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Multiband k · p theory of monolayer XSe (X=In, Ga)
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We derive the multiband k · p Hamiltonian for an electron in monolayer XSe (X = In, Ga) near the � point in
the presence of spin-orbit coupling and strain. With four conduction bands and ten valence bands included, the
14-band k · p Hamiltonian is capable of describing the nonparabolic energy band dispersion, strong interband
mixing, and strain-induced effects, in good agreement with first-principles calculations. This k · p theory provides
a simple and convenient way to understand and manipulate the optical and transport properties of monolayer XSe
and their nanostructures by strain and external fields. Interestingly, we find that uniaxial strain can even induce
an indirect-to-direct band-gap transition in these two-dimensional materials.
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I. INTRODUCTION

The discovery of graphene has triggered a great leap in the
research on monolayer two-dimensional (2D) materials [1]. A
decade of intense research on fabricating 2D atomic crystals
has revealed many three-dimensional van der Waals solids,
e.g., transition metal dichalcogenides [2–6] and phosphorus
[7–10] can be exfoliated down to monolayer thickness.
Recently, a high-quality few-layer InSe encapsulated in hexag-
onal boron nitride under an inert atmosphere was reported
[11]. This explosion of experimental results aroused researcher
enthusiasm for III to VI semiconductors again.

Layered III to VI semiconductors have attracted much
attention for their intrinsic outstanding properties and potential
application in nonlinear optics [12–22]. The electronic band
structures of layered compounds GaSe and InSe have been
investigated by first-principles calculations [18] and the
tight-binding approach [19]. In the case of layered InSe,
photoluminescence measurements under pressure reveal that
high pressure can induce an unconventional direct-indirect
band gap transition [20,21]. Its 2D counterparts become the
next generation of graphenelike materials. Including an InSe
monolayer [11], the metal monochalcogenides monolayer
GaSe, and GaS, have been successfully synthesized [23–29].
Recently, atomically thin GaSe nanosheets were prepared
by exfoliation and were deemed to be a promising material
for high performance photodetectors [23]. In the same year,
transistor characteristics based on single sheets of GaS and
GaSe have been measured [26]. Besides exfoliation, large-area
few-layer GaSe crystals were successfully grown on insulating
substrates using the vapor phase transport method [27]. As
predicted by first-principles calculations [30], the conduction
band bottoms of XSe (X = Ga, In) and GaS locate at the �

and M points, respectively. Thus the physical properties of
XSe (GaS) are dominated by the electronic states near the �

(M) point.
Very recently the monolayer and few-layer groups III to

VI metal monochalcogenide XSe (X = Ga, In) has been
studied based on first-principles calculations [30–32], the
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tight-binding model [33], and the single-band k · p model
[33,34]. When the thickness of GaSe and InSe decreases,
the band gap of GaSe and InSe changes from a direct gap
to an indirect gap at a critical thickness [32], as opposed to
the indirect-to-direct band-gap transition of transition-metal
dichalcogenides when its thickness decreases to a single
monolayer [32]. The presence of saddle points along the �-M
line leads to a Lifshitz transition in the case of hole doping
[31]. These studies provide important information about the
electronic structure and physical properties of monolayer
XSe. However, they still suffer from a few limitations. First,
although the first-principles calculations and the tight-binding
model provide accurate descriptions for monolayer XSe,
however, it is difficult to establish a simple physical picture
to understand and manipulate their electronic structures and
physical properties by various external magnetic fields and
strain. Moreover, these atomistic approaches become ineffi-
cient in describing nanostructures consisting of these materials
due to the large supercells involved. Second, the existing tight-
binding model neglects the strong spin-orbit coupling effect,
which is necessary to understand the valence band structure
and spin-related properties of XSe. Third, a most interesting
feature of XSe is the strong interband mixing and the resulting
sombrero shape of the top valence band near the � point.
Although the single-band k · p model [34] provides a descrip-
tion for the sombrero dispersion, it cannot describe either the
intrinsic interband coupling or the effect of strain or external
fields, which can change the band dispersions significantly.

In this paper, we adopt the standard invariant theory
to derive a general 14-band (including the spin degree of
freedom) k · p Hamiltonian for the electronic structure of
monolayer XSe (X = In, Ga) near the � point in the presence
of spin-orbit coupling and strain. With four conduction bands
and ten valence bands in the vicinity of the band gap
included, our k · p Hamiltonian can describe not only the
nonparabolic dispersion near the � point, but also the strong
interband mixing and strain effects, in good agreement with
first-principles calculations. This can provide a clear physical
picture and an efficient way to understand and manipulate the
electronic and optical properties of monolayer XSe and their
nanostructures (such as quantum dots and nanoribbons) by
strain and external fields for device applications. In particular
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for the InSe monolayer, we find that uniaxial strain can be
utilized to change the indirect band gap to a direct gap. The
invariant expansion method and our multiband model can also
be extended to few-layer systems.

The rest of this paper is organized as follows. In Sec. II,
we adopt the standard invariant theory to derive the 14-band
k · p Hamiltonian for XSe monolayer incorporating the spin-
orbit coupling effects. In Sec. III, we further consider the
strain effect and demonstrate the strain-induced indirect-to-
direct band-gap transition. Finally, in Sec. IV, we give a brief
conclusion.

