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Low-temperature phonon thermal conductance (PTC) of any 1D system increases proportionally to the
temperature. However, here we show that in single- and double-walled carbon nanotubes (CNTs), starting from
3–6 K, the PTC increases faster than the linear function, since the low-frequency modes of dispersion curves,
which do not tend to zero together with the wave vector, are excited. To develop the PTC theory, we combine the
Landauer’s ballistic approach with the simple continuous model proposed for the calculation of the low-frequency
phonon spectra of both free nanotubes and those interacting with an environment. The approach obtained is valid
not only for commensurate double-walled CNTs, but also for incommensurate ones. The temperature-dependent
relation between the PTC of double-walled CNT and those of its constituent SWNTs is obtained and discussed.
The low-temperature heat transfer in bulk materials originated from CNTs is also considered and the upper limit
of thermal conductivity of such materials is determined. We argue that the ideal material consisting of CNTs
can challenge diamond only when the mean length of its defect-free nanotubes reaches at least one hundred of
micrometers.
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I. INTRODUCTION

Current progress in electronics and optoelectronics stim-
ulates interest in investigation of thermal conductivity (TC)
of different materials because the performance and stability
of nanoelectronic devices are substantially determined by
their cooling effectiveness. Due to a combination of unique
electrical and thermal properties, carbon nanotubes (CNTs)
and their different nanocomposites are considered to be the
promising materials for development of the new-generation
nanoelectronic devices [1,2]. However, despite the great
number of both theoretical and experimental papers devoted
to TC of CNTs and their nanocomposites, this topic is still a
matter of intense debate.

The first experiment to estimate the TC coefficient of
bulk samples (or “mats”) of single-walled carbon nanotubes
(SWCNTs) bundles was conducted in 1999: a dense-packed
SWCNT mat had a room-temperature TC of 36 W m−1 K−1)
[3]. Having corrected this value for the data on electrical
conductivity of SWCNT bundles, the authors of Ref. [3]
obtained the TC value of 1800−6000 W m−1 K−1 for a single
rope of SWCNTs at room temperature. The measurements [3]
were performed at 8 < T < 350 K and the form of temperature
dependence of TC coefficient was close to linear. One year
later, a paper [4] devoted to measurements of TC coefficients
in two thin films consisted of aligned SWCNT bundles
at 10 < T < 400 K emerged. A form of the dependence
obtained was similar to the one published in Ref. [3], but
the room-temperature value of the TC coefficient was about
200 W m−1 K−1. Later, TC coefficients of individual SWCNTs
were measured at 110 < T < 800 K [5–7], but the results
presented in those papers were quite contradictory.

TC of SWCNTs and its dependence on temperature were
also studied theoretically in several tens of papers [8–22]. It
is almost generally accepted that in low-temperature range (at
T < 100 K) the main contribution to TC of CNTs is made by
phonons [8–21] and individual defectless CNTs are practically
ideal heat conductors [23] due to the very large value of phonon

mean free path lf . According to the estimation of Ref. [24],
lf value in sufficiently long CNTs can be up to several tens
of micrometers. At low temperatures, such lf values are
explained by two factors. First, in the 1D nanotubes, the mean
concentration of phonons increases slower with temperature
than in 2D or 3D systems [23]. Second, for the phonons, whose
frequencies are determined by special dispersion relations, it
is more difficult to satisfy energy and momentum conservation
laws in the case of the lowest dimensionality [25–27].

So, in the low-temperature region (where the lf value is
large in comparison with a CNT length), the heat transfer
can be described in the framework of ballistic (or Landauer’s)
mechanism [28,29], which implies that the phonons, moving
freely along a CNT, are scattered only at its ends. However,
with the temperature increase, this approximation becomes
incorrect (the longer a CNT is, the sooner the mechanism
stops working) and the TC becomes primarily of diffusion
type [23], for which umklapp processes and phonon-phonon
interactions are essential but difficult factors to account for.
Certainly, this is the reason why known theoretical results
predicting high-temperature TC of CNTs are contradictory. In
particular, at T = 300 K, the theoretical TC of SWCNTs is
reported to be from 29.8 to 10000 W m−1 K−1 [8–22].

It is also worth noting that the length of a SWCNT can
just slightly exceed the lf value at 100 < T < 300 K and,
consequently, a crossover from the ballistic regime to the
diffusive one may take place. The thermal transport in such a
“transitional” regime can be considered within the framework
of the so-called quasiballistic approach [30], which allows one
to avoid difficulties in taking phonon interactions into account
and express the thermal conductance coefficient in terms of
the nanotube length and the lf value.

Nevertheless, some important unsolved problems still exist
even in the low-temperature range, which is relatively simple
for developing theoretical models. Despite the fact that the
Landauer’s ballistic approach was applied to investigate the
phonon thermal conductance (PTC) of SWCNTs several
times [24,31,32], the case of double-walled carbon nanotubes
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(DWCNTs) still has not been studied well. Obviously, this
fact can be associated with difficulties in the modeling of
phonon spectra since many DWCNTs are incommensurate
systems. Although the thermal conductivity of commensurate
DWCNTs was studied in a number of papers [33–37] by means
of molecular dynamics simulations, the results obtained by
the authors of these articles cannot be directly or indirectly
compared with the theory we propose. In Refs. [33–37]
neither the results of thermal conductivity calculations in
low-temperature range nor the phonon spectra of considered
commensurate DWCNTs are presented.

