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Caroli formalism in near-field heat transfer between parallel graphene sheets
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In this work we conduct a close-up investigation into the nature of near-field heat transfer (NFHT) of two
graphene sheets in parallel-plate geometry. We develop a fully microscopic and quantum approach using the
nonequilibrium Green’s function method. A Caroli formula for heat flux is proposed and numerically verified. We
show that our near-field-to-black-body heat flux ratios generally exhibit 1/dα dependence, with an effective ex-
ponent α ≈ 2.2, at long distances exceeding 100 nm and up to one micron; in the opposite d → 0 limit, the values
converge to a range within an order of magnitude. We justify this feature by noting it is owing to the breakdown of
local conductivity theory, which predicts a 1/d dependence. Furthermore, from the numerical result, we find that
in addition to thermal wavelength λth a shorter distance scale ∼10−100 nm, comparable to the graphene thermal
length (h̄vF /kBT ) or Fermi wavelength (k−1

F ), marks the transition point between the short- and long-distance
transfer behaviors; within that point, a relatively large variation of heat flux in response to doping level becomes
a typical characteristic. The emergence of such large variation is tied to relative NFHT contributions from the
intra- and interband transitions. Beyond that point, scaling of thermal flux ∝ 1/dα can be generally observed.
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I. INTRODUCTION

Within narrow vacuum gap compared with thermal wave-
length ∼λth = h̄ c

kBT
between two bodies, surface modes can

drastically augment electromagnetic thermal transfer by orders
of magnitude greater than the normal Planckian radiative
process—the so-called near-field heat transfer (NFHT). The
growing interest in NFHT ushers in designs of material
systems and technological applications: thermal transistors
[1], thermal memory devices, thermophotovoltaic devices,
thermal plasmonic interconnects [2], and scanning thermal
microscopy, just to name a few. Despite all the interesting
designs of material properties and geometries, the description
and starting point of the physical process has been centering
around fluctuating current sources, about which the NFHT
theory (the so-called “fluctuational electrodynamics”) was
developed by Rytov [3], and later formalized by Polder and
Van Hove (PvH) [4]. Mahan has recently conducted a similar
inspection using two parallel metal surfaces [5]. He compared
the NFHT contributions from charge and current fluctuations
and concluded that the former contribution is most important
when the air gap between two surfaces is small.

We are aware of some physical instances where the charge
density fluctuation fits in more naturally than the current
counterpart. Those instances are polar insulators, spatially
confined nanostructures like nanodisks [6], and graphene with
plasmons [7]. The third is the subject of this work.

Charge density fluctuation due to thermal excitation and/or
quantum effect gives rise to fluctuating electromagnetic fields.
Because of two-dimensional (2D) planar structure, graphene
is credited for its great tunability of charge density and
plasmonic excitability, which makes it an ideal material for
close examination at the fluctuation of charge density.

*u97810333@gmail.com

Owing to the fact that the plasmon wavelength λsp is far
shorter than thermal wavelength λth = h̄ c

kBT
, we can neglect

retardation and attribute optical source fully in terms of
the scalar potential [8] φ, which acts as the immediate
field that couples to the charge density degrees of freedom.
Herein with the exploration of NFHT to the nanometer and
subnanometer scale [9–13], the fully quantum description is
needed. With the nonequilibrium nature of the transfer process,
NEGF is versatile in coping with the scheme. Owing to the
co-contribution made by Caroli, Combescot, Nozieres and
Saint-James (CCNS), the so-called Caroli formula has become
a handy tool in coping with the ballistic transport problem
[14]. Despite of the handiness, its explicit use in previous
works on NFHT has not been seen. In this work, we recognize
the ballisticity of the NFHT process, under local equilibrium
approximation (LEA) assumed here, and show a Caroli
formula in this work [see Eqs. (4) and (5) in Sec. II]. Since the
trace for evaluating transmission is independent of geometry,
though the parallel-plate geometry is given here as an example,
the formula can be well applied to other geometries, e.g.,
tip-plane one, typical of scanning tunneling microscope.

