0 0 − i
2 − i

2 0 0
1
2

i
2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(B4)

which is ordered in the basis of {|px,↑〉,|py,↑〉,
|pz,↑〉,|px,↓〉,|py,↓〉,|pz,↓〉}. Two subspaces of p orbitals
{px,py} and {pz} are mixed under SOC. Further, |↑〉 and
|↓〉 are not exact spin eigenstates. Eigenstates of the total
angular momentum operator Ĵ = L̂ + Ŝ could be true ones
since orbital and spin angular momenta are correlated via

155439-8



QUASIPARTICLE ENERGY BANDS AND FERMI SURFACES . . . PHYSICAL REVIEW B 96, 155439 (2017)

SOC. Considering contributions of p orbitals, it might be
expected that there is relatively small mixing between |↑〉 and
|↓〉 components for bands splitted by SOC.

APPENDIX C: THREE-BAND TIGHT-BINDING MODEL

In this section, we construct a tight-binding (TB) model
which closely reproduces GW bands, especially the partially
occupied band around the Fermi energy. The partially occupied
band comes mostly from dz2 , dxy , and dx2−y2 orbitals of
transition metal [71–75]. p orbitals from chalcogen atoms
gives the next contribution to the band. Although it is more
precise to construct the tight-binding model by including the
p orbitals, we would like to have a minimal model capturing
the main physics so that it could be used for other theoretical
investigations. For this purpose, we start with the three-orbital
TB model including only dz2 , dxy , and dx2−y2 orbitals.

The form of the TB model and the number of independent
parameters can be determined by the lattice symmetry. In
particular, Ref. [71] provides a complete table of matrix
components of the TB model of d orbitals for hexagonal
structure, which is relevant for TMDs. For detailed discussion
on the group-theoretical construction of the TB model, see
Refs. [72,73].

The effective TB model of d orbitals has been applied
to TMDs in the literature [74,75]. Recently, this model has
been extensively used in order to fit DFT band structures for
monolayers of group-VIB TMDs [75]. In Ref. [75], the authors
have extended the three d-orbital TB model up to the third
nearest neighbor (TNN) hoppings. Using the TNN TB model,
they have successfully reproduced DFT electronic bands.

As mentioned in Refs. [74,75], the d-d interactions in the
effective TB model contain the direct hoppings between d

orbitals of transition metal and the indirect d-d hoppings via p

orbitals of chalcogens. However, within this effective model,
one cannot know how much contribution p orbitals give to
the energy band of our interest, which might be important for
some aspects, for example, the effect of SOC.

Using the three-band TNN model of Ref. [75], we fit DFT-
GGA and GW bands on the IBZ boundary. For this, we first
adopt the least-square fitting procedure and finely tune parame-
ters in order to fit the saddle point of the MK line. Figure 12(a)
shows energy bands of the three-band TNN TB model together
with DFT-GGA bands. Following notations of Ref. [75], fitting
parameters of the TB model for DFT-GGA bands are ε1 =
1.408, ε2 = 2.048, t0 = −0.128, t1 = 0.115, t2 = −0.466,
t11 = 0.115, t12 = 0.122, t22 = 0.036, r0 = 0.025, r1 = 0.194,
r2 = −0.079, r11 = 0.021, r12 = 0.096, u0 = −0.031, u1 =
−0.037, u2 = −0.002, u11 = 0.258, u12 = −0.179, and u22 =
−0.167 in units of eV. The energy bands of the TB model are in
very good agreement with DFT-GGA bands except for a small
deviation at the energy minimum of the partially occupied
band. As shown in Fig. 12(b), the fitted TB model well
reproduces the Fermi surface of the DFT-GGA calculation.