In this paper, to develop the PTC theory, we combine
the Landauer’s ballistic approach with the simple continuous
model proposed for the calculation of the low-frequency
phonon spectra of both single- and double-walled CNTs.
The use of continuous approach allows us to obtain simple
analytical expressions for the frequencies of all the modes that
mainly contribute to the resulting low-temperature PTCs.

The dependence of PTC on temperature is obtained for
both individual nanotubes and those interacting with their
environment. For free individual CNTs, all such dependencies
tend to zero with T → 0 and have the same slope in this
point, which is explained by the specific quantum nature of
PTC in 1D systems [31,32,38,39]. However, starting from
3–6 K [this temperature depends on the nanotube type and
its diameter(s)], the PTC increases faster than the linear
function, since the low-frequency modes of dispersion curves,
which do not tend to zero together with the wave vector,
are excited. Besides, we have revealed that a temperature
T0 about 15 K is very important for the characterization
of PTC in DWCNTs. Studying and comparing the PTC of
a DWCNT (PTCD) with the thermal conductances of inner
(PTCi) and outer (PTCo) uncoupled nanotubes (forming this
DWCNT), we have obtained that if T < T0 then the modes
corresponding to the relative motion of the walls in DWCNT
are frozen and, as a result, the following relation takes place:
PTCi < PTCD < PTCo. At temperatures higher than T0, PTCD

exceeds both PTCi and PTCo but remains lower than their
sum (PTCi + PTCo). These utterly unexpected relations are
explained by the specific features found in the CNT dynamics.

Along with the theoretical investigation of ballistic PTC in
CNTs of different types, here we propose the simplest model
describing ballistic heat transfer in actively studied [40–45]
CNT composite materials. The model allows us to estimate
the upper possible values of TC in such composites and
demonstrate that CNT composites cannot challenge synthetic
diamond at 5 K < T < 100 K until the mean length of CNTs
in a composite material becomes at least one hundred of
micrometers. The fact that at ultralow temperatures, the TC
of CNTs increases with temperature faster (∼T) than the one
of diamond (∼T 3) does not improve the situation either.

The paper is organized as follows. The classical theory of
TC in one-dimensional systems (including individual CNTs)
is revisited in the next section. Section III is devoted to the sim-
plest theory describing low-frequency phonon modes in CNTs
since only these modes are excited at low temperatures. At
such excitations, neighboring atoms move with close phases,
just as it occurs when sound propagates in ordinary crystals.
Therefore, to calculate the frequencies of these “quasiacoustic”
modes in CNTs (both individual and interacting with environ-

ment), we adapt and revise the continuous theory of phonon
dynamics [46,47]. In Sec. IV, for SWCNTs and DWCNTs, we
derive and discuss the PTC temperature dependencies in the
frame of the continuous approach proposed. Finally, in Sec. V,
we compare the developed theory with known experimental
data and analyze future prospects of applying CNT composite
materials as macroscopic thermal conductors. The paper ends
with Conclusion.

II. BALLISTIC APPROACH TO THERMAL
CONDUCTANCE OF CARBON NANOTUBES

It is commonly accepted that the model of low-temperature
ballistic PTC originates in the pioneer papers of Landauer,
who considered a one-dimensional conductive channel when
studying the electrical conductance of metals. Assuming that
the electron mean free path in such a channel is much greater
than the channel’s length, Landauer obtained his famous
expression, which states that the electrical conductance value
can be quantized [28,29]. Later, his ideas were advanced in
Refs. [38,48] devoted to discussions of information flow in a
one-dimensional channel [48] and phonon heat transfer in a
quantum wire [38].

Let us note that the choice of the ballistic approach rather
than the quasiballistic one [30] for further consideration is
determined by the fact that the use of the latter is reasonable
at temperatures higher than the temperature limit of any CNTs
continuous dynamics theory (including the approach presented
in Sec. III).

As is generally known [3], heat in CNTs is mainly
transferred by phonons. Therefore let us consider the phonon
PTC of an individual free nanotube in detail. If the latter
is at constant temperature, then the heat flow transferred by
phonons from its left end to the right one is equal to the heat
flow transferred in the opposite direction. Let us denote the
absolute value of these flows as j . Then

j = 1

2L

∑
s,k

h̄ωs(k)η(ωs, T )
∂ωs(k)

∂k
ζs(ω), (1)

where k is a one-dimensional wave vector, ωs(k) is the
dispersion of a phonon mode with number s, ∂ωs(k)/∂k is the
group velocity, and η(ωs, T ) = 1/[exp( h̄ωs (k)

kBT
) − 1] stands for

the Bose-Einstein distribution. The function ζs(ω) corresponds
to the probability that a phonon with frequency ω of a
mode s is transferred from the one end of a one-dimensional
system to the other end without scattering [24,31,32,38,39,49].
In general, 0 � ζs(ω) � 1, but ballistic mechanism of heat
transfer by definition implies that ζs(ω) = 1.