II. 14-BAND k · p HAMILTONIAN OF MONOLAYER
METAL CHALCHGENIDES

As shown in Fig. 1(a), the unit cell of the monolayer XSe
(X = In or Ga) consists of four ions in two sublayers, with
one indium (or gallium) and one selenium in each sublayer.
The point group of monolayer XSe is D3h, which consists
of 12 symmetry operations divided into six classes and hence
six real, irreducible representations (see Table I). As shown
in Fig. 1(d), in the absence of spin-orbit coupling (SOC),
the transport and optical properties of monolayer XSe are
dominated by seven energy bands (or 14 energy bands if the
spin degree of freedom is included) in the vicinity of the Fermi
level [32]. Their orbital wave functions at the � point are
(ordered with decreasing energy):

|�1c〉 ∼ 1,

|�4〉 ∼ z,

|�1v〉 ∼ 1,

|�5〉 ≡ (|�5,x〉,|�5,y〉) ∼ (Rx,Ry),

|�6〉 ≡ (|�6,x〉,|�6,y〉) ∼ (x,y),

FIG. 1. (a) Schematic of the primitive cell of an XSe monolayer
(X = In, Ga). (b) and (c) are side and top views, respectively, of the
hexagonal structure. The purple and green spheres correspond to X

and selenium atoms, respectively. The x and y axes along zigzag
and armchair directions specify the coordinates used in the k · p
Hamiltonian. (d) A sketch of the monolayer InSe electronic bands
around the � point, omitting the spin-orbit coupling. EF is the Fermi
Energy.

TABLE I. Character table of group D3h and the basis functions
for each irreducible representation. Here (x,y,z) and (x ′,y ′,z′) are
the three Cartesian components of an ordinary vector (that changes
sign under spatial inversion) and (Rx,Ry,Rz) are the three Cartesian
components of an axial vector (that remains invariant under spatial
inversion).

D3h E σh 2C3 2S3 3C ′
2i 3σvi Basis functions

�1 1 1 1 1 1 1 1 or xx ′ + yy ′ or zz′

�2 1 1 1 1 −1 −1 Rz or xy ′ − yx ′

�3 1 −1 1 −1 1 −1 zRz

�4 1 −1 1 −1 −1 1 z

�5 2 −2 −1 1 0 0 (Rx,Ry)
�6 2 2 −1 −1 0 0 (x,y) or (yy ′ − xx ′,xy ′ + yx ′)

where the symbol “∼” tells us how these basis functions
transform under D3h operations, e.g., |�1c〉 and |�1v〉 remain
invariant under all D3h operations, |�6〉 transform like the
two transverse components (x,y) of an ordinary vector (which
changes sign under spatial inversion), while |�5〉 transform
like the two transverse components (Rx,Ry) of an axial vector
(which remains invariant under spatial inversion).

In the basis |�1c〉,|�1v〉,|�6〉,|�4〉,|�5〉, the k · p Hamil-
tonian assumes the 5 × 5 block form:

H =

⎡
⎢⎢⎢⎢⎣

H1c,1c H1c,1v H1c,6 H1c,4 H1c,5

H1v,1c H1v,1v H1v,6 H1v,4 H1v,5

H6,1c H6,1v H6,6 H6,4 H6,5

H4,1c H4,1v H4,6 H4,4 H4,5

H5,1c H5,1v H5,6 H5,4 H5,5

⎤
⎥⎥⎥⎥⎦,

where Hαβ is the block matrix between |�α〉 and |�β〉, e.g.,
H1c,1c is a 1 × 1 block matrix associated with |�1c〉, H6,6 is a
2 × 2 block matrix associated with |�6〉, and H1c,6 is a 1 × 2
block matrix associated with the coupling between |�1c〉 and
|�6〉. Under mirror reflection σh about the xy plane, the basis
states |�1c〉,|�1v〉,|�6〉 have even parity, while the other basis
states have odd parity (see Table I); thus the k · p Hamiltonian
can also be written as

H =
[

He−e He−o

Ho−e Ho−o

]
,

where He−e is the 4 × 4 block matrix describing the coupling
between the even-parity bands, Ho−o is the 3 × 3 block matrix
describing the coupling between the odd-parity bands, and
Ho−e = (He−o)† describes the coupling between the energy
bands of opposite parities. Each matrix element of the k · p
Hamiltonian is still a function of certain operators (denoted
by K) acting on the “slow” degree of freedom (whose Fourier
components lie within the first Brillouin zone), such as the
momentum operator k, the spin operator s, slowly varying
external electric field E, magnetic field B, or strain tensor ε;
thus we denote the k · p Hamiltonian by H(K).