We also construct the three-band TNN model of GW

bands, whose fitting parameters are ε1 = 1.148, ε2 = 2.379,
t0 = −0.118, t1 = −0.386, t2 = −0.366, t11 = 0.167, t12 =
0.243, t22 = −0.075, r0 = 0.094, r1 = 0.043, r2 = −0.152,
r11 = 0.055, r12 = −0.012, u0 = −0.061, u1 = −0.010,
u2 = 0.002, u11 = 0.140, u12 = −0.077, and u22 = −0.014

FIG. 12. (a) Electronic bands from the DFT-GGA calculation
(blue dashed line) and ones from the three-band TNN TB model
fit to the DFT-GGA bands (red solid line). (b) Fermi surfaces of
electronic bands from the DFT-GGA calculation (blue dashed line)
and the TB model (red solid line). (c) Electronic bands from the GW

approximation (blue dashed line) and ones from the three-band TNN
TB model fit to the GW bands (red solid line). (d) Fermi surfaces of
electronic bands from the GW calculation (blue dashed line) and the
TB model (red solid line).

in units of eV. Energy bands reproduced by the TNN tight-
binding model and GW bands are shown in Fig. 12(c). The
energy bands of the TB model agree well with those of the
GW calculation, but there is some deviation of the partially
occupied band on the MK line. While hexagonal pockets
around � nicely match, the triangular pocket of the TB model
is less rounded than that of GW bands. This is due to the small
mismatch of the two bands on the MK line in Fig. 12(c).

Figure 13 displays orbital-projected bands calculated from
the three-orbital TNN TB model of the GW bands. dz2 orbital
is dominant for the lowest band around the Fermi level, while
dxy and dx2−y2 orbitals give main contributions to the other two
unoccupied bands.

APPENDIX D: GW BANDS OF BULK 2H-NbSe2

We have extended DFT-GGA and GW calculations to
energy bands of the bulk 2H -NbSe2 by using the same
pseudopotential including semicore states. For detailed calcu-
lations we have used the plane-wave basis set with a cutoff of
55 Ry, a 20 × 20 × 5 k-point grid, and a smearing temperature
kBτ = 0.005 Ry [60]. The GW bands of the bulk 2H -NbSe2

are calculated within the level of the G0W0 approximation
[63] by including about 400 unoccupied bands, which are up
to 10 Ry above the Fermi energy.
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FIG. 13. Orbital projected band structures from the three-band
TNN TB model of the GW bands: contributions from (a) the dz2

orbital (blue circle) and (b) dxy and dx2−y2 orbitals (red circle). The
size of open circle is proportional to contribution of the corresponding
orbital. The Fermi energy (blue dashed line) is set to be zero.

Figure 14(a) shows DFT-GGA and GW electronic bands
of the bulk 2H -NbSe2 along symmetric lines of the IBZ,
which are denoted by red dashed lines and blue solid ones
respectively. Their corresponding Fermi surfaces are depicted
in Figs. 14(b)–14(d). Figures 14(b) and 14(c) show Fermi
surfaces of DFT-GGA bands on the �MK and ALH planes,
respectively, while Figs. 14(d) and 14(e) are Fermi surfaces
of GW bands on �MK and ALH planes, respectively.
As discussed in Sec. IV, the Fermi surface of the bulk

FIG. 14. (a) Energy bands of the bulk 2H -NbSe2 along symmet-
ric lines of the IBZ. Red dashed lines and blue solid lines correspond
to DFT-GGA and GW electronic bands, respectively. (b) and (c) are
Fermi surfaces of DFT-GGA bands on �MK and ALH planes of the
IBZ, respectively. Similarly (d) and (e) show Fermi surfaces of GW

bands on �MK and ALH planes, respectively.

2H -NbSe2 GW bands on the ALH plane is similar to that
of the single-layer DFT-GGA bands on the �MK plane. In
particular the Fermi surface around H is a rounded triangular
pocket whose flat lines face the symmetric point A but not a
rounded hexagonal pocket as seen in the Fermi surface of the
monolayer GW calculation. The relative large screening effect
of neighboring layers could lead to this similarity between
the Fermi surface of bulk GW bands and that of monolayer
DFT-GGA bands.
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