For visualization of field tunneling from one body through
another, λth = h̄c/kBT is a good figure of merit, smaller
than which the near-field contribution dominates. However
for graphene, a shrinkage of the characteristic length is notable
because [15] vF ∼ c/300. Moreover, other than the controlling
factor kBT , in cases where graphene is doped (meaning it has
a finite chemical potential), the control factor shifts over to
doping level (i.e., kBT → μ in the denominator of λth). In the
following we will show a characteristic distance ∼10–100 nm,
being comparable to h̄vF /kBT or h̄vF /μ, and within and
beyond which the different thermal flux behaviors show up.

II. METHOD

Consider two closely spaced graphene sheets with sheet
1 having temperature T1, chemical potential μ1, and lying
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FIG. 1. The schematic showing heat transfer across vacuum gap
of distance d between two graphene sheets.

at z = 0 plane, and sheet 2 having temperature T2, chemical
potential μ2, and lying at z = d plane (see Fig. 1). Starting
from the scalar potential heat flux operator [16,17],

ĵ = ...
ε0

2
[ ˙̂φ ∇φ̂ + ∇φ̂ ˙̂φ]

... (1)

with φ̂ denoting the field operator of scalar potential, ε0 the
vacuum permittivity, sandwiching vertical dots the antinormal
ordering, and dot above an operator the time derivative of that
operator. The following NFHT formula in terms of the Green’s
function of scalar potential can be derived and reads

〈ĵz〉(z) = ε0
1

N

∑
q⊥

∫ ∞

0

dω

π
h̄ω Re

∂D>
jj (q⊥,ω,z,z′)

∂ z′

∣∣∣∣
z′=z

,

(2)

where N is the total number of unit cells; q⊥ = (qx,qy) is the
2D wave vector; D>

j j ′(q⊥,ω,z,z′) is the Fourier transformed

D>
j j ′ (R,t,0,z,z′) = − i

h̄
〈φ̂j (R,z,t)φ̂j ′(0,z′,0)〉H, (3)

the greater Green’s function of scalar potential in (q⊥,ω)
space; the ensemble average is taken with respect to the
full Hamiltonian H defined in Appendix A. The formula is
independent of j = A or B, due to A-B sublattice symmetry.

Assuming local equilibrium for each of the sheets, the net
heat flux Jz has a Caroli form:

Jz =
∫ ∞

0

dω

2π
h̄ω(N1 − N2)T (ω) (4)

with Nl = 1/(eh̄ω/kBTl − 1) being the Bose distribution at
temperature Tl , and spectral transmission being

T (ω) =
∫

d2q⊥
(2π )2

Tr{D̂r 	̂1D̂
a	̂2}, (5)

where we symbolically defined Ô as 4 × 4 plate- and
sublattice-indexed matrices diagonal in (q⊥,ω) space, i.e.,
Ô = Ô(q⊥,ω). The trace is taken over plate and sublattice
indices.

D̂r is obtained from the Dyson equation:

D̂r = D̂r
0 + D̂r

0
̂
rD̂r . (6)
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FIG. 2. A comparison of the results calculated with Caroli
formula and Eq. (2). The close match is a proof of equivalence.

The bare retarded Green’s function for φ, Dr
0, is

Dr
0(q⊥,ω,z,z′) = i ei qz |z−z′ |

2 ε0 Sc qz

(
1 ei ϕ

e−i ϕ 1

)
, (7)

with qz =
√

(i η2)2 − Q2
⊥, η2 the damping term, Q⊥ =√

4
3a2

0
[3 − |f (q⊥)|], f (q⊥) = e−i qxa0 + e−i qxa0/2+i

√
3qya0/2 +

e−i qxa0/2−i
√

3qya0/2, a0 the carbon-carbon distance, Sc the
unit-cell area, ϕ = −i ln ( f (q⊥)

|f (q⊥)| ). 	̂l = i (
̂l
r − 
̂l

a
).