Equation (1) is correct, in principle, for any one-
dimensional phonon heat conductor, where phonons possess
not only frequency but also wave vector. The total number of
resulting dispersion curves ωs(k) indexed by s depends on the
internal structure of a considered nanotube. In Ref. [38], where
a one-dimensional dielectric heat conductor was discussed,
variable s changed from 1 to 3. In SWCNTs (as in ordinary
crystals), the number of dispersion curves is three times greater
than m, where m is a number of carbon atoms per one nanotube
unit cell. Note that m is necessarily divisible by 4 [50].
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It should be pointed out that there are some difficulties with
application of Eq. (1) to DWCNTs. Two nanotubes, which
form a DWCNT, are often incommensurate to each other. In
this case, it is impossible to define a unit cell in such DWCNT
and, consequently, the notion of wave vector [which is present
in Eq. (1)] becomes unclear. However, for low-frequency
“quasiacoustic” modes (when neighboring atoms move with
close phases), the dynamics of DWCNT can be considered
in a continuous approximation. Thus, at low frequencies, the
wave vector notion is justified and Eq. (1) can be used at low
temperatures.

After the remark made above we can proceed further. Let
us assume that temperatures T1 and T2 are maintained at
the left and right ends of the nanotube under consideration,
respectively, and the value �T = T1 − T2 is sufficiently small.
Then the uncompensated heat flow �j is expressed as

�j = ∂j

∂T
�T . (2)

Substituting (1) into (2) and defining the PTC of a nanotube
as κ = �j/�T , we get

κ = 1

2L

∑
s,k

h̄ωs(k)
∂ωs(k)

∂k

∂η(ωs, T )

∂T
ζs(ω). (3)

Below, we start to utilize the ballistic approximation and
simplify Eq. (3) assuming that ζs(ω) = 1. However, we do
not use the total transmission function ζ (ω) = ∑

s ζs(ω) [51],
which is equal to the number of dispersion curves ωs(k)
crossing a line of constant frequency ω because, in our opinion,
there is no point in using it in the frame of ballistic approach.

For a SWCNT, the conversion of the sum in Eq. (3) into
a definite integral with respect to the wave vector k and
then replacing this variable to proceed to the integration over
frequency ω yields

κ = 1

2π

∑
s

∫ ωs |k= π
a

ωs |k=0

h̄ω
∂η(ω, T )

∂T
dω, (4)

where a is a period of the considered SWCNT. Equation (4)
clearly demonstrates that the thermal conductance of a
SWCNT is determined only by the frequencies of the phonon
modes in the center of the first Brillouin zone (FBZ) and on its
boundaries [24,31,32,38,39]. A substitution of x for h̄ωs/kBT

in Eq. (4) allows us to get

κ = k2
BT

h

∑
s

∫ xmax(s,T )

xmin(s,T )

x2ex

(ex − 1)2 dx, (5)

where xmin(s,T ) = ( h̄ωs

kBT
)|k=0 and xmax(s,T ) = ( h̄ωs

kBT
)|k= π

a
. At

T → 0, Eq. (5) tends to the constant value. To calculate it, let
us note that for a dispersion curve, which has zero frequency in
the center of the FBZ, limT →0 xmin = 0 and limT →0 xmax = ∞
and, consequently, the integral in Eq. (5) yields π2/3. Thus
each dispersion curve, which has zero frequency in the center
of the FBZ, makes a fixed contribution κ0 = π2k2

BT / 3h

to the PTC of SWCNT. Analogously, if a dispersion curve
has a nonzero frequency in the center of the FBZ, then its
contribution to Eq. (5) tends to zero at T → 0.

The quantization of PTC of a 1D system in the framework
of the ballistic approach was proposed for the first time in
Ref. [38] and later experimentally proven in Ref. [39]. It
is notable that the value κ0, which is the PTC quantum,
is universal and does not depend on the type of statistics
[38,52,53]. In addition, let us note that the energy of any
individual free nanotube should be invariant with respect to
four Goldstone’s variables corresponding to 3 translational and
1 rotational (about the axis of a nanotube) degrees of freedom.
Thus four dispersion curves of the phonon spectrum of any
free nanotube are to have zero frequencies in the center of the
FBZ, and the phonon PTC of any nanotube is to be equal to
κ = 4κ0 = 4π2k2

BT / 3h at T → 0. This fact is well known
both for CNTs and other one-dimensional heat conductors
[31,32,38,39].

Nevertheless, in order to calculate the thermal conductance
not only at T → 0 but also in a wider temperature region where
the ballistic approach is still applicable, one should take into
account the contribution of other dispersion curves, which have
small but nonzero frequencies in the center of the FBZ. That
could be done quite easily for any nanotube, which could be
considered in a continuous approach (its region of applicability
is justified for CNTs in the next section). Indeed, in a “virtual”
continuous one-dimensional system, the wave vector k is not
limited by the FBZ and the frequencies of all the dispersion
curves ωs(k) tend to infinity when increasing the absolute value
of k. Repeating the transition from Eq. (3) to Eq. (5) in the
continuous case, one can easily ascertain that Eq. (5) preserves
its form and the values of xmax(s,T ) always tend to infinity
(not only at T → 0). The low-frequency dispersion curves
of SWCNTs and DWCNTs and the calculation of reduced
frequencies xmin(s,T ) are considered in the next section.