A. Theory of invariants

The theory of invariants [35–38] provides a standard,
systematic approach to construct the k · p Hamiltonian based
on the invariance of the crystal Hamiltonian Ĥ under all
operations of the symmetry group D3h and its connection to
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the k · p Hamiltonian within the energy bands of interest:
Ĥ = ∑

α,β |�α〉〈�β | ⊗ Hαβ(K). This equation decomposes
the crystal Hamiltonian into the “fast” degree of freedom
|�α〉〈�β | and the “slow” degree of freedom Hαβ(K). Under
an arbitrary symmetry operation g ∈ D3h, the basis |�α〉
transforms according to the irreducible representation �α , so
the invariance of the crystal Hamiltonian under the symmetry
operation g dictates

Dα(g)Hαβ
(
P̂gKP̂ −1

g

)
Dβ(g−1) = Hαβ(K), (1)

where Dα(g) is the representation matrix of g in �α and
P̂gKP̂ −1

g denotes the transformation of K under the operation
g, e.g., if g is a π/2 rotation around the z axis and K is the 2D
momentum operator, then P̂g(kx,ky)P̂ −1

g = (ky, − kx).
The general expression of an arbitrary block Hαβ(K) of the

k · p Hamiltonian can be constructed in three steps [39]:
(i) Reducing the direct-product representation �α ⊗ �∗

β

into irreducible representations ⊕γ �γ , where �∗
β = �β since

all the irreducible representations of D3h are real.
(ii) For each irreducible representation �γ , construct the

invariant

Iαβ
γ (K) =

∑
l

Xα,β

γ,l Kγ,l (2)

that satisfies Eq. (1). Here {Kγ,l} are irreducible tensor
operators that are constructed from the operators K and
transform under D3h operations according to the lth column
of �γ , i.e., P̂gKγ,l P̂

−1
g = ∑

l′ Kγ,l′D
γ

l′l(g), while {Xα,β

γ,l } are
symmetrized matrices that have the same dimensions as Hαβ

and transform under D3h operations according to the lth
column of �γ , i.e., Dα(g)Xα,β

γ,l Dβ(g−1) = ∑
l′ Xα,β

γ,l′D
γ

l′l(g).
(iii) Hαβ(K) is given by a general linear combination of all

these invariants:

Hαβ(K) =
∑

γ

cαβ
γ Iαβ

γ (K). (3)

In addition to the point group symmetry, the time-
reversal symmetry imposes extra constraints on the k · p
Hamiltonian. For XSe, if we can take all the basis func-
tions to be real and hence invariant under time reversal,
then the time-reversal invariance of the crystal Hamiltonian
θ̂ Ĥ θ̂−1 = Ĥ dictates the time-reversal invariance of the k · p
Hamiltonian: θ̂H(K)θ̂−1 = H(K), where θ̂ is the time-reversal
operator. Under time reversal, the momentum operator k, the
spin operator s, and the magnetic field B have odd parity (i.e.,
they change sign), while the strain tensor ε and the electric field
E have even parity (i.e., they remain invariant). In terms of the
invariant expansion Eqs. (2) and (3), time-reversal symmetry
dictates each invariant to have an even parity under time-
reversal. Without loosing generality, we choose the coefficients
{cγ } in Eq. (3) to be real. Then in Eq. (2), the symmetrized
matrix Xα,β

γ,l should have the same parity as the irreducible

operator Kγ,l under time reversal: if θ̂Kγ,l θ̂
−1 = Kγ,l , then

Xα,β

γ,l must be real; if θ̂Kγ,l θ̂
−1 = −Kγ,l , then Xα,β

γ,l must
be purely imaginary. Finally, the k · p Hamiltonian must be
Hermitian; this dictates that the invariants for a diagonal block
must be Hermitian: Iαα

γ (K) = [Iαα
γ (K)]†.

TABLE II. Symmetrized matrices for the monolayer XSe, where
I2×2 denotes the 2 × 2 identity matrix, τx,τy,τz are Pauli matrices
acting on the orbital band-edge Bloch states, �+ = [1,0], �− =
[0,1], H1,1 stands for H1c,1c,H1v,1v,H1c,1v,H1v,1c, and H1,4 stands for
H1c,4,H1v,4, etc.

H1,1 �1 ⊗ �∗
1 = �1 �1 : 1

H4,4 �4 ⊗ �∗
4 = �1 �1 : 1

H1,4 �1 ⊗ �∗
4 = �4 �4 : 1

H1,5 �1 ⊗ �∗
5 = �5 �5 : (�−,−�+)

H4,6 �4 ⊗ �∗
6 = �5 �5 : (�−,−�+)

H1,6 �1 ⊗ �∗
6 = �6 �6 : (�+,�−)

H4,5 �4 ⊗ �∗
5 = �6 �6 : (�+,�−)

H5,5 �5 ⊗ �∗
5 = �1 ⊕ �2 ⊕ �6 �1 : I2×2

�2 : τy

�6 : (τz,−τx)

H6,6 �6 ⊗ �∗
6 = �1 ⊕ �2 ⊕ �6 �1 : I2×2

�2 : τy

�6 : (τz,−τx)

H5,6 �5 ⊗ �∗
6 = �3 ⊕ �4 ⊕ �5 �3 : −τy

�4 : I2×2

�5 : (τx,τz)

The symmetrized matrices for every block of the k · p
Hamiltonian are listed in Table II, where

τx ≡
[

0 1
1 0

]
, τy ≡

[
0 −i

i 0

]
, τz ≡

[
1 0
0 −1

]

are Pauli matrices acting on the orbital band-edge Bloch
functions. The irreducible tensor operators can be constructed
from ordinary vector operators or axial vector operators by
utilizing the last column of Table I and RxR

′
x + RyR

′
y ∼

zRz, RxR
′
y − RyR

′
x ∼ z, (RyR

′
y − RxR

′
x,RxR

′
y + RyR

′
x) ∼

(Rx,Ry), where (Rx,Ry) and (R′
x,R

′
y) transform according to

�5. From Table II, we see that H1,1 (i.e., H1c,1c,H1v,1v,H1c,1v ,
and H1v,1c) and H4,4 have the same symmetrized matrix that
transform according to the same irreducible representation, so
they always have exactly the same invariants. Similarly, H1,5

and H4,6 have exactly the same invariants; H1,6 and H4,5 have
exactly the same invariants; and H5,5 and H6,6 have exactly
the same invariants.

B. k · p Hamiltonian

In the absence of SOC, external field, and strain, only the
2D momentum operator k ≡ (kx,ky) can appear in the k · p
Hamiltonian of the monolayer XSe. Since [kx,ky] = 0, only
three irreducible tensor operators can be constructed up to
O(k2): (kx,ky) ∼ (x,y), k2

x + k2
y ∼ 1, and (k2

y − k2
x,2kxky) ∼

(x,y). Under time reversal, the first one is odd, while the
latter two are even. By combining them with the symmetrized
matrices in Table II, we can readily obtain all the invariants for
each block of the k · p Hamiltonian. The nonzero invariants up
to O(k2) are listed in Table III. Note that according to Table II,
we can construct another invariant ikxτz − ikyτx for H5,5 and
H6,6. Although this invariant obeys the D3h symmetry and the
time-reversal symmetry, it is not Hermitian, so it cannot be

155430-3



ZHOU, ZHANG, SUN, LOU, ZHANG, YANG, AND CHANG PHYSICAL REVIEW B 96, 155430 (2017)

TABLE III. Invariants for each block of the k · p Hamiltonian
constructed from the 2D momentum operator up to the second order
or from the strain tensor up to the first order. Here k2 ≡ k2

x + k2
y ,

τx,τy,τz are Pauli matrices acting on the orbital band-edge Bloch
states, H1,1 stands for H1c,1c,H1v,1v,H1c,1v,H1v,1c, and H1,6 stands for
H1c,6,H1v,6. The imaginary factor i ensures that all the invariants
remain invariant under time reversal.

H1,1, H4,4 H5,5,H6,6 H1,6,H4,5

k2I2×2 ikx�+ + iky�−
k2

(k2
y − k2

x)τz − 2kxkyτx (k2
y − k2

x)�+ + 2kxky�−
(εxx + εyy)I2×2

εxx + εyy (εyy − εxx)�+ + 2εxy�−
(εyy − εxx)τz − 2εxyτx

used for the diagonal blocks H5,5 and H6,6 and hence does
not appear in Table III. The general expression of each block
of the k · p Hamiltonian is the linear combination (with real
coefficients) of their corresponding invariants. Interestingly,
the coupling He−o = (Ho−e)† between the even-parity and odd-
parity states under the mirror reflection σh vanishes to all
orders of k, because Table II shows that no irreducible operator
transforming according to �4 can be constructed out of kx

and ky up to all orders. Consequently, the k · p Hamiltonian
assumes the block-diagonal form:

Hk·p = diag
{
Ec

1,E
v
1 ,Ev

6 ,Ev
6 ,Ec

4,E
v
5 ,Ev

5

} + diag{He−e,Ho−o},
(4)

where Ec
1, . . . ,E

v
5 are band-edge energies, and

He−e =

⎡
⎢⎢⎢⎣

Fk2 bvc
11k

2 ibvc
61kx ibvc

61ky

Mk2 ibvv
61kx ibvv

61ky

Ck2 + D
(
k2
y − k2

x

) −2Dkxky

Ck2 − D
(
k2
y − k2

x

)

⎤
⎥⎥⎥⎦,

(5)

Ho−o =

⎡
⎢⎣

Gk2 ibvc
54kx ibvc

54ky

Ak2 + B
(
k2
y − k2

x

) −2Bkxky

Ak2 − B
(
k2
y − k2

x

)
⎤
⎥⎦.

(6)

In the above we only keep the lowest-order contribution to
each matrix element, and only give the matrix elements in
the upper triangle since the k · p Hamiltonian is Hermitian.
Altogether there are 16 real parameters, including five band-
edge energies and 11 coefficients A,B,C,D,F , G,M , bvc

11,
bvc

61, bvv
61 , bvc

54 associated with the k-dependent invariants.
All these parameters can be determined by comparing the

energy band structure obtained from the k · p Hamiltonian to
the first-principles calculations in the vicinity of the � point.
The first-principles calculations detail is given in Appendix A.
The parameters Ec

1, . . . ,E
v
5 are just the band-edge energies of

the first-principles results at the � point. According to the first-
principles calculations, the energy dispersion in the vicinity of
the � point (k < 0.1/Å) is nearly isotropic, with the energy

K
M xk

yk
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FIG. 2. The energy band structures of monolayer InSe in the (a)
absence or (b) presence of SOC. (c) and (d): the same as (a) and
(b), but for monolayer GaSe. The red solid (black dashed) lines are
obtained from the k · p Hamiltonian in Eq. (4) (the first-principles
calculations).

difference along the �-K and �-M directions being less than
1 meV. Performing the least square fitting within this range,
we obtain the 11 coefficients associated with the k-dependent
invariants [40–47]. All the parameters in the k · p Hamiltonian
are listed in Table VI and the comparison between the results
from the k · p Hamiltonian (the red solid lines) and the first-
principles calculations (the black dashed lines) are shown in
Figs. 2(a) and 2(c). The detailed information about the first-
principles calculations can be found in Appendix A.

Let us focus on the topmost valence band in Fig. 2(a). Our
k · p Hamiltonian captures the sombrero dispersion—a most
interesting feature of the monolayer InSe that may exhibit
unconventional transport and optical properties. Specifically,
the valence band maxima obtained from first-principles calcu-
lations locate away from the � point: along the �-K direction,
it locates at k = −0.29/Å and has an energy E = −0.1372 eV,
while along the �-M direction, it locates at k = 0.27/Å and
has an energy E = −0.1401 eV. These features are well
reproduced by our k · p model: the maximal deviation is
less than 1 meV for k up to 0.2/Å; and less than 5 meV
for k up to 0.3/Å along the �-K direction. The difference
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TABLE IV. Nonzero k · p parameters in the monolayer InSe
(GaSe) k · p Hamiltonian.

Parameter Value Unit Parameter Value Unit

Ec
1 2.7036 eV Ec

4 1.4730 eV

(2.68) (1.67)

Ev
1 − 0.2090 eV Ev

5 − 0.4949 eV

( −0.2382) ( −0.6545)

Ev
6 − 0.5626 eV F 6.52 eV Å2

(−0.773) (4.66)

A − 2.06 eV Å2 B − 1.41 eV Å2

( −2.56) ( −1.58)

C − 3.87 eV Å2 D − 0.11 eV Å2

( −3.78) ( −0.94)

M − 1.45 eV Å2 G − 0.72 eV Å2

( −2.09) ( −0.52)

bvc
54 − 6.41 eV Å bvc

11 − 4.95 eV Å2

( −7.63) ( −2.59)

bvv
61 1.49 eV Å bvc

61 6.38 eV Å

(2.41) (7.70)

λ5,5 0.1457 eV λ6,6 0.1467 eV Å

(0.1541) ( −0.1388)

λ1v ,5 0.1299 eV

(0.0918)

between the band structures obtained from the k · p theory
and first-principles calculations becomes significant for the
second conduction band (�1) in the presence (absence) of
the SOC.

Using the same k · p Hamiltonian with the parameters listed
in the bracket in Table IV, we obtain the band structures of
the GaSe monolayer in Fig. 2(c). As we can see, the sombrero
dispersion also appears in Fig. 2(c) and was captured by our
k · p Hamiltonian with an alternative set of values.

C. Spin-orbit coupling

For InSe monolayers, the SOC must be included since it
induces large splitting of the �5 and �6 valences bands (of
the order 0.3 eV according to our first-principles calculations).
In the presence of SOC, the spin operator s = (sx,sy,sz) can
appear in the k · p Hamiltonian [48]. Since s is an axial vector,
we have (sx,sy) ∼ (Rx,Ry) and sz ∼ Rz under D3h operations.
The nonzero invariants constructed from the electron spin
operator alone are listed in Table V. Since H1c,5 and H4,6

are the coupling between the conduction bands and valence
bands, their effects on the energy band dispersion is negligible.

TABLE V. Invariants for each block of the k · p Hamiltonian
constructed from the electron spin operator s ≡ (sx,sy,sz). Here H1,5

stands for H1c,5,H1v,5. The imaginary factor i ensures that all the
invariants remain invariant under time reversal.

H5,5, H6,6 H1,5,H4,6 H5,6

τysz i�−sx − i�+sy iτxsx + iτzsy

TABLE VI. Orbital analysis of the Perdew-Burke-Ernzerhof
(PBE) bands at the � point. The labels �5,1,�5,2,�6,1,�6,2 correspond
to the second and third double degenerate valence bands.

py pz px dxy dyz dz2 dxz dx2

�5,1 0.483 0.000 0.162 0.010 0.016 0.000 0.005 0.031
�5,2 0.162 0.000 0.483 0.031 0.005 0.000 0.016 0.010
�6,1 0.492 0.000 0.165 0.010 0.011 0.000 0.004 0.031
�6,2 0.165 0.000 0.492 0.031 0.004 0.000 0.011 0.010

Moreover, as shown in Table VI, the major composition of the
�5 and �6 valence bands at the � point is the (px,py) atomic
orbitals from each atom. However, the microscopic spin-orbit
coupling Hamiltonian for each atom alone has no spin-flip
term (∝sx and sy) between the (px,py) atomic orbitals. Thus
the spin-flip invariant iτxsx + iτzsy for H5,6 must come from
either the interatomic contributions or the mixture of d orbitals
into the �5 and �6 bands, both of which are very small (see
Table VI). Therefore, we can safely neglect H5,6 and keep only
three nonzero blocks for the SOC Hamiltonian Hsoc: H5,5

soc =
λ55τy ŝz, H6,6

soc = λ66τy ŝz, and H1v,5
soc = λ1v5(i�−sx − i�+sy).

The distinguishing feature of Hsoc compared with Hk·p in
Eq. (4) is that the invariant i�−sx − i�+sy couples the
even-parity band-edge Bloch states |�1〉,|�6〉 to the odd-parity
band-edge Bloch states |�4〉,|�5〉 under the σh operation. The
coupling between |�1v〉 and the |�5〉 may push the �1 valence
band upwards at the � point.

Hsoc contains three real coefficients λ55,λ66,λ1v5. By
comparing the band-edge energies from the k · p model to
the first-principles results, we find that they have similar
magnitudes (see Table IV). A detailed calculation of SOC
parameters λ55,λ66,λ1v5 is given in Appendix B. In Fig. 2(b),
we compare the results from the k · p model (red solid
lines) and results (black dashed lines) from first-principles
calculations including the SOC. As we can see, our model
give a good description for the large energy splitting in the
valence band induced by the SOC.

In principle, it is possible to construct other irreducible
operators and hence invariants by combining the momen-
tum operators (kx,ky) and the spin operators (sx,sy,sz). For
example, let Kx = k2

y − k2
x and Ky = 2kxky . According to

Table I, we have kxKy − kyKx = 3k2
xky − k3

y ∼ Rz and hence
(3k2

xky − k3
y)sz ∼ 1 under D3h operations. Using Table II, we

immediately obtain the invariants (3k2
xky − k3

y)sz for H1,1
soc

and (3k2
xky − k3

y)szI2×2 for H5,5
soc and H6,6

soc. However, these
invariants are higher order terms which only lead to a small
splitting (∼ a few meV) of the energy bands; hence these terms
can safely be neglected. These analysis about the SOC effect
also applies to GaSe monolayer. In Fig. 2(d) we compare
the results from the k · p Hamiltonian (red solid lines) and
GaSe monolayer band structure (black dashed lines) from
first-principles calculations including the SOC.

III. INDIRECT-TO-DIRECT BAND-GAP TRANSITION

Strain engineering is an efficient and commonly used way
to manipulate the electronic structures in two-dimensional
materials, such as graphene, MoS2, and black phosphorus, as
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FIG. 3. Splitting of the valence band energy levels at the � point
due to SOC and uniaxial strain: (a) No SOC and no strain. (b) SOC
only. (c) SOC and small strain. (d) SOC and large strain.

these atomically thin membranes can withstand unprecedented
strains of up to 10 to 25% without plastically deforming or
rupturing [49–59]. In this section we study the effect of
in-plane strain on the electronic structure of monolayer InSe.
The in-plane strain is characterized by the tensor components
εxx,εyy,εxy = εyx , which can be recombined into irreducible
tensors: εxx + εyy ∼ 1 and (εyy − εxx,2εxy) ∼ (x,y) under D3h

operations. Then we can use Table II to construct the strain
invariants up to the first order, as listed in Table III. Here
we consider uniaxial strain with εxx + εyy = 0, so we obtain
two distinct invariants: I1 = (εyy − εxx)τz − 2εxyτx for H5,5

and H6,6 and I2 = (εyy − εxx)�+ + 2εxy�− for H1v,6, H1c,6

and H4,5. However, H1c,6 and H4,5 can be neglected since
they describe coupling between the conduction and valence
bands and hence have a very small effect on the energy band
dispersion. Therefore, the uniaxial strain Hamiltonian Hstrain

only has three nonzero blocks: H5,5
strain = β55I1, H6,6

strain = β66I1,
and H1v,6

strain = β1v,6I2. In the presence of both SOC and strain,
the total Hamiltonian is the sum of Hk·p in Eq. (4), the SOC
Hamiltonian Hsoc, and the strain Hamiltonian Hstrain.

Now we discuss qualitatively the effects of SOC and
uniaxial strain on the band-edge energies at the � point. For
simplicity we neglect the interband coupling H1v,5

soc and H1v,6
strain

as the level splitting is dominated by the intraband coupling
within the �5 and �6 bands. Due to the SOC and strain, the
three valence band-edge energy levels Ev

1 , Ev
5 , and Ev

6 split
into five levels Ev

1 , Ev+
5 , Ev−

5 , Ev+
6 , and Ev−

6 as shown in
Figs. 3(b) and 3(c), where

Ev±
η = Ev

η ±
√

[βηη(εyy − εxx)]2 + (2εxyβηη)2 + (ληη)2,

where η = 5,6. Thus the uniaxial strain and shear strain which
can be described by the strain tensors εyy − εxx and εxy can
induce large splitting of the �5 and �6 valence bands, as
sketched in Fig. 3. In particular, under a large uniaxial strain,
the order of �1, �5, and �6 valence band will be reversed as
shown in Fig. 3(d).

For a quantitative study, we consider the uniaxial strain
applied along the zigzag direction and take β66(εyy − εxx) ≈
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FIG. 4. Electronic band valence structures obtained from the k · p
theory under uniaxial strains: (a) ε = 0.09, (b) ε = 0.18, (c) ε = 0.27,
and (d) ε = 0.36.

β55(εyy − εxx) = ε. The energy dispersions of the valence
bands under different uniaxial strain obtained from the k · p
Hamiltonian are shown in Fig. 4. We see that uniaxial strain
not only enhances the anisotropy of the energy dispersion
along the �-K direction and �-M directions, but also reduces
the energy difference among the top three valence bands.
Interestingly, Fig. 4(d) shows a direct band gap character with
the valence band top at the � point, as a result of the energy
level inversion sketched in Fig. 3(d). Therefore, large uniaxial
strain can induce a indirect-to-direct band gap transition.

This indirect-to-direct band gap transition is further con-
firmed by our first-principles results in Fig. 5. In the absence
of strain [Fig. 5(a)], the topmost valence band states at the �

point are dominated by the pz antibonding states, while the

FIG. 5. Projected energy band structure of monolayer InSe with
different uniaxial tensile strains along the zigzag direction: εyy −
εxx = (a) 0, (b) 3, (c) 6, and (d) 9%. The Fermi level is set to be 0
eV. In the projected band structure, the states dominated by px , py ,
and pz orbitals are plotted in red, green, and blue. All the results
are obtained from the density-functional theory (DFT) with the PBE
functional adopted. (See Appendix A.) The energy gap is shaded by
the gray rectangles, and the values (in eV) obtained with PBE are
given.
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FIG. 6. The electronic band structures under different biaxial
strains (a) 1, (b) 2, (c) 3, and (d) 4%. The red solid lines correspond
to results obtained from our k · p model, while the black dashed lines
are energy bands for biaxial strained InSe obtained from the DFT
with the PBE functional adopted.

lowest conduction band states at the � point are dominated by
pz bonding states. For the second and third valence bands, the

states at the � point are mainly derived from px ± ipy states.
An indirect band gap is clearly visible in the band structures
where the valence band top is about 0.29/Å away from the �

point. As shown in Figs. 5(b) to 5(d), uniaxial strain can not
only enhances the anisotropy between the energy dispersion
along different directions, but also decrease the band gap.
Furthermore, the InSe monolayer experiences a transition from
an indirect band gap to a direct gap when subjected to large
uniaxial tensile strain, εyy − εxx = 9% as shown in Fig. 5(d).
It is clearly seen from the inset of Fig. 5(d) that under strong
uniaxial strain, the topmost valence band states at the � point
are dominated not by the pz orbital but instead by the py

orbital. The third highest valence band state is dominated by
the pz orbital instead of the py orbital, consistent with the
energy level inversion in Fig. 3(d).

Finally we briefly discuss the effect of biaxial strain
on the electronic band structure of monolayer InSe based
on first-principles calculations. As shown in Fig. 6, in the
presence of biaxial tensile strain along the x (armchair) and y

(zigzag) directions, the indirect band gap is reduced to 1.04 eV
under 4% tensile biaxial strain. The biaxial tensile strain
also significantly increases the separation between different
valence bands, which may affect the transport properties of
p-doped monolayer InSe. Since monolayer InSe has mirror
symmetry σh (see Table I), optical absorption occurs between
the lowest conduction band and the second highest valence
band. In the presence of biaxial strain, the lowest conduction
band drops faster than second highest valence band. This
leads to a red shift of the optical absorption. These properties
also captured by our multiband k · p Hamiltonian H = Hk·p +
Hbistr. The additional biaxial strain induced Hamiltonian Hbistr
also follows the block-diagonal form:

Hbistr = diag
{
γ c

1 ε,γ v
1 ε,γ v

6 ε,γ v
6 ε,γ c

4 ε,γ v
5 ε,γ v

5 ε
}

+ diag
{
H

e−e
bistr,H

o−o
bistr

}
, (7)

where ε = εxx + εyy is the biaxial strain, and

He−e
bistr =

⎡
⎢⎢⎢⎢⎢⎣

γF εk2 �ε + γ vc
11 εk2 iγ vc

61 εkx iγ vc
61 εky

γMεk2 iγ vv
61 εkx iγ vv

61 εky

γCεk2 + γDεk2
− −2γDεkxky

γCεk2 − γDεk2
−

⎤
⎥⎥⎥⎥⎥⎦

, (8)

Ho−o
bistr =

⎡
⎢⎣

γGεk2 iγ vc
54 εkx iγ vc

54 εky

γAεk2 + γBεk2
− −2γBεksc132xky

γAεk2 − γBεk2
−

⎤
⎥⎦. (9)

where k2
− = k2

y − k2
x . Since the biaxial strain ε = εxx + εyy

belongs to the �1 irreducible representation, the products of ε

and any invariants in Eqs. (4)–(6) are also invariant. Therefore,
all the biaxial strain induced terms {γF ε,γMε,γ vc

11 ε, . . .} can
be considered as modifications of k · p parameters shown in
Table IV except for �ε. The reason why �ε occurs is that �1

is a direct product of the �1 valence band block state |�1v〉 and
the �1 conduction band block state |�1c〉 (�1 = �1 ⊗ �1).

By fitting the band structure obtained from the k · p
Hamiltonian with the band structure obtained from the DFT
with the PBE functional adopted, we finally obtain all the
biaxial strain dependent parameters shown in Table VII. The
comparison between the results from the k · p Hamiltonian
(the red solid line) and the first-principles calculation (the
black dashed line) are shown in Fig. 6. The biaxial strain k · p
Hamiltonian shows that the energy of the optical absorption
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TABLE VII. Nonzero biaxial strain dependent parameters in the
monolayer InSe Hamiltonian.

Parameter Value Unit Parameter Value Unit

γ c
1 − 17.67 eV γ c

4 − 15.90 eV
γ v

1 0.52 eV γ v
5 − 13.20 eV

γ v
6 − 14.43 eV γF 12.23 eV Å2

γA 7.60 eV Å2 γB − 0.72 eV Å2

γC − 3.56 eV Å2 γD 6.90 eV Å2

γM − 112.99 eV Å2 γG 97.45 eV Å2

γ vc
54 10.33 eV Å γ vc

11 − 82.79 eV Å2

γ vv
61 30.45 eV Å γ vc

61 − 41.53 eV Å
� − 13.24 eV

due to transitions from the second highest valence band to
the lowest conduction band can be tuned by the biaxial strain:
Eab = Ec

4 − Ev
5 + (γ c

4 − γ v
5 )ε = Ec

4 − Ev
5 − 2.7ε.

IV. CONCLUSION

We have adopted the standard invariant theory to derive a
14-band (including the spin degree of freedom) Hamiltonian
for the electronic structure of the XSe (X = In, Ga) monolayer
including the strain effects. Our model can describe not only
the nonparabolic energy band dispersion of the valence bands,
but also the strong interband mixing and strain effects. The
k · p Hamiltonian recovers the sombrero dispersion of the top
valence band of InSe and agrees well with the first-principles
results for wave vector k � 0.3/Å. We further predict that
a large uniaxial strain can change the indirect band gap of
InSe to a direct band gap. Our k · p model may provides a
simple and systematic method to understand and manipulate
the electronic and optical properties of monolayer XSe and
their nanostructures by strain and various external fields. Our
multiband model can also be extended to few-layer systems.
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APPENDIX A: THE DETAILED INFORMATION
OF THE FIRST-PRINCIPLES CALCULATIONS

For monolayer XSe, we use the Vienna ab initio simu-
lation package (VASP) [60] within the generalized gradient
approximation (GGA) in the PBE [61] type and the projector
augmented-wave (PAW) pseudopotential [62]. We set the
kinetic energy cutoff to 500 eV for the wave function expansion
and the k-point grid is sampled by sums over 9 × 9 × 1 [63].

The electronic self-consistent calculations converge up to a
precision of 10−6 eV in total energy difference. A slab model,
together with a vacuum layer larger than 20 Å, is employed.
During the structure optimization of monolayers InSe and
GaSe, all atomic positions and lattice parameters are fully
relaxed, and the maximum force allowed on each atom was
less than 0.01 eV/Å. The calculated lattice parameter of the
monolayer InSe is a = 4.04 Å. For monolayer GaSe, the lattice
parameter is a = 3.82 Å. Our numerical results shown in Fig. 2
are in good agreement with the previous works (Refs. [30–32]).

APPENDIX B: THE SOC PARAMETERS
FOR k · p HAMILTONIAN

In the presence of SOC, we can study the analytical ex-
pressions for energy eigenvalues at the � point. Assuming that
Hsoc has only three nonzero blocks: (H5,5

soc = λ55τy ŝz, H6,6
soc =

λ66τy ŝz, and H1v,5
soc = λ1v5(i�−sx − i�+sy)), the Hamiltonian

diag{Ec
1,E

v
1 ,Ev

6 ,Ev
6 ,Ec

4,E
v
5 ,Ev

5 } + Hsoc is easily diagonalized,
and the eigenvalues are given as follows:

U1 = Ev
1 + Ev

5 − λ55

2
+

√(
Ev

1 − Ev
5 + λ55

)2 + 8(λ1v5)2

2
,

U2 = Ev
1 + Ev

5 − λ55

2
−

√(
Ev

1 − Ev
5 + λ55

)2 + 8(λ1v5)2

2
,

U3 = Ev
5 + λ55,

U4 = Ev
6 + λ66,

U5 = Ev
6 − λ66. (B1)

Theoretically speaking, the SOC parameters contained in
the above λ55,λ66, and λ1v5 could be obtained by solving the
nonlinear equations. But the uncertain numerical relationship
between eigenvalues U1,U2,U3,U4,U5 would provide many
kinds of possible solutions and further analysis would be
necessary. To obtain the definite values of four SOC parameters
contained in above equations, the following cases are con-
sidered: (I) λ55 > 0 and λ66 > 0 which lead to the relation
U1 > U3 > U4 > U2 > U5; (II) λ55 > 0 and λ66 < 0 which
lead to the relation U1 > U3 > U5 > U2 > U4; (III) λ55 < 0
and λ66 > 0 which lead to the relation U1 > U2 > U3 >

U4 > U5; and (IV) λ55 < 0 and λ66 < 0 which lead to the
relation U1 > U2 > U5 > U3 > U4. With SOC taken into
account, the k · p model developed by case (III) or (IV) cannot
fit to the first principles calculated band structure. There-
fore, we finally obtain the InSe monolayer SOC parameter
sets for case (I): λ55 = 0.1451,λ6,6 = 0.1471,λ1v5 = 0.1301;
and for case (II): λ55 = 0.1451,λ66 = −0.1463,λ1v5 =
0.1301. For the GaSe monolayer, the SOC parameter sets
are λ55 = 0.1541,λ6,6 = 0.1388, and λ1v5 = 0.0918 in case
(I); and λ55 = 0.1541,λ6,6 = −0.1388, and λ1v5 = 0.0918 in
case (II).
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