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Topological edge states on time-periodically strained armchair graphene nanoribbons
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We report the emergence of electronic edge states in time-periodically driven strained armchair terminated
graphene nanoribbons. This is done by considering a short-pulse spatial-periodic strain field. Then, the tight-
binding Hamiltonian of the system is mapped into a one-dimensional ladder. The time periodicity is considered
within the Floquet formalism. Thus the quasienergy spectrum is found numerically by diagonalizing the evolution
operator. For some particular cases, the quasienergy spectrum is found analytically. We found that the system is
able to support gapless and gapped phases. Very different edge states emerge for both the gapless and the gapful
phases. In the case of the gapped phase, edge states emerge at the gap centered at zero quasienergy, although the
Chern number is zero due to the chiral symmetry of the system. For the gapless phase, besides edge states at zero
quasienergy, cosinelike edge states which merge and coexist with the bulk band are observed. To confirm the
topological nature of these edge states, we analytically obtained the effective Hamiltonian and its spectrum for a
particular case, finding that the edge states are topologically weak. Finally, we found analytically the evolution
of band edges and their crossings as a function of the driven period. Topological modes arise at such crossings.
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I. INTRODUCTION

Topological insulators are materials which can support
topologically protected low-energy excitations at the edges [1].
Such low-energy excitations have attracted a lot of attention
due to their potential to be used in the field of topological
quantum computing [2,3] or in spintronics [4–6]. After
the experimental observation of topological insulators [7,8],
many systems exhibiting topologically nontrivial properties
have been proposed [9–27]. Among them, one can mention
the remarkable case of periodically driven systems, which
have been proven to have very rich and newer interesting
topological features when compared with the static topological
case [11,28,29]. For instance, periodically driven systems
can give rise to Majorana-like edge states [30], chiral and
counterpropagating edge states [13], among many others
[31–35]. The emergence of edge states is protected by a
conservation law or symmetry of the bulk system; this is
the so-called bulk-edge correspondence [36]. The role played
by the symmetries is fundamental to correctly describe the
topological properties of these kinds of systems, since they
shed light about the topological invariant that can be used to
describe them [37,38]. Although great progress has been made
in the topological classification of periodically driven gapful
systems [39,40], the topological classification of gapless
systems is yet incomplete. For instance, the topological
properties of Dirac semimetals cannot be described by the
topological invariants used for gapful systems [41]. This is
precisely the case of the topological modes in graphene. This
material is a truly two-dimensional crystal with extraordinary
mechanical properties (that have given rise to very interesting
phenomena in mechanically deformed graphene [42–48]),
which is known to have a nontrivial topological behavior not
only in the static case [46,49–52] but also in the periodically
driven case [26,53–55]. Among these interesting phenomena
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for the time-dependent case, we can cite chiral edge states
[13], flat bands [26], Majorana-like edge modes [56], and
so on.

Motivated by the previous discussion, we decided to study
the emergence of edge states in periodically driven uniaxial
strained armchair graphene nanoribbons (AGNs) using a
tight-binding approach within the Floquet theory. In particular
and thinking on the possibility of achieving this system
experimentally, we consider a spatial-periodic strain field.
It is important to remark that in a previous work we have
considered the case of a periodically driven strained zigzag
graphene nanoribbon [26] (ZGN). The case studied here is
fundamentally different from the zigzag one. The first and
maybe most important difference is that the AGN case can
support gapless and gapful phases while the ZGN case can
only support a gapless phase. This is a consequence of the
static properties of strained graphene nanoribbons (see, for
example, [46,57–59]). Second, the nature of the edge states
of periodically driven strained AGNs is completely different
from the one observed in the ZGN case (see [26]). For instance,
as will be seen later on, for periodically driven AGNs in
the gapless phase, cosinelike edge states emerge; these states
merge and coexist with the bulk bands. On the other hand,
for the gapful phase, besides the edge sates that appear in the
gap centered at zero quasienergy, other edge states emerge in
other gaps. This an interesting fact since it has been proven for
periodically driven chiral systems that full gaps around zero
and ±π quasienergies are topologically trivial from the Chern
number point of view [60]. The implications of this fact are
discussed below.

In addition, it is important to mention that the experimental
realization of our model can be hard since the required
deformation field time scales are very fast (we need a
driving period around femtoseconds to observe the effects
here discussed; see [26]). However, there are some proposed
experiments quite similar to our model. For instance, one
can put graphene upon a substrate, say hexagonal boron
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nitride (h-BN); then, since the lattice constants of graphene
and h-BN are different, graphene would be deformed. The
periodic modulation can be achieved by periodically applying
pressure to the complete system (graphene and substrate), as
is suggested in [22,26]. Even if this method fails, our model
can be implemented in optical lattices for which the hopping
parameters can be tailored at will [61].

To finish, the paper is organized as follows. In Sec. II we
describe the theoretical model and the notation to be used,
while in Sec. III we analyze the quasienergy spectrum and the
edge states for both the gapped and the gapless phases of our
model. The topological properties of the edge states for both
the gapless and the full gapped phase are discussed in Sec. IV
via the symmetries of the time evolution operator. In Sec. V we
study the topological nature of the edge states that emerge in
the gapless phase via an effective Hamiltonian approach for a
one-dimensional slide of the whole system. Some conclusions
are proposed in Sec. VI. Appendices A and B include some
calculations concerning the main text.

II. PERIODICALLY DRIVEN STRAINED GRAPHENE

Consider a pristine armchair graphene nanoribbon as the
one shown in Fig. 1(a). Suppose that now we apply a spatially

FIG. 1. Schematic representation of the periodically delta driving
layout for an armchair graphene nanoribbon. (a) For t �= T , the
strain field is turned off. (b) The strain field is turned on for
t = mT . Here T is the period of the delta driving. For uniaxial
strain along the y direction (in particular we consider a sinusoidal
strain with wavelength σ ), the strained armchair graphene nanoribbon
can be mapped onto a one-dimensional effective system, which is
represented by linear ladders on the left of the figure. Solid dots
represent the position of carbon atoms. The shaded areas correspond
to some unitary cells of pristine graphene, while the red dotted lines
correspond to the limits of the unit cell in the x direction. j labels
the rows in graphene, while A and B are used to denote each of the
bipartite lattices [59]. Carbons on each sublattice are indicated by
green and blue.

periodic strain field along the y direction, given by

u(yj ) = λ cos (2πσ yj + φ), (1)

where λ is the amplitude, σ is the wavelength, and φ is the
phase of the strain field. yj are the positions of the carbon atoms
along the y direction inside the unit cell (see Fig. 1, wherein
the unit cell of the system is indicated by dotted red lines). The
main advantage of uniaxial strain is the symmetry along the x

axis that allows a good quantum number to be associated with
the quasimomentum along the x direction, that we denote by
kx . As a result, it is possible to decouple the two-dimensional
system into an effective one-dimensional system [45,46,62]. In
the tight-binding limit, the electronic properties of an armchair
graphene nanoribbon under a uniaxial strain field, as the one
in Eq. (1), are described by the following one-dimensional
effective Hamiltonian [46]:

H (kx) =
N/2−1∑
j=1

γ0[d(kx)a†
2j b2j + a

†
2j−1b2j−1]

+
N/2−1∑
j=1

γja
†
j bj+1 + H.c., (2)

where d(kx) = exp (3i kxac), kx is the crystal momentum in
the x direction, and ac is the interatomic distance between
carbon atoms in unstrained graphene. In what follows, we will
set ac = 1 and thus all quasimomenta kx are measured in units
of a−1

c . N is the number of atoms per unit cell and aj (bj )
annihilates an electron at the site j in the graphene’s bipartite
sublattice A (B) (see Fig. 1). The hopping parameters are
given by

γj

γ0
= exp [β(

√
1 − λ

√
3f (j,σ,φ) + λ2f 2(j,σ,φ) − 1)], (3)

where β ≈ 3.37 is the rate of decay [63,64] (the Grüneisen
parameter). The parameter γ0 = 2.7 eV is the interatomic
hopping parameter for pristine graphene that we will set as
γ0 = 1 in what follows, that is, all energies will be measured
in units of γ0. Finally the function f (j,σ,φ) is defined as

f (j,σ,φ) = 2 sin (
√

3πσ/2) sin [
√

3πσ (j + 1/2) + φ]. (4)

The main features of this Hamiltonian have been described in a
previous work, in the small strain’s amplitude limit [46]. Let us
make some remarks about the difference between considering
zigzag or armchair graphene nanoribbons. As has been proven
before, it is much easier to open a gap applying a strain field
along the zigzag direction on an armchair graphene nanoribbon
[59]. Therefore, one expects that gaps emerge for certain
parameters’ values. In addition, one also expects edge states
to be very different from the zigzag case [65]. Indeed this will
be the case, as will be proven in what follows.

Once the Hamiltonian of a uniaxial strained AGN has
been presented, we now introduce the time dependence to
the model. In particular, we consider the case of a short-time
strain impulse that can be approximated as a delta kicking. A
graphic description of the driving layout is shown in Fig. 1.
Therein, we see that the deformation field is turned on at times
t = mT where T is the driving period and m is an integer
number. The strain is turned off whenever t �= mT . That is,
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we consider a time-dependent Hamiltonian of the following
form:

H (kx,t) = H0(kx) +
∑
m

[H1(kx) − H0(kx)]δ(t/T − m), (5)

with the Hamiltonians H0 and H1 given by

H0(kx) =
N/2−1∑
j=1

γ0[d(kx)a†
2j b2j + a

†
2j−1b2j−1]

+
N/2−1∑
j=1

γ0a
†
j bj+1 + H.c. (6)

and

H1(kx) =
N/2−1∑
j=1

γ0[d(kx)a†
2j b2j + a

†
2j−1b2j−1]

+
N/2−1∑
j=1

γja
†
j bj+1 + H.c. (7)

Even though the experimental realization of the proposed
driving layout is experimentally challenging, there are some
proposed experiments for similar situations [22,66], as was
discussed in the Introduction.

To study the quasienergy spectrum we construct the one-
period time evolution operator of the system, defined as [67]

U (kx,T ) |ψkx
(t)〉 = |ψkx

(t + T )〉, (8)

where |ψkx
(t)〉 is the time-dependent wave function of the

system for a given quasimomentum kx along the x axis. For
the considered delta-kicking driving layout, U (kx,T ) can be
written in a very simple manner, namely,

U (kx,τ ) = T exp

[
−i

∫ T

0
H (kx,t) dt/h̄

]
= exp {−iτ [H1(kx) − H0(kx)]} exp [−iτH0(kx)],

(9)

where T denotes the time ordering operator and τ = T/h̄.
Even though the Hamiltonians H1(kx) and H0(kx) do not

commute, we can study the eigenvalue spectrum of U (kx,τ )
via an effective Hamiltonian defined as

U (kx,τ ) = exp [−iτHeff(kx,τ )]. (10)

The previous time evolution operator has eigenvalues
exp (−iτω), where τω are called the quasienergies of the
system. They are defined up to integer multiples of 2π . After
introducing the time dependence to the model, there are four
free parameters: three owing to the strain field (λ, σ , and φ)
and one owing to the driving (τ ).

One can study the system for a wide range of parameters.
Maybe the most important one is σ since it controls the wave-
length of the strain field. If this wavelength is incommensurate
with respect to the graphene cell, the system is quasiperiodic,
resulting in a complex spectrum for the static undriven case
[45,59]. However, since topological states are observed only
when translational invariance holds [68], here we study only
commensurate cases. In particular, we chose two different

values for σ , namely, (1) σ = 1/
√

3 and (2) σ = 0.5/
√

3,
setting φ = πσ for each case. We have chosen such σ values
since σ = 1/

√
3 gives the smallest spatial period along the

y axis and the system is on a gapless phase around zero and
±π quasienergy in the bulk spectrum, while for σ = 0.5/

√
3

we obtain the next size of the spatial period and the system
becomes gapped around zero quasienergy in the bulk spectrum.

For σ = 1/
√

3 the supercell contains two rows of graphene
in the y direction or, in other words, four inequivalent carbon
atoms in the supercell, since the hopping parameters just
take two different vales, which are given by substituting the
following expression,

f (j,1/
√

3,φ) = 2λ(−1)j cos (φ), (11)

in Eq. (3). On the other hand, for σ = 1/2
√

3 the hopping
parameters takes four different values, meaning that now
the supercell has eight inequivalent atoms. Once again, the
hopping parameters are given by substituting the following
expression,

f

(
j,

1

2
√

3
,φ

)
= 2λ sin

[
π

2
(j + 1/2)

]
sin

[
π

4
+ (−1)jφ

]
,

(12)

in Eq. (3).

III. QUASIENERGY SPECTRUM

In this section we study the quasienergy spectrum and the
emergence of topological edge states. We start by building
the matrix representation of U (kx,τ ) as described in Eq. (9).
Then, their eigenvalues as a function of kx are obtained by
numerical calculations for a finite system. For all numerical
cases presented here we will consider a system with N = 324.
It is worthwhile to note that for σ = 1/

√
3 or 1/2

√
3 the

system becomes periodic in the y direction. Therefore, by
applying cyclic boundary conditions along the x and y

directions, the quasienergy spectrum can be also obtained by
Fourier transforming the Hamiltonians H0(kx) and H1(kx) and
then substituting them into Eq. (9). No edge states appear in the
quasienergy dispersion relation obtained by using this method,
but it allows us to compare numerical with analytical results.
To observe edge states, here we needed to perform calculations
in real space for the y direction.

Let us start by studying the quasienergy spectrum for
σ = 1/

√
3, in other words, the gapless quasienergy spectrum.

In Fig. 2 we show the quasienergy band structure for λ = 0.2,
τ = π , φ = πσ , and σ = 1/

√
3. In panel (a) we have used

cyclic boundary conditions, whereas for panel (b) the boundary
conditions were changed to fixed. Observe that the main
difference between panels (a) and (b) is that in panel (b) edge
states emerge. The colors in the figure represent the logarithm
of the normalized inverse participation ratio (IPR), which is
defined as in [45], namely,

α(E) = ln
∑N

j=1 |ψ(j )|4
ln N

, (13)

where ψ(j ) is the eigenfunction at site j for an energy E. The
IPR is a measure of the wave-function localization. The closer
to zero the IPR (red color in figures) the more localized the
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FIG. 2. Gapless quasienergy band structure obtained from the
numerical diagonalization of the matrix representation given by
Eq. (9). The parameters used are σ = 1/

√
3, λ=0.2, τ=π , φ=πσ ,

and N = 324, for (a) cyclic boundary conditions and (b) fixed
boundary conditions. In panel (a), note that no edge states appear
since cyclic boundary conditions were used. In panel (b), two kinds
of edge states emerge. One appears around zero quasienergy. The
others are cosinelike edge states that merge and coexist with the bulk
bands. The colors represent the inverse participation ratio. For red
color the states are highly localized, whereas for blue color they are
totally delocalized.

wave function is. Delocalized or extended wave functions are
labeled by blue color in the figures, and correspond to α(E)
tending to −1.

It is interesting to note that even though the system is on a
gapless phase edge states appear. Moreover, two kinds of edge
states are observed in Fig. 2. Edge states of one kind are around
zero quasienergy and are degenerated at kx = 0, but they begin
to decouple and delocalize as one moves away from that point.
Observe that they follow a cosinelike dispersion. Edge states
of the other kind also have a cosinelike dispersion and are
degenerated at kx = 0 at ±π quasienergy. As kx moves away
from that point, these edge states decouple and, eventually,
they merge with the bulk bands without becoming totally
delocalized states. We have numerically checked that they are
localized near opposite edges of the AGN. Additionally, we
stress that the quasienergy spectrum strongly depends upon
the phase φ of the strain field. To see this point, in Fig. 3
we present the quasienergy band structure for φ = 0 (a) and
φ = πσ/2 (b). In panel (a), it can be seen that edge states
are quite similar to the ones shown in Fig. 2(b). On the other
hand, observe that the edge states in Fig. 3(b) do not touch
each other either at zero or at ±π quasienergies when kx = 0;

FIG. 3. Gapless quasienergy band structure obtained from the
numerical diagonalization of the matrix representation of Eq. (9). The
parameters used are σ = 1/

√
3, λ = 0.2, τ = π , N = 324, and using

fixed boundary conditions for (a) φ = 0 and (b) φ = πσ/2. Note that
for panels (a) and (b) the edge states deeply penetrate into the bulk
bands. Also, for panel (b), edge states around zero quasienergy are
decoupled. The same color code as in Fig. 2 was used to display
localization of each mode.

instead a gap between them has been opened. Besides that,
they decouple into four bands around zero quasienergy. Note
how all the edge states in Fig. 3(a) deeply penetrate into the
bulk bands.

The strong dependence of the quasienergy band structure
on φ can be explained as follows. Basically, the phase φ

determines how the strain pattern matches with the edges of
the AGN, a fact that has been proven to be crucial in the
topological properties of similar systems [18,69]. Although all
the observed edges states are interesting enough, in the next
section, we will focus only on the topological characterization
of the ones that emerge for φ = πσ .

Before finishing, let us analyze the quasienergy spectrum
for the full gapped phase of our system. Since topological edge
states are very robust to small perturbations, we expect edge
states not to be destroyed by a full gap in the bulk spectrum.
This assertion is confirmed in Fig. 4, where we have plotted the
quasienergy band structure for a gapped phase of the system,
that is, we used the same conditions as in Fig. 4 but using
σ = 1/2

√
3 for fixed boundary conditions. As can be seen,

four edge states emerge around zero quasienergy closing the
bulk gap. Note that they linearly merge in a single point at
kx = 0, which is a time-reversal invariant point, similarly to
the edge states observed in Fig. 2. Additionally, other edge
states emerge always so that a partial gap appears on the
quasienergy spectrum [see Fig. 4(b)]. As will be shown in the
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FIG. 4. Gapful quasienergy band structure obtained from the
numerical diagonalization of the matrix representation of Eq. (9)
for σ = 1/2

√
3, λ = 0.2, τ = π , φ = πσ , and N = 324 using fixed

boundary conditions. (a) An amplification around zero quasienergy to
highlight the zero quasienergy edge modes. Observe that edge states
also emerge at other gaps. The same color code as in Fig. 2 was used
to display localization of each mode.

next section, our model possesses chiral symmetry and thus
edges states that appear in the gap around zero quasienergy
are topologically trivial from the point of view of the Chern
number [60], although they can have a weak topological nature
[70–72]. However, edge states at other gaps (that is, full
gaps not centered around zero or ±π quasienergy) can be
topologically nontrivial [60].

IV. TOPOLOGICAL PROPERTIES OF EDGE STATES

Before entering into the study of the topological properties
of the system, let us write the Fourier-transformed version of
the Hamiltonians H1(kx) and H0(kx) when periodic boundary
conditions are used in the y direction. For that case, it is
possible to fully write the Hamiltonians H1(kx) and H0(kx) in
reciprocal space by taking into account the new periodicity
in the y direction. This leads to a new quantum number
ky , from which it follows that H1(kx) and H0(kx) can be
simplified using a suitable Fourier transform. In fact, it can
be proven that such Hamiltonians are reduced to a 4Q×4Q

matrix dependent on k = (kx,ky), where 4Q is the number of
inequivalent rows in the y direction. Notice that Q is related
to σ as σ = P/(

√
3Q), since in Eq. (1) the positions yj are

evaluated at graphene’s sites along a zigzag path, where atoms
are separated by distances

√
(3)ac/2. For the case σ = 1/

√
3,

the matrices have their lowest size since Q = 1, therefore
Hamiltonians H1(k) and H0(k) are 4 × 4 matrices. This is
the most simple case and can be studied analytically. Such a

case deserves special attention and will be studied in the next
section.

Yet one can make further progress by writing the Hamil-
tonian for a general Q in the chiral basis, i.e., in a basis such
that all sites in the A sublattice appear as the first entries in the
vector, then followed by its corresponding counterparts in the
B sublattice [59]. Then one obtains

Hl(k) =
[

0 H̃l(k)

H̃
†
l (k) 0

]
, (14)

where l = 0,1 and the tilde indicates 2Q × 2Q matrices.
The explicit form of H̃l(k) is given in Appendix A for the
particular case of σ = 1/

√
3. The perturbation δH(ky) =

H1(k) − H0(k) is simply written as

δH(ky) =
[

0 δH̃(ky)

δH̃
†
(ky) 0

]
, (15)

where δH̃(ky) = H̃1(k) − H̃0(k). The explicit form of these
matrices for σ = 1/

√
3 is given in Appendix A. Notice that

kx cancels out as the perturbed and unperturbed Hamiltonians
have the same symmetry in the x axis.

For studying the topological properties of our model we
start by looking at the symmetries of the Hamiltonians H1(k)
and H0(k). Note that such Hamiltonians fulfill the following
condition:

Hl(k) = −Hl(k), (16)

where l = 0,1 and  is the so-called chiral operator.  is a
unitary operator which can be represented, in the chiral basis,
as

 =
[
I2Q×2Q 0

0 −I2Q×2Q

]
(17)

with the property that 2 = I4Q×4Q. As a consequence
of Eq. (16), the Fourier-transformed version of the time-
dependent Hamiltonian, Eq. (5), possesses the following
property:

H(k,t) = −H(k, − t). (18)

From Eq. (18) it follows that the Hamiltonian Eq. (5) is
chiral, therefore the time evolution operator Eq. (9) must
satisfy the following condition:

U(τ ) = U−1(τ ) = U†(τ ) = U(−τ ), (19)

where the time evolution operator is now given by

U(τ ) = e−iτ δH(k)e−iτH0(k). (20)

Observe that, by using Eq. (19), U(−τ ) can be written as

U(−τ ) = eiτH0(k)eiτδH(k), (21)

which is the same result that one obtains directly from the time
ordering operator that appears in Eq. (9).

Due to the condition Eq. (19), the quasienergy spectrum
is symmetric with respect to reflections along the kx axis,
as confirmed in Figs. 2–4. Moreover, the chiral symmetry
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for fully gapped systems in two dimensions imposes the
vanishing of the topological invariant at full gaps centered
around zero and ±π quasienergy [60], although other gaps can
be topologically nontrivial [60]. Even though this fact sheds
light about the topological nature of the edge states observed
in the fully gapped phase, it does not give any information
of the topology of the edge states that emerge in the gapless
phase. In fact, the topological nature of these edge states is not
clear [60]. Therefore, the topological characterization of such
states will be done in the next section, in which we study the
topological properties of a one-dimensional slide of the whole
two-dimensional system; in particular, there we will consider
the case kx = 0.

To finish, let us discuss the the topological properties of the
edge states observed in the gapful phase of our system. As was
mentioned before, for the case σ = 1/2

√
3 the topological

invariant for the central gap is zero but edge states emerge
in the gap centered at zero quasienergy (see Fig. 4). Despite
this fact, edge states that close the gap at zero quasienergy
emerge. This implies that a different topological invariant
is needed to characterize the system or that the edge states
are topologically weak [70]. It is worth mentioning that such
edge states exhibit a linear dispersion for low quasienergies
and that the edge states cross each other at a time-reversal
point, namely, kx = 0. As is well known, such a crossing
is required by time-reversal symmetry and is one of the
signatures of a topological insulator [73]; in other words, such
states seem to be topologically nontrivial. Nevertheless, to
completely determine the topological nature of these states,
it is necessary to compute the topological invariant of the
system. Since the topological invariant is not yet well defined
for time-periodically driven systems and since the calculation
of the invariant is beyond the scope of the present paper, we
do not compute it. However, we expect that our paper will
motivate further studies about these edge states.

V. ANALYTICAL STUDY OF THE TOPOLOGY
FOR σ = 1/

√
3 AT kx = 0

We begin by studying the emergence of edge states for
the gapless case, obtained for σ = 1/

√
3. For doing that, as

seen in Fig. 5, note that edge states will emerge for the first
time when the lower and upper quasienergy band edges cross
each other [74] as τ is increased from zero (keeping the other
parameters fixed). Band edges correspond to extremal values
of the quasienergy spectrum for the time evolution operator
given by Eq. (20). It is easy to see that such maximum and
minimum values are reached when the Hamiltonians H0 and
δH commute. Let us denote by k∗

x and k∗
y the points at which

this happens. From Eq. (A5), we can readily obtain that k∗
x =

3nπ/2 and k∗
y = nπ/

√
3, where n is an integer number. Since

we are interested in a one-dimensional slice of our system, we
first consider kx = 0 and then study the quasienergy spectrum
as a function of ky . As is proven in Appendix B, for kx = 0,
the time evolution operator becomes block diagonal:

U′(τ ) =
[
eiτδh̃(ky )eiτ h̃0(ky ) 0

0 e−iτ δh̃(ky )e−iτ h̃0(ky )

]
, (22)

FIG. 5. Quasienergy band spectrum for kx = 0 as a function of τ

obtained by numerical diagonalization of Eq. (9) using N = 324, σ =
1/

√
3, λ = 0.2, φ = πσ , and fixed boundary conditions compared

with the band edges obtained from the analytical calculation given by
Eqs. (30) and (32). The quasienergy band edge τω+ (τω−) is denoted
by solid black (dotted gray) lines. Note that such band edges cross
each other for the first time at τ = τ±

c at quasienergies different from
zero or ±π . It is interesting that for τ = τ+

c edge states emerge, which
is not the case for τ−

c . This is related with the nature of the crossings.
Also, observe that the edge states are not flat bands but they depend
linearly on τ . See Sec. V.

where U′(τ ) is the time evolution operator Eq. (20) written
in the basis where H0 is diagonal (see the Appendices for
details). δh̃(ky) and h̃0(ky) can be written as follows:

δh̃(ky) = δh(ky) δĥ · σ,

h̃0(ky) = I2×2 + 2 cos (
√

3ky/2)σz, (23)

where σ = (σx,σy,σz), σi (i = x,y,z) is the 2×2 Pauli matrix,
δĥ = δh/δh, and the components of δh are given by

δh(y) = (γ1 − γ2) sin (
√

3ky/2),

δh(z) = (γ1 + γ2 − 2) cos (
√

3ky/2), (24)

and we define the norm δh(ky) as

δh(ky) =
√

[δh(y)]2 + [δh(z)]2. (25)

Now, it is possible to analytically obtain the quasienergies of
U′(τ ) by studying only one of the diagonal blocks in Eq. (22).
We will do that via an effective Hamiltonian defined as

eiτ h̃eff(ky ) = eiτδh̃(ky )eiτ h̃0(ky ). (26)

For calculating h̃eff we use the addition rule of SU(2). After
some algebraic operations, we have

h̃eff(ky) = I2×2 + �(ky)ĥeff · σ, (27)

where ĥeff is a unit vector defined in Appendix B, and τ�(ky)
satisfies

cos [τ�(ky)] = cos (τδh) cos [2τ cos (
√

3ky/2)]

− êz · δĥ sin (τδh) sin [2τ cos (
√

3ky/2)].

(28)
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The quasienergies are given by the eigenvalues of the time
evolution operator, denoted by ±τω(ky), from which

τω(ky) = τ [±1 + �(ky)]. (29)

The topological information of the system for σ = 1/
√

3
and kx = 0 is now contained in the effective Hamiltonian (27).
It is illustrative to obtain the conditions for having edge states
before studying the topological properties of the Hamiltonian
(27). Since edge states will emerge when the lower and upper
band edges cross each other for the first time, we begin by
obtaining such band edges. As was mentioned before, the
extreme values of the quasienergy spectrum are found at
kx = k∗

x = 0 and ky = k∗
y = 0. After substituting such values

in Eq. (28) we have

τω± = τ (±1 + γ1 + γ2). (30)

Now, the condition for having quasienergy band edge crossings
at the critical values τ = τc is given by

τc(ω+ ± ω−) = 2π. (31)

By using Eq. (30) we obtain

τ+
c = π

γ1 + γ2
, τ−

c = π. (32)

All other band crossings are given by mτ±
c , where m is an

integer number. To shed light on the previous analysis, it is
meaningful to compare it with numerical results. In Fig. 5,
we plot the quasienergy spectrum for kx = 0 as a function
of τ obtained by numerical diagonalization of Eq. (9) using
N = 324, σ = 1/

√
3, λ = 0.2, φ = πσ , and fixed boundary

conditions. Therein, the band edges ±τω+ (±τω−) calculated
from Eq. (30) are denoted by solid black (dotted gray) lines.
The critical values of τ obtained from Eq. (32) are displayed
as well. The agreement between the numerical and analytical
calculations is excellent.

Notice in Fig. 5 how the edges τω± start at zero for τ =
0. As τ is increased, τω+ and τω− grow linearly but with
different slopes. Since ω+ � ω−, ω+ reaches first the limit of
the Floquet zone. Then, as τ is further increased, ω+ and ω−
cross each other at τ+

c . By further increasing τ a new band-edge
crossing emerges at τ−

c . Interestingly, the only crossings that
produce edge states are the ones where τ = mτ+

c . For the other
crossings (at mτ−

c ), no gap is opened, hence no edge states
emerge. It is important to say that edge states emerge just for
τ = mτ+ because at these points there is a band inversion,
whereas for τ = mτ− the band edges cross each other but
they are not inverted. Due to the general mechanism, behind
topological edge states’ emergence is band inversion [73], thus
edge states do not appear for τ = mτ−.

Observe that for τ+
c the band-edge crossings do not occur

at zero or ±π quasienergy; instead, they cross each other at

τ+
c ω± = π ± π

γ1 + γ2
. (33)

Unlike the case of driven uniaxial strained zigzag graphene
nanoribbons [26], the quasienergy at which these edge states
emerge is different from zero or ±π . Moreover, the edge states
for the case considered here are not flat bands but unidirectional
edge states, meaning that the quasienergy of such states grows
linearly with τ (see Fig. 5). Note that as τ is increased edge

FIG. 6. The winding of the vector ĥeff(ky) for kx = 0, λ = 0.2,
σ = 1/

√
3, and φ = πσ using τ = π (a) and τ = 2π (b). The

winding number for panel (a) is 2, whereas for panel (b) it is 4.
Observe that by increasing the driving period τ the winding number
is also increased.

states start to delocalize. When τ reaches 2π they are almost
completely extended, as seen in Fig. 5 by looking at the colors
that represent the normalized inverse participation ratio.

To finish this section, we will show that these edge states
for τ and λ fixed are topologically nontrivial. This is done
by studying the effective Hamiltonian Eq. (27). For having
topologically nontrivial properties the winding number of the
unitary vector ĥeff(ky) around the origin must be nonvanishing.
This is confirmed graphically in Fig. 6, wherein we show the
winding of ĥeff(ky) for kx = 0, λ = 0.2, φ = πσ , and σ =
1/

√
3 for (a) τ = π and (b) τ = 2π . As can be seen, the

winding number for this particular case is 2 for panel (a) and 4
for panel (b). Hence, the system is topologically nontrivial for
a one-dimensional slide at kx = 0. This means that the edge
states observed in Fig. 2(b) have a topologically weak nature.

VI. CONCLUSIONS

We observed the emergence of edge states in periodically
driven uniaxial strained AGNs. This was done by finding
numerically, and for some cases analytically, the quasienergy
spectrum. The system has gapped phases (as, for example,
with a spatial frequency σ = 1/2

√
3), and gapless phases

(for example, σ = 1/
√

3). To understand the nature of the
quasienergy spectrum and edge states, we showed that the
system has a chiral symmetry implying a symmetric spectrum
around zero quasienergy. For the gapped phase, highly local-
ized edge states were found around zero quasienergy, which,
due to the chirality of the system, are topologically trivial from
the Chern number point of view, as has been shown recently
in a paper by Fruchart [60]. This means that either a different
topological invariant is needed to topologically characterize
the system or edge states are weakly topological. Additionally,
these states exhibit a linear dispersion around zero quasienergy
and cross each other at a time-reversal invariant point (kx = 0);
such a crossing is imposed by the time-reversal symmetry
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and is one of the signatures of a topological insulator [73].
Furthermore, this phase also exhibits edge states at secular
gaps for quasienergies different from zero or ±π that could be
topologically nontrivial, although a more detailed analysis is
required.

On the other hand, for the gapless phase of the system,
we found the necessary conditions for the emergence of edge
states. Additionally, by studying a one-dimensional slide of
the case system at kx = 0, we were able to analytically obtain
the quasienergy spectrum of such a slide, since for this case
the time evolution operator can be effectively described by a
block-diagonal 4×4 matrix; in other words, we obtained the
effective Hamiltonian for kx = 0. After looking at the winding
of the effective Hamiltonian, we found that for this slice the
edge states are topological, which means that the whole system
is at least topologically weak. However, as for the gapful phase,
a deeper analysis is needed for the case σ = 1/

√
3. We hope

that our paper motivates further research about the system
presented here.
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APPENDIX A

Let us now compute the unitary operator U(τ ) for σ =
1/

√
3. Before entering into the detailed calculation, we first

define the Hamiltonians H0 and H1:

Hl(k) =
[

0 H̃l(k)

H̃
†
l (k) 0

]
, (A1)

where the label l can take the values l = 0,1, and

H̃0(k) =
[

1 1 + e−i
√

3ky

1 + ei
√

3ky e−i 3kx

]
,

H̃1(k) =
[

1 γ1 + γ2e
−i

√
3ky

γ1 + γ2e
i
√

3ky e−i 3kx

]
. (A2)

Thus, the perturbing Hamiltonian to H0 is defined as δH =
H1(k) − H0(k), which takes the form

δH(ky) =
[

0 δH̃(ky)

δH̃(ky) 0

]
, (A3)

with

δH̃(ky) =
[

0 δ1 + δ2e
−i

√
3ky

δ1 + δ2e
i
√

3ky 0

]
, (A4)

where δ1,2 = γ1,2 − 1. Note that the unperturbed and perturbed
Hamiltonians do not commute. In fact, we have

[δH(ky),H(k)] =
[
C̃(k) 0

0 C̃(k)

]
, (A5)

where

C̃(k) = 2i(γ1 − γ2) sin (
√

3ky)σz

+ 2

[
δ1 sin

(
3kx

2

)
+ δ2 sin

(
3kx

2
−

√
3ky

)]

× sin

(
3kx

2

)
σx

+ 2

[
δ1 cos

(
3kx

2

)
+ δ2 cos

(
3kx

2
−

√
3ky

)]

× sin

(
3kx

2

)
σy, (A6)

where σx,y are the 2×2 Pauli matrices and δ1,2 = γ1,2 − 1 as
before.

For obtaining the time evolution operator, we start by
finding the eigenvalues and eigenvectors of the pristine system
described by H0(k). These eigenvalues are readily found
by renormalizing one of the bipartite sublattices, since it is
equivalent to consider the squared matrix H2

0(k), as shown
in [75,76]. Thus, the eigenvalues of H0(k), denoted by
E1,2(kx,ky), are

E1(kx,ky)

= ±
√

3 + 4 cos (3kx/2) cos (
√

3ky/2) + 2 cos (
√

3ky),

E2(kx,ky)

= ±
√

3 − 4 cos (3kx/2) cos (
√

3ky/2) + 2 cos (
√

3ky).

(A7)

To find the unitary transformation that diagonalizes H0(k),
care must be taken since the eigenvalues of H2

0(k) are
degenerate and thus are not necessarily eigenvectors of H0(k).
However, the eigenfunctions of H0(k) correspond to pristine
graphene, thus one can apply the Bloch theorem for the original
Brillouin zone of graphene to get the proper eigenfunctions.
Using the well-known solution for graphene and ordering
the energies as E1, E2, −E1, −E2, we obtain the unitary
transformation that diagonalizes H0(k):

O =
[
M̃a M̃a

M̃b −M̃b

]
, (A8)

where

M̃a(k) = 1

2

[
1 1

e−ik·a2 −e−ik·a2

]
,

M̃b(k) = 1

2

[
eiθ1 eiθ2

eiθ1eik·a1 −eiθ2eik·a1

]
, (A9)

a1 = (3,
√

3)/2 and a2 = (3, − √
3)/2 being the lattice vectors

of pristine graphene, and

eiθ1 = 1

E1
[1 + 2e−3ikx/2 cos (

√
3ky/2)],

eiθ2 = 1

E2
[1 − 2e−3ikx/2 cos (

√
3ky/2)]. (A10)
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The next step is to transform Eq. (9) onto the basis in which
H0 is diagonal, i.e., to perform O†U(τ )O = U′(τ ). Before
doing that, let us reduce U(τ ) into a simpler form. To do
that note that (δH)2 = [δE(ky)]2 I4×4, where I4×4 is the 4×4
identity matrix and

δE(ky)

=
√

(γ1 − 1)2 + (γ2 − 1)2 + 2(γ1 − 1)(γ2 − 1) cos (
√

3ky).

(A11)

As a result, the exponential of δH can be written as

exp [−iτ (δH )] = cos [τδE(ky)]I − i(δH )
sin [τδE(ky)]

δE(ky)
,

(A12)

and the time evolution operator becomes

U(τ ) =
(

cos
[
τδE(ky)

] − i
sin [τδE(ky)]

δE(ky)
δH(ky)

)
e−iτH0 .

(A13)

Before transforming Eq. (9) into O, we calculate δH′(ky) =
O†δH(ky)O; after some algebraic operations, we have

δH′ =
[

δH̃+ δH̃−
−δH̃− −δH̃+

]
, (A14)

where

δH̃± = M̃
†
b δH̃ M̃a ± M̃

†
a δH̃ M̃b. (A15)

Finally, the time evolution operator is given by

U′(τ ) = −i
sin (τδE)

δE

[
[cos (τδE) + δH̃+]Ũ0(τ ) δH−Ũ

∗
0(τ )

−δH−Ũ0(τ ) [cos (τδE) − δH̃+]Ũ
∗
0(τ )

]
, (A16)

where U′(τ ) = O†(k)U(τ )O(k) and

Ũ0(τ ) =
[
eiτE1 0

0 eiτE2

]
. (A17)

APPENDIX B: PARTICULAR CASE kx = 0

For kx = 0 the time evolution operatorU′(τ ) becomes block
diagonal, each block being a 2×2 matrix. Hence, the time
evolution operator, Eq. (A16), can be written as

U′(τ ) =
[
eiτδh̃(ky )eiτ h̃0(ky ) 0

0 e−iτ δh̃(ky )e−iτ h̃0(ky )

]
, (B1)

where

δh̃(ky) = δh(ky) δĥ · σ,

h̃0(ky) = I2×2 + 2 cos (
√

3ky/2)σz, (B2)

with σ = (σx,σy,σz), σi (i = x,y,z) being the 2×2 Pauli
matrices written in the basis at which σz is diagonal, I2×2

is the 2×2 identity matrix, and the components of δh are

δh(y) = (γ1 − γ2) sin (
√

3ky/2),

δh(z) = (γ1 + γ2 − 2) cos (
√

3ky/2). (B3)

We have also defined the norm δh(ky) = |δh|.
By using the addition rule of SU(2), Eq. (B1) can be written

as follows:

U′(τ ) =
[
eiτ h̃eff(ky ) 0

0 e−iτ h̃eff(ky )

]
, (B4)

where

h̃eff(ky) = I2×2 + �(ky)ĥeff · σ, (B5)

where �(ky) is given by

cos [τ�(ky)] = cos (τδh) cos [2τ cos (
√

3ky/2)]

− δh(z)

δh
sin (τδh) sin [2τ cos (

√
3ky/2)].

(B6)

Finally, the unit vector ĥeff is

ĥeff = 1

sin [τ�(ky)]
{δĥ sin (τδh) cos [2τ cos (

√
3ky/2)]

+ êz cos (τδh) sin [2τ cos (
√

3ky/2)]

− δh(y)êx sin (τδh) sin [2τ cos (
√

3ky/2)]}. (B7)

It is noteworthy that the quasienergies of the system are thus
given by ±τω(ky) = ±τ [±1 + �(ky)] (see the main text).
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