The appearance of f , Q⊥, and ϕ is the consequence of our
approach of discretization of scalar potential on the graphene
sheets (see Appendix B).

The Caroli formula, Eq. (4), can be derived in several ways:
one is to look at the work done by electric field on the current of
the receiving sheet, i.e., joule heating, as analyzed by Yu et al.
[6]. Alternatively, one can equate field energy flowing into an
enclosing surface with joule heating in its volume. Another is
to consider the Meir-Wingreen formula [18] for the electron-
energy transfer [19]. Indeed, one can show that our Caroli
formula can be transformed exactly into Yu et al.’s form. Our
formula is also consistent with Ilic et al.’s expression [7] in
the nonretarded limit.

The equivalence between the Caroli formula [Eq. (4)] and
Eq. (2) can be numerically checked. We see a perfect match
in Fig. 2. In addition, an analytical proof of the equivalence in
long-wave limit is provided in Appendix D.

The self-energy 
r is evaluated in the random phase
approximation (RPA) [20,21] and local equilibrium approx-
imation (LEA). The form is given in Eq. (C1).

Last, some words on numerical implementation. When
evaluating Eq. (C1), one might have thought of the possibility
that convolution integrals in (k,ν) space can be avoided, by a
fast Fourier transform (FFT) of 
r from (R,t) space to (q⊥,ω)
space. Experience told us that using FFT, though fast when
giving 
r , becomes computationally resource demanding as
one tries to cover the long-wave contribution (q⊥ → 0) of field.
When we calculate Eq. (5), isotropy (i.e., the integrand depends
only on |q⊥|) is assumed for the q⊥ integral. Even though we
discretize the scalar potential on the lattice (Appendix B),
only when in a high-energy region would anisotropy of field
dispersion become significant. We have compared the results
calculated using such an approximation with the original ones
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FIG. 3. The red dashed line indicates the asymptotic behavior
1/dα , α ≈ 2.2 as d becomes of micrometer scale. The blue dashed
line indicates the saturation of the curve when d approaches zero.
JzBB = 56 244 W m−2.

using no approximation and found no essential difference.
Also, to save computational time, suitable cutoffs for integrals
can be employed. Whether a cutoff is explicitly taken or not
does not affect the physics because of the natural limit set by
the Boltzmann factor. Great care has been taken in regard to
this part to make sure there is no loss of key information.

III. RESULTS AND DISCUSSION

Figure 3 demonstrates the calculated heat flux ratio over
the blackbody limit. Plate 1 has temperature T1 = 1000 K,
chemical potential μ1 = 0.1 eV; plate 2 has temperature T2 =
300 K, chemical potential μ2 = 0.1 eV. We set a damping
factor of electron η1 = 0.0033 eV (corresponding to the
lifetime of electron τ ∼ 10−13 sec) for both sheets 1 and 2
throughout this work. The red dashed line corresponds to the
1/d2.2 scaling of the flux Jz when d is large (beyond a few ten
nanometers). Without further analytic support for the exponent
2.2, we can only view it as an effective exponent α. Some
might expect α to be some simpler value like 2, which has
been predicted by Loomis and Maris [22], when discussing
dielectrics with pointlike dielectric constants. The dielectric
constant of a graphene sheet is in no way pointlike, due to
its plasmon activity. Thus some correction (e.g., 0.2 as found
here) to 2 is expected. The left end of the blue dashed line
points to a convergent value at Jz/JzBB ≈ 46 660. Though
at/below d ≈ acc ∼ 1 Å it might reach the contact limit, our
calculations at/below that distance indicate asymptotically
convergent values.

In Fig. 4(a) we set various temperatures (600, 800, and
1000 K) on sheet 1 with the temperature on sheet 2 kept
at 300 K; the chemical potential on both sheets is 0.1 eV.
The flux ratio generally decreases with increasing temperature
at a given distance because of the fourth power of T in the
denominator of flux ratio.

Notably, the results recover the two features mentioned:
the d → 0 asymptotic convergence values ∼5 × 104 and 1/dα

scaling at long distances.
We then compare the effect of doping on flux ratios. By

doping level (or chemical potential) we mean the same doping
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FIG. 4. (a) Heat flux ratio in different temperatures (μ = 0.1 eV).
(b) The short-distance zoom-in.

level on both sheets; identical surfaces except for temperature
difference were shown to achieve maximal NFHT [7]. In the
d → 0 limit, we note that, interestingly, the heat flux ratios of
all doping levels converge to values ∼5 × 104. It can also be
noted that roughly below a few ten nanometers the flux ratio
with higher doping levels (e.g., 0.7 eV) exhibit a lower-lying
arch of flux ratios. This is because the interband transition
gap is opened by doping. For a light doping level such as
0.1 eV, it is easier for the interband transition to occur [20,21],
thus the straddling upper arch (Fig. 5). On the other hand,
beyond 100 nm, the large modulation in heat flux in response
to the doping level is no longer seen—the curves become a
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FIG. 5. The heat flux in different chemical potentials.
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FIG. 6. Heat flux ratio in different temperatures (μ = 0.7 eV).

constricted stream having a scaling ∝ 1/dα . We nickname the
typical shape formed by the straddling and lower-lying arches
the “doping bubble.”

The distance at a few ten nanometers, separating the
doping bubble at short distances, and the 1/dα stream at
long distances, is reminiscent of the Vafek’s thermal length
of graphene (h̄vF /kBT ) in the high-temperature limit, or
Fermi wavelength (k−1

F ) in the high doping level limit
[15,23,24]. It is tempting to associate the distance with either
h̄vF /kBT or k−1

F , for within the parameter set chosen the two
length scalings both give an estimate of ∼10−100 nm (e.g.,
μ1 ≈ 1 kBT1, 3kBT1,5 kBT1,7 kBT1 when T1 = 1000 K; μ2 ≈
3 kBT2, 9kBT2,15 kBT2,35 kBT2 when T2 = 300 K). However,
the situation is more complex than that, for the finite
temperature difference across two sheets and accordingly,
different weights on temperature and doping level for each
sheet. As such, the distance may be deemed just as an
order-of-magnitude estimate in the NFHT problem.

The doping bubble holds the possibility for dynamic control
of NFHT below the thermal wavelength.

We further examine the doping bubble and the characteristic
distance in the higher doping case (0.7 eV, as selected) across
different temperatures. The result is presented in Figs. 4(a)
and 6. They show the curves are subject only to minor changes
when temperature is varied. The change is smaller in Fig. 6
than in Fig. 4(a) because of the larger weight on the doping
level controlling graphene plasmonic excitation.

As can also be seen in Figs. 4(b), 5, and 6, these two asymp-
totes are insensitive to temperature and chemical potential
variation over the parameters chosen, implying they pose as a
general asymptotic feature in NFHT using two-graphene-plate
geometry.

Last, we use Ilic et al.’s method with spatially local
conductivity [7] and plot curves to compare with what were
already shown in Fig. 5. Such a comparison is shown in Fig. 7.

As one can see, when d → 0 the clear disparity between
our full RPA and local conductivity calculations shows up,
but as d goes larger the disparity gradually vanishes. The
local conductivity model does show 1/d heat flux dependence
as d → 0 [25,26]. In contrast, our calculation shows a
saturated value for μ = 0.1 eV and an “augmented” value
for μ = 0.7 eV. To explain the disparity at extremely small
d’s, we examine the plots of transmission T (ω) weighted by

FIG. 7. Comparison of heat flux calculated using the full RPA
and local conductivity models.

q h̄ ω (N1 − N2) in Figs. 8 and 9. First from Fig. 8, we see
a close match between the full RPA and local conductivity
calculations at d = 10 nm. Such a fact shows the validity of
the full RPA calculations in the large-distance limit.

Second, from Fig. 9, we find a mismatch in plasmon
dispersion at d = 1 Å. In particular, the greatest contributing
branches [26], acoustic plasmon modes differ in slope in the
ω-q plane, even in the long-wave limit [the arches of optical
modes, which are expected d-independent in long wave limit in

FIG. 8. Match in plasmon dispersion between the full RPA and
local conductivity models at d = 10 nm (μ = 0.7 eV). Transmission
T (ω) plots are weighted by q h̄ ω (N1 − N2). (a) The full RPA
calculation. (b) Local conductivity calculation. Cyan and green
dashed lines stand for acoustic and optical modes in q → 0 limit,
respectively.
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FIG. 9. Disparity in plasmon dispersion between the full RPA
and local conductivity models at d = 1 Å. Transmission T (ω) plots
are weighted by q h̄ ω (N1 − N2). (a),(c) The full RPA calculations
with μ = 0.1 and 0.7 eV, respectively. (b),(d) Local conductivity
calculations with μ = 0.1 and 0.7 eV, respectively. Cyan and green
dashed lines stand for acoustic and optical modes in q → 0 limit,
respectively.

local conductivity theory, are nearly the same in the two cases
(not clearly shown due to range of color box chosen)]. In spite
of the mismatch, we can also note that the acoustic branch of

the local conductivity model extends into the region ω < vF q

that meets the failure for best description by local conductivity
(ω > vF q) [27,28]. Such a breakdown of local conductivity
theory is evident because acoustic mode frequency ωL ∝ √

d .
When d gets small enough, that frequency no longer satisfies
ωL > vF q. For μ = 0.1 eV, the critical distance dc  1.24 nm;
for μ = 0.7 eV, dc  1.77 Å. The full RPA calculation of ours
has rescued the extinction of acoustic plasmon mode under
local conductivity approximation by constraining the mode to
stay within the border of the ω = vF q line [see Figs. 9(a) and
9(c)]. Comparatively, Fig. 9(a) has an apparent small span in
q and less spectral weight. This accounts for the saturation.
And judging from Figs. 9(c) and 9(d), though the ωL line of
the full RPA appears a little bit shorter than that of the local
conductivity, it has a wide fan-out area in ω < vF q, thus the
augmented value in Jz comparatively.

IV. CONCLUSION

In this work, an NEGF based theory was proposed to
analyze NFHT. For the ease of analysis we take the first step to
consider the scalar-potential-mediated NFHT of graphene in
parallel-plate geometry. A Caroli formula for the heat transfer
was derived from a scalar-potential-based heat flux inspired
by our previous works on NFHT.

The density-density correlation (self-energy of scalar po-
tential) was derived within RPA without taking the long-wave
approximation. By following LEA, we create a platform to
compare our approach with the former works that succeeded
from Rytov’s theory.

We found, numerically, three notable features: (i) in d → 0
limit flux ratio curves with all doping levels and temperature
range selected converge to a limited range of values ∼104–105

within an order of magnitude variation. (ii) the existence of
a highly doping-tunable region dubbed the “doping bubble”
lying between that limit and d ≈ 100 nm. (iii) Beyond 100 nm
the curves all possess a 1/dα scaling (α ≈ 2.2) and the large
variation of flux ratio as within 100 nm vanishes. (i) and (ii)
stand for the d → 0 behavior that local conductivity theory
cannot capture. In regard to (iii), the range 100 nm is close
to and reminiscent of Vafek’s “thermal length” and Fermi
wavelength [15,23,24]. However, due to a finite temperature
difference and different weights on temperature as well as
doping level, direct attribution is invalid. Thus we deem it as
an estimate scale correct within an order of magnitude.

Since our NEGF approach marks the full quantum-
mechanical feature, with the ever-deepened exploration down
to < 10 nm, a characteristic result like the doping bubble
sitting within a small plate-plate distance range ∼1 Å–100 nm
that we found in this work can be directly tested. The
graphene’s large modulation of flux with different doping
levels down to nanoscale holds the possibility for future active
nanothermal management.
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APPENDIX A: HAMILTONIAN

The quantum Hamiltonian is given by

H = Hφ + He + Hint,

Hφ = −ε0

2

∫
dV

[( ˙̂φ

c̃

)2

+ (∇φ̂)2

]
,

He =
∑

k, l=1,2

ck
† (l)

[
0 −γ0f (k)

−γ0f (k)∗ 0

]
c

(l)
k ,

Hint =
∑

R, l = 1,2
j = A,B

−e φ̂j (R,z(l)) cj R
† (l)c

(l)
j R,

(A1)

where φ̂ denotes the scalar potential field operator; c
(l)
k =

1√
2
(c(l)

A k − ei ϕ c
(l)
B k)T ; ck

† (l) = 1√
2
(cA k

† (l) − e−i ϕcB k
† (l));

γ0 = 2.8 eV; f (k) = e−i kxa0 + e−i kxa0/2+i
√

3kya0/2 +
e−i kxa0/2−i

√
3kya0/2; ϕ(k) = −i ln(f (k)/|f (k)|); l is the plate

index.
The electronic Hamiltonian He is assumed by a tight-

binding model. The Hamiltonian for the vector potential does
not enter because of the quasistatic limit. A real parameter c̃ is
initially kept finite in the Hamiltonian of scalar potentialHφ for
the ease of quantization. After the bare scalar potential Green’s
function is evaluated, we can go back and continue on our
quasistatic approximation by simply forsaking ω dependence
in qz entirely, i.e.,

qz = lim
c̃→0

√(
ω

c̃
+ i η2

)2

− Q2
⊥ = i

√
η2

2 + Q2
⊥.

APPENDIX B: DERIVATION OF BARE RETARDED
GREEN’S FUNCTION OF SCALAR POTENTIAL

We define the bare retarded scalar potential Green’s
function as

Dr
0 j j ′ (R,t,0, z,z′) = − i

h̄
θ (t)〈[φ̂j (R,z,t),φ̂j ′(0,z′,0)]〉Hφ

,

(B1)

where R is the transverse lattice vector and {j,j ′} = {A,B};
[a, b] is the commutator of operators a and b. Equation (B1)
can be easily derived by the equation of motion method. But
prior to that, we discretize the scalar potential on the graphene
lattice in directions parallel to the sheets (the transverse
directions) as an approximation to ease the calculation. The
field in the direction perpendicular to the planes (the z

direction) is still treated as continuous. The approximation
makes sense in that we consider only the field generated by the
fluctuating density of electron on one sheet and the transmitted

energy is maximally absorbed by another sheet. The equation
of motion for the Green’s function is then∑

i

[(
1

c̃2

∂2

∂t2
− ∂2

∂z2

)
δji − [∇2

⊥]ji(R)

]
Dr

0 i j ′ (R,t,0, z,z′)

= 1

ε0
δ(t)

(
2

Sc

δR, 0 δj j ′

)
δ(z − z′). (B2)

The factor 2 on the right-hand side accounts for the
subdivision of A and B sublattices.

The Laplacian operator
∑

i [∇2
⊥]

ji
(R) has to obey lattice

periodicity and is defined by

[∇2
⊥](R) φ̂A(R) = 4

3 a0
[φ̂B(R) + φ̂B(R + a1)

+ φ̂B(R + a1 − a2) − 3 φ̂A(R)],

[∇2
⊥](R) φ̂B(R) = 4

3 a0
[φ̂A(R) + φ̂A(R − a1)

+ φ̂A(R − a1 + a2) − 3 φ̂B(R)], (B3)

or equivalently in q⊥ space

[∇2
⊥](q⊥)

[
φ̂A(q⊥)

φ̂B(q⊥)

]
=

[
4

3 a2
0

][ −3 f (q⊥)

f ∗(q⊥) −3

][
φ̂A(q⊥)

φ̂B(q⊥)

]
.

(B4)

a1 = ( 3
2 ,

√
3

2 )a0, a2 = (0,
√

3)a0. It is easy to check that the
Laplacian operator so defined is valid in the long-wave
approximation.

As such, the equation of motion in (q⊥,ω) space reads

∑
i

[((
ω

c̃
+ i η2

)2

+ ∂2

∂z2

)
δji + [∇2

⊥]ji(q⊥)

]

×Dr
0 i j ′(q⊥,ω, z,z′)

= −
(

2

ε0 Sc

δj j ′

)
δ(z − z′). (B5)

η2 is the damping factor of the scalar potential. Such a damping
factor should be small; we set η2 ∼ 10−5 m−1. Taking the
inverse of the operator matrix on the left-hand side and
following complex integration, we finally get Eq. (7) in the
main text.

APPENDIX C: EVALUATION OF SELF-ENERGY

1. RPA

Consider only one of the two sheets: the RPA retarded
self-energy in (k,ν) space reads [16,17]


r
jj ′(q⊥,ω) = − 2 i h̄ e2

N

∑
k

∫
dν

2π

{
Gr

jj ′ (k,ν) G<
j ′j (k − q⊥,ν − ω) + G<

jj ′ (k,ν) Ga
j ′j (k − q⊥,ν − ω)

}
. (C1)

A prefactor of 2 accounts for spin degeneracy; j, j ′ = A,B.
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Substitute Eq. (C5) below into Eq. (C1), and further approximate Eq. (C1) in the regime where the relaxation factor η1 � h̄ω

(we take η1 = 0.0033 eV throughout this work); we get


r
jj ′ (q⊥,ω) =2 e2

N

∑
n,n′=±1

∑
k

�
j, j ′
n, n′

[
nF (εn′ (k − q⊥)) − nF (εn(k))

h̄ω + εn′(k − q⊥) − εn(k) + i η1

]
, (C2)

where
εn(k) = n γ0|f (k)|,
�

j, j ′
n, n′ = [S1]j n[S2]j ′ n′[S1]∗j ′ n[S2]∗j n′ ,

S1 = 1√
2

(
1 ei ϕ(k)

−e−i ϕ(k) 1

)
,

S2 = 1√
2

(
1 ei ϕ(k−q⊥)

−e−i ϕ(k−q⊥) 1

)
,

ϕ(k) = −i ln[f (k)/|f (k)|].

(C3)

We evaluate Eq. (C2) numerically, instead of using the
long-wave approximation formula in Refs. [20,21].

2. LEA

Consider only one of the two sheets: the bare retarded
Green’s function of electrons in graphene reads

Gr (k,E) =
(

E + i η1 γ0f (k)

γ0f (k)∗ E + i η1

)−1

. (C4)

In LEA, it can be assumed from fluctuation-dissipation
theorem [29,30] that the lesser and greater Green’s function of
the electron is related to the retarded and advanced by

G<(k,E) = − nF (E)[Gr (k,E) − Ga(k,E)],

G>(k,E) = (1 − nF )[Gr (k,E) − Ga(k,E)],
(C5)

where nF (E) = 1/(eβ(E−μ) + 1), the Fermi distribution. Also,
the lesser and greater self-energy read


<(q⊥,E) = nB(E)[
r (q⊥,E) − 
a(q⊥,E)],


>(q⊥,E) = (1 + nB)[
r (q⊥,E) − 
a(q⊥,E)],
(C6)

where nB(E) = 1/(eβE − 1), the Bose distribution.

APPENDIX D: ANALYTIC PROOF OF THE CAROLI
FORMULA IN LONG-WAVE LIMIT

In the long-wave limit, the A and B sublattices are
indistinguishable. The transition into such a limit is made

by the replacement Dr
0 → i ei qz |z−z′ |

2 ε0 Sc qz
and 
r → ∑

j, j ′ 

r
jj ′ .

Equation (2) becomes

〈ĵz〉(z) = ε0
1

N

∑
q⊥

∫ ∞

0

dω

π
h̄ω Re

∂D>(q⊥,ω,z,z′)
∂ z′

∣∣∣∣
z′=z

.

(D1)

And Ô in Eq. (5) has become 2 × 2 plate-indexed matrices
this time. The trace therein is taken over the plate index.

With the trace in Eq. (5) taken explicitly, it can be further
written as

T (ω) =
∫

d2q⊥
(2π )2

{
Dr

21	1D
a
12	2

}
, (D2)

where Dr
21 = Dr (d,0) (let plate 1 locate at z = 0 and plate 2

at z = d.) and so on for similar cases.
Our main aim for the comparison is just to compare

2ε0ScRe
∂

∂ z′ D
>(q⊥,ω,z,z′)|z′=z, (D3)

and

(N1 − N2)
{
Dr

21	1D
a
12	2

}
. (D4)

After some algebraic work, the one derived from the Caroli
formula [Eq. (D4)] ultimately reads

(N1 − N2)

∣∣∣∣Dr
0 11

L

∣∣∣∣
2

	1	2 e−2|qz|d, (D5)

with

Dr
0 11 = i

2ε0Scqz

= 1

2ε0Sc|qz| ,

and

L = 1 − [

̃r

1 + 
̃r
2 − 
̃r

1
̃
r
2

(
1 − e−2 |qz|d)].

Here we introduce a shorthand notation with 
̃r
1 = Dr

0 11

r
1

and so forth for the like,

2ε0ScRe
∂

∂ z′ D
>(z,z′)|z′=z = Re

∑
l=1, 2

ε0D
r (z,z(l))
>

l

∂

∂ z′ D
a(z(l),z′)|z′=z = Re

∑
l=1, 2

ε0D
r (z,z(l))
>

l

[
∂

∂ z′ D
r (z′,z(l))|z′=z

]∗
.

Taking z → d−,

Dr (d−,z(l)) =
{

Dr
0 11
L e−|qz|d , l = 1;

Dr
0 11
L

[
1 − 
̃r

1

(
1 − e−2|qz|d)], l = 2;


>
l =

{−i (1 + N1)	1, l = 1;
−i (1 + N2)	2, l = 2;
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∂

∂ z′ D
r (z′,z(l))|z′=d− =

⎧⎨
⎩

−|qz|Dr
0 11
L e−|qz|d[1 − 2
̃r

2

]
, l = 1;

−|qz|Dr
0 11
L

[ − 1 + 
̃r
1

(
1 + e−2|qz|d)], ,l = 2.

(D6)

Putting it all together, and after taking the real part, one finally gets

−2ε0Sc|qz|
∣∣∣∣Dr

0 11

L

∣∣∣∣
2{ − e−2|qz|d (1 + N1)	1

[
Dr

0 11	2
] + (1 + N2)	2

[
Dr

0 11Im
r
1(1 − e−2|qz|d ) − Dr

0 11Im
r
1(1 + e−2|qz|d )

]}

=
∣∣∣∣Dr

0 11

L

∣∣∣∣
2

e−2|qz|d 	1	2(N1 − N2). (D7)

There is no doubt that Eq. (D3) matches Eq. (D5). This shows that the “Caroli” formula is just our “Poynting scalar” formula
(Eq. (D1) and Ref. [16]).
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