III. LOW-FREQUENCY DYNAMICS OF SINGLE-
AND DOUBLE-WALLED CARBON NANOTUBES

INTERACTING WITH ENVIRONMENT

Graphene and SWCNTs represent 2D membranes of one-
atom thickness and, consequently, it is incorrect to describe
them within an ordinary elasticity theory, which is valid only
for membranes of a finite thickness [54–58]. As far as we know,
this drawback was overcome for the first time in Ref. [59],
where a continuous approach was proposed in order to derive
a free energy density g for a SWCNT. Later, in Refs. [46,47],
the expression for g was rewritten in equivalent form:

g = λ

2
(εii)

2 + με2
ij + 2K(�H )2, (6)

which we use below. In Eq. (6), λ and µ are 2D analogs
of the Lame coefficients, K is topological bending rigidity,
�H = H − H0 with H and H0 standing for nonequilibrium
and equilibrium mean curvatures of the surface, and εij is a 2D
strain tensor, which depends on H0 and the 3D displacement
field u = (ur,uϕ,uz) of a cylindrical membrane [46]. Let us
recall that the latter depends on an angle ϕ and a variable z,
which measures the distance along the cylinder axis. Using
standard equations of differential geometry, one can find that
the cylinder’s mean curvature deviation is linearized with
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respect to the field u and its derivative is equal to

�H = −�sur

2R2
, (7)

where �s = 1 + ∂2
ϕ + R2∂2

z [46]. It is worth noting that Eq. (6)
can result in the well-known linearized equations of motion
of a flat membrane [60], provided the appropriate expressions
for �H and εij are used.

Linearized equations of motion for a cylindrical membrane
(their solutions determine the dependences of the displacement
field u on the coordinates and time) are obtained by variation
of the functional

AR[u] = ∫
(
g(u) − ρ

2
u̇2

)
dSdt, (8)

where t is time, dS is the membrane area element, and ρ is
the surface mass density. To derive the motion equations, we
substitute dS = Rdzdϕ, �H , and εij in Eq. (8) and calculate

the variation. The resulting equations have the following form:

ürρR = −(λ + 2μ)

(
ur

R
+ ∂uϕ

R∂ϕ

)
− λ

∂uz

∂z
− K

R3
�2

s ur ,

üϕρR = λ+2μ

R

(
∂ur

∂ϕ
+∂2uϕ

∂ϕ2

)
+(λ + μ)

∂2uz

∂ϕ∂z
+μR

∂2uz

∂z2
,

üzρR = (λ+μ)
∂2uϕ

∂ϕ∂z
+(λ+2μ)R

∂2uz

∂z2
+λ

∂ur

dz
+μ

∂2uz

R∂ϕ2
.

(9)

In order to solve system (9), one should substitute uj =
u0

j exp[i(kz + nϕ − ωt)] in it, where j = r, ϕ, z, n is an integer
wave number, k is a one-dimensional wave vector, and ω stands
for circular frequency. Vanishing of the determinant of the
obtained dynamic matrix

M(R) =

⎛
⎜⎜⎝

λ+2μ

R
+ KX2

R3 − Rρω2 i
(λ+2μ)n

R
ikλ

−i
(λ+2μ)n

R

(λ+2μ)n2

R
+ μk2R − Rρω2 (λ + μ)nk

−ikλ (λ + μ)nk (λ + 2μ)k2R + μn2

R
− Rρω2

⎞
⎟⎟⎠, (10)

where X = R2k2 + n2 − 1, determines three real dispersion
laws ωj = ωj (k,n). The imaginary values of nondiagonal
blocks in (10) reflect the π /2 phase shift between the radial
and tangential components of the displacement field.

The approximation of free nanotubes described above is
quite rough. In a number of modern experiments, carbon
nanotubes are located in a bundle or elastic medium. Thus
the environment makes a contribution to the forces restoring
nanotubes to their equilibrium state when thermal vibrations
are excited. For individual nanotubes comprising any system,
Goldstone degrees of freedom disappear since the system
prevents free motion of nanotubes and, consequently, the
frequencies of all nanotubes’ modes cannot vanish at k → 0.
However, if a nanotube moves as a whole, then the elastic
forces, resisting the longitudinal translation and rotation
around the tube’s axis, are significantly smaller than the
forces resisting the radial motion [47]. Therefore only the
latter forces are taken into account below: a simple pinning
term C

2 u2
r is added to the density of free energy (6). In this

additional term, C stands for a coefficient, which describes the
value of interaction between a nanotube and its environment.
This additive also causes slight changes in Eqs. (9) and (10).
Namely, the terms −CRur and CR appear in the right part of
the first equation of the system (9) and in M11 element of the
dynamic matrix (10), respectively. Let us note that the value
of C depends on the material of a CNT’s environment and
consequently could be different for various systems.

As we have shown above, in the framework of the
continuous approach, the thermal conductance of CNTs is
expressed in terms of the frequencies of the phonon modes
with k = 0 only. At this value of the wave vector, the dynamic
matrix M becomes quasidiagonal and the frequencies ω1(n) of
stretching and ω2(n) of bending modes (ω1 > ω2) are obtained

for every n value by solving the following quadratic equation
in ω2:

ω4 −
[

η(n2 + 1)

ρR2
+ K(n2 − 1)

2

ρR4
+ C

ρ

]
ω2

+ ηn2

ρR2

[
C

ρ
+ K(n2 − 1)

2

ρR4

]
= 0, (11)

where η = λ + 2μ, and the frequency of the shear mode is

ω3(n) =
√

μ

ρ

n

R
. (12)

Correspondingly, the thermal conductance of a SWCNT in
the framework of the continuous approach is expressed as

κ = k2
BT

h

n=nmax∑
n=−nmax

3∑
i=1

∞
∫

xmin(n,i,T )

x2ex

(ex − 1)2 dx, (13)

where xmin(n,i,T ) = ( h̄ωi (n,k)
kBT

)|k=0 and nmax is derived from
the expressions that determine the limits of applicability of the
continuous model and are discussed below.

SWCNT phonons, which are indexed by n and k values,
can be characterized by the effective wave vector

keff =
√

k2 +
( n

R

)2
. (14)

The continuous approach is applicable to SWCNTs pro-
vided the effective wavelength 2π/keff is several times longer
than the interatomic distance aC−C = 0.142 nm. Thus we
assume that the continuous model works for all modes,
whose keff values are smaller than the limiting value of
klim

eff ≈ 11 nm−1. The latter estimation is easily obtained if the
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effective wavelength 2π/keff is taken to be four times longer
than aC−C .

Equation (14) shows that the continuous approach is correct
for the modes with k = 0 if the mode index n satisfies the
condition |n| � nmax, where nmax = Rklim

eff . It is clear that the
maximal frequency ωmax

i (n,k), corresponding to the limits
of applicability of the continuous approach, exists for each
dispersion curve with index |n| � nmax and wave number k =
kmax(n) satisfying Eq. (14). Therefore the error of calculation
of PTC by means of Eq. (13) is correlated with the fact
that the frequencies ωmax

i (n,k) do not tend to infinity and are
equal to finite values. The latter component of the error under
consideration is estimated as follows:

�κ = k2
BT

h

n=nmax∑
n=−nmax

3∑
i=1

∫ ∞

xmax(n,i,T )

x2ex

(ex − 1)2 dx, (15)

where xmax(n,i,T ) = ( h̄ωmax
i (n,k)
kBT

)|k=kmax . Thus the temperature
region of applicability of the continuous approach to the
ballistic PTC calculation is limited by the condition �κ � κ .

Let us end the discussion of limitations of the continuous
model with the following remark. The lengths of wave vector
k (at which the continuous approach still works) can exceed
the FBZ boundary of a particular SWCNT. It can then be
translated back to the FBZ by adding the corresponding
translations vectors of SWCNT’s reciprocal space. Thus the
dispersion curves of a SWCNT fold similarly to the case of
phase transitions when the unit cell of the crystal is multiplied.
When the dispersion curves are folded, some gaps (which are
small in the region of the continuous approach applicability)
can appear at the FBZ boundary. The small splitting of the
dispersion curves at the FBZ boundary can also lead to a small
additional error in the PTC calculation.

Now we proceed to DWCNTs, which can be also considered
in the framework of the suggested continuous model. Accord-
ing to Refs. [46,61], the van der Waals interaction between
two coaxial nanotubes forming the DWCNT has three simple
components:

Uj = Gj

2
∫ (

u
(1)
j − u

(2)
j

)2
dϕdz, j = r,ϕ,z, (16)

where Ur,Uϕ , and Uz are the contributions made by the radial,
tangential transverse, and tangential longitudinal interactions;
Gr,Gϕ , and Gz are the material constants describing these
interactions; u

(1)
j and u

(2)
j are the corresponding components

of the displacement fields of the inner and outer nanotubes
forming the DWCNT.

For the coupled cylindrical membranes, the equations of
motion are obtained by variation of the following functional:

A[u(1),u(2)] = AR1 [u(1)] + AR2 [u(2)]+
∫

(Ur + Uϕ + Uz)dt,

(17)

where ARi
[u(i)] are two functionals with the form (8); R1 and

R2 are the radii of the inner and outer nanotubes, respectively;
u(i) are the displacement fields of these nanotubes; t stands
for time, and ρ is the surface mass density, which is identical
for both nanotubes. The variation of functional (17) leads to a
system of six equations which correspond to the components

u
(1)
j and u

(2)
j , where j = r,ϕ,z. Let us note that the set of

three equations for the displacement field u(1) is similar to the
one for the field u(2). The difference between these sets and
the system (9) (which describes the single nanotube) is that
the terms Gj (u(1)

j − u
(2)
j ) and Gj (u(2)

j − u
(1)
j ) are added to the

sets for the outer and inner coupled nanotubes, respectively.
Substituting u

(α)
j = A

(α)
j ei(kz+nϕ−ωt), where j = r,ϕ,z and

α = 1,2, in the resulting equations of motion, we derive the
dynamic matrix D in the following form:

D =
(

M(R1) + E −E

−E M(R2) + E

)
, (18)

where the M(R1) and M(R2) blocks are obtained from the
matrix (10) by replacing radius R with Ri ; the matrix E is
diagonal and its elements are equal to the constants Gr,Gϕ ,
and Gz. The vanishing of the determinant of the dynamic
matrix (18) specifies six real dispersion laws: ωj = ωj (k,n).

Let us note that the low-frequency phonon spectrum of a
DWCNT substantially differs from the simple superposition
of the phonon spectra of the two SWCNTs comprising it.
This is due to the fact that four E blocks, which are equal to
each other and take into account van der Waals interactions
between DWCNT’s layers, appear in the dynamic matrix (18).
The addition of the diagonal E blocks to M(R1) and M(R2)
slightly increases the eigenfrequencies of the both SWCNTs.
In particular, this effect is the main reason why the frequencies
of breathinglike modes in a DWCNT are higher than the ones
of radial breathing modes in individual SWCNTs comprising a
DWCNT [46]. At the same time, if the antidiagonal - E blocks
were absent, then there would be no dispersion curves tending
to zero frequency at k → 0 and, in fact, the phonon spectrum
of a DWCNT would resemble a superposition of the spectra
of two uncoupled SWCNTs being in a quasielastic medium.
Let us stress that the presence of these blocks (taking into
account the interaction between coaxial CNTs) in the matrix
(18) leads to the substantial difference between the DWCNT’s
spectrum and the superposition of the spectra of two individual
SWCNTs. In particular, the interlayer interaction results in the
fact that the mode corresponding to the relative motion of
inner and outer SWCNTs normal to the nanotubes’ mutual
axis (when the mass center is preserved) stops being of a
Goldstone’s type, and this relative motion of two nanotubes
leads to appearance of the restoring force. For the same reason,
the frequency of this doubly degenerate mode cannot be equal
to zero at k = 0. In the same way, the frequencies of the
modes corresponding to the relative rotation and slipping of
two SWCNTs are not equal to zero at k = 0 either, because
interlayer van der Waals interaction leads to the appearance of
the tangential restoring forces. Thus, after a “virtual” formation
of a DWCNT from individual SWCNTs, only four dispersion
curves (out of eight) preserve zero frequencies at k = 0.
Consequently, at T → 0, the PTC of any free DWCNT is
the same as the PTC of any free SWCNT.

The environmental influence on a DWCNT could be taken
into account similarly to the case of a SWCNT—by adding the
term CR2(u(2)

r )2/2 to the free energy density g(u2) of the outer
nanotube. Thus one should obtain the corresponding changes
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in the equation of motion for u(2)
r and the dynamic matrix (18):

D → D′ =
(

M(R1) + E −E
−E M(R2) + E′

)
, (19)

where the matrix E
′
differs from E only by one element, E′

11 =
Gr + CR2.

At k = 0, the matrices (18) and (19) become quasidiagonal
[as the matrix (10)] and split into 2D and 4D blocks. However,
the resulting analytical equations for phonon frequencies are
too cumbersome to present them here. Note also that the
Eqs. (13) and (15) should be slightly changed to calculate
the PTC of DWCNTs and estimate the error of the continuous
approach. The only difference between the cases of DWCNTs
and SWCNTs is that in the modified equations one should
sum over the six phonon modes for every n. A more detailed
application of the results obtained above to calculation of CNT
thermal conductance is given in the next section.

IV. NUMERICAL ESTIMATIONS AND DISCUSSION
OF CNT THERMAL CONDUCTANCE

In order to use the continuous model described in
Sec. III, one should know the values of the material
constants λ, μ, and K. Taking the values of sound velocity
in graphene viLA ≈ 21.3 km/s, viT A ≈ 13.6 km/s [62]
and an estimation K ≈ 2.1 Ev [63] along with the
known formulae viLA = √

(λ + 2μ)/ρ, viT A = √
μ/ρ

[46] we obtain the reduced material constants
λ/ρ ≈ 2400 cm−2 nm2, μ/ρ ≈ 5200 cm−2 nm2, K/ρ ≈
12,5 cm−2 nm4, where ρ ≈ 0.762 mg/m2. The chosen
system of units enables us to measure a CNT’s diameter in
nanometers and the frequency of modes in cm−1. Certainly,
when a graphene sheet is rolled up into a carbon nanotube and,
as a result, the surface acquires finite curvature radius, these
material constants could be slightly changed in comparison
with the ones of graphene. Nevertheless, due to the fact
that the relation between the frequency of SWCNT’s radial
breathing mode and its diameter (which is easily derived in
the framework of the continuous approach) scarcely depends
on the nanotube chirality, we assume the material constants of
graphene and carbon nanotubes to be equal to each other. Let
us note that the chiral vector of SWCNTs (which determines
the type of their electrical conductance) influences mainly the
high-frequency part of CNT vibrational spectrum [50,64,65],
originating from the optical modes of graphene. These modes
are not described by the model under consideration.

Now let us digress to make an important remark about
the free energy density of 2D membranes described in the
framework of the continuous approach. The relation between
the change of the mean curvature and the bending energy of a
2D membrane [the last term in Eq. (6)] was presented much
earlier than in Ref. [59]. The first references date back to 1970s
[66,67]. Later an alternative and more cumbersome relation
for the free-energy density of a cylindrical membrane was
proposed [68]: it included not only the term proportional to the
squared mean curvature change but also the ones proportional
to the product of �H and the diagonal components of the 2D
strain tensor. From the symmetrical point of view, such terms
are acceptable in the expression for the free energy density of

a cylindrical membrane because they satisfy the translational
and rotational invariance conditions. However, using the values
of the reduced material constants, we have found that the dis-
persion curves obtained by solving the equation det |M| = 0
[see matrix (10)] and by means of the model [68] coincide
within 1% provided the curves are compared in the limits of
the continuous approach applicability. Thus there is no point
in applying the more complicated model [68] in the present
work.

A. Thermal conductance of an individual free SWCNT

The known material constants λ, μ, and K and the
explicit forms of Eqs. (13)–(15) allow us to estimate the
temperature limits of applicability of the continuous model for
the calculation of SWCNT thermal conductance. Supposing
�κ/κ < 0.01 and assuming that the typical SWCNT radius
is greater than 0.6 nm, but less than 1.5 nm, we obtain the
applicability region of the model up to 75 K. Let us also
note that the value �κ (15) does not directly determine the
error of PTC calculation. Due to approximations discussed
in the previous section, the relative error of PTC calculation
may be several times higher than the value �κ/κ . Let us
also remark that the applicability region of the continuous
approach depends on CNT radius, because the more the radius
is, the more the nmax value becomes [see Eqs. (14) and (15)].
However, the contribution to �κ from the dispersion curves
with large values of n is small, and our estimations show that
the temperature dependence of the model’s applicability limit
is very weak.

Let us note that for the material constants found above, the
following relation takes place:

η = λ + 2μ 
 K

R2
. (20)

Therefore, in addition, assuming that η 
 CR2, one can
solve Eq. (11) approximately, but with a good accuracy. For
SWCNTs, the approximate frequencies ω1(n) and ω2(n), the
stretching and bending modes, respectively, are

ω1(n) ≈
[

λ + 2μ

ρR2
(n2 + 1) +

(
ω2(n)

n

)2
] 1

2

, (21)

ω2(n) ≈ n√
n2 + 1

[
K(n2 − 1)

2

ρR4
+ C

ρ

] 1
2

. (22)

Equations (21) and (22) allow us to relate simply the
cylindrical geometry with the flat one. In order to do it,
we introduce an effective wave vector q = n/R and neglect
the small contribution of ω2(n) to ω1(n). Furthermore, it is
seen that at n → ∞ and C = 0, Eqs. (21) and (22) turn into
the well-known dispersion laws for the longitudinal acoustic
and bending modes of planar graphene: ω1(n) = √

η/ρ q,

ω2(n) = √
K/ρq2.

Equation (22) determines the frequencies (at k = 0) of
the lowest frequency bending modes, which make the most
significant contribution to the ballistic PTC of SWCNTs.
Figure 1 depicts the PTC dependencies on temperature for
two free SWCNTs, which are of 0.61 and 1.5 nm in radius.
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FIG. 1. Thermal conductance of individual SWCNTs (9, 9) and
(26, 18). Curves with numbers 1 and 2 correspond to the nanotube
with the larger radius, curves with numbers 3 and 4 to the one with
smaller radius. Black line demonstrates the common low-temperature
linear limit of thermal conductance of individual free nanotubes.
The curves denoted with solid lines are obtained in terms of
Eqs. (11)–(13). On the contrary, the curves denoted with dashed lines
are calculated by means of approximate Eq. (23). The inset shows the
function f (x) = ∫x

0
t2et dt

(et −1)2 .

The first SWCNT could have (9, 9) indices and the second one
(26, 18). At the lowest temperatures, only the modes of the
dispersion curves, which tend to zero frequency at k = 0, are
excited and the phonon PTC (being independent on SWCNT
radius) is expressed as κ = 4κ0 = 4π2k2

BT / 3h [31,32,38,39].
Along with the temperature rise up to 3–6 K, the lowest-energy
bending modes with frequencies (22) and n � 2 are excited
and PTC grows faster than the linear function. Let us note
that the more CNT’s radius is, the faster the PTC grows with
temperature.

It is also interesting that within the temperature limit of
the continuous approach applicability, the most significant
contribution to the ballistic PTC is made by the acoustic and
bending modes: it is about 80% for a SWCNT of 1 nm in
radius even at T∼73 K. Thus, in order to estimate the thermal
conductance of a SWCNT, we can use the following simple
expression:

κ = 2
k2
BT

h

nmax∑
n=0

∫ ∞

h̄ω2(n)
kB T

x2ex

(ex − 1)2 dx, (23)

where frequencies ω2(n) are determined by Eq. (22). Note that
for a free nanotube (C = 0) the terms with n = 0 and n = 1
make the conventional contribution 4κ0 to Eq. (23).

Let us note that Eq. (23) turns out to be quite accurate:
for a SWCNT of 1.5 nm in radius at T < 11 K the PTC
values obtained using the approximate Eq. (23) and in terms
of Eqs. (11)–(13) agree within 1% (see Fig. 1). For SWCNTs
of smaller radii, the temperature region where the error is no
more than 1% broadens and reaches the temperature of 30 K
for a SWCNT of 0.61 nm in radius.

B. Thermal conductance of an individual free DWCNT

In order to consider the thermal conductance of an
individual free DWCNT, we need to know the values of
the coefficients describing the van der Waals interaction
between its layers. One can estimate the value of Gr using the
known relation [46] between the frequencies of breathinglike
modes of DWCNTs and radial breathing modes of individual
SWCNTs. Let us note that Gr slightly depends on the radii of
the inner and outer nanotubes comprising a double-walled one.
For the DWCNTs considered in Ref. [46], 1890 � Gr/ρ �
4010 cm−2 nm, while 0.8 � R1 � 1.23 nm (where R1 stands
for the inner radius of a DWCNT). The values of the material
constants Gϕ and Gz can be estimated only indirectly, using
the graphite elastic moduli [61]. It is justified by the fact that
the distance between graphite layers approximately equals
to the interlayer one in DWCNTs. This approach cannot allow
us to distinguish between the constants Gϕ and Gz, thus we
assume their values to be equal to each other (even though
the symmetry of a DWCNT implies their difference). As a
result, the following relations between Gr,Gϕ , and Gz could
be obtained:

Gr

Gϕ

≈ Gr

Gz

≈ v2
LA

v2
TA

≈ 7.75, (24)

where vLA and vTA are the velocities of the longitudinal and
transversal acoustic modes of graphite, respectively.

Using the values of all material constants, one can estimate
the temperature limit of the model applicability to the DWCNT
case. For typical DWCNTs, 0.6 � R1 � 1.8, 0.9 � R2 �
2.2 nm, and the calculation, performed similarly to SWCNTs,
limits the model by a temperature about 54 K.

We have calculated the PTC temperature dependence for
the DWCNT (22, 14) at (40, 1) (R1 = 1.23 nm,R2 = 1.58 nm)
as an example. The values of Gr for this nanotube were taken
from Ref. [69], Gr/ρ ≈ 3850 cm−2 nm, after that, Gϕ and
Gz were obtained in terms of Eq. (24): Gϕ/ρ = Gz/ρ ≈
500 cm−2 nm. Solving the equation det |D| = 0 numerically
at k = 0 and C = 0 and using the generalization of Eq. (13)
for the case of a DWCNT (summation is to be over i from 1
to 6), one can easily obtain the plots presented in Fig. 2.

Note that the temperature T0, which is about 15 K, is
very special for the plots demonstrating PTC of DWCNTs.
Comparing the thermal conductance of the DWCNT (22, 14)
at (40, 1) (PTCD) with those of the inner (PTCi) and outer
(PTCo) uncoupled nanotubes (forming this DWCNT), one can
see that if T < T0 (which is about 14 K in the case), then
PTCi < PTCD < PTCo, else PTCD exceeds both PTCi and
PTCo but remains lower than their sum PTCi + PTCo (see
Fig. 2). This behavior is typical of DWCNTs and it is explained
by the peculiarities of their low-frequency spectrum, which is
determined by the equation det |D| = 0.

Let us consider this spectrum in more details. As we have
already mentioned above, the secular equation det |D| = 0
splits at k = 0 into the ones of second and fourth orders.
Analyzing the finite solutions of the latter equation at η → ∞
and taking into account that Gr 
 K/R1

3, one can easily
obtain the approximate expressions ωl(n) and ωh(n) for
the lowest frequency bending-like and composite (relative
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FIG. 2. Comparison of thermal conductance of the free DWCNT
(22, 14) at (40, 1) and individual SWCNTs comprising it. Dashed and
dotted lines demonstrate thermal conductances of the outer and inner
nanotubes, respectively. Solid lines correspond to the thermal con-
ductance of the individual DWCNT. Dash-dotted line demonstrates
the sum of thermal conductances of individual SWCNTs. The inset
shows the same curves on a larger scale.

shear-bending) modes, which play a key role in the ballistic
PTC of DWCNTs:

ωl(n) ≈ n√
(n2 + 1)(R1 + R2)

×
[

K(n2 − 1)
2

ρ

(
1

R3
1

+ 1

R3
2

)
+ CR2

ρ

]1/2

, (25)

ωh(n) ≈
{(

1

R1
+ 1

R2

)
Grn

2 + Gϕ

ρ(n2 + 1)
+ 1

R1 + R2

n2

n2 + 1

×
[

K(n2 − 1)
2

ρ

(
R2

R4
1

+ R1

R4
2

)
+ CR1

ρ

]} 1
2

, (26)

where ωl(n) < ωh(n) and k = 0. It is interesting that the
expression ωh(0) exactly determines the frequency of the
mode corresponding to the relative rotation of inner and outer
nanotubes. Since in our minimal model Gϕ = Gz, ωh(0) also
coincides with the frequency of relative slipping of inner
and outer nanotubes. Besides, note that Eq. (26) yields good
accuracy provided η 
 Grn

2

(n2+1)2 R1. Therefore the maximal

error in ωh(n) is found at n = 1, e. g., for the DWCNT
(22, 14) at (40, 1), the relative error is about 9%. At n � 2, the
accuracy of Eqs. (24) and (25) significantly increases until the
condition Gr 
 Kn4/R1

3 is satisfied.
Equations (25) and (26) allow us to understand why

PTCi < PTCD < PTCo at T < T0. Let us introduce an ef-
fective radius of a DWCNT, which is given by Reff =
[(R1 + R2)R3

1R
3
2/(R3

1 + R3
2)]1/4, and, consequently, R1 <

Reff < R2. After the substitution of Reff into Eq. (25), the latter
equation and Eq. (22) obtain an identical form provided C = 0.
Thus T0 is the temperature where the modes with frequencies
(26) are not exited and the thermal conductance of a DWCNT

FIG. 3. Thermal conductance of individual DWCNTs (15, 1) at
(19, 8) and (29, 25) at (42, 22). Curves 1 and 2 correspond to the
nanotube with larger radii, while curves 3 and 4 to the nanotube with
smaller ones. Black line demonstrates the common low-temperature
linear limit for all individual free nanotubes. The curves denoted with
solid lines are obtained in frames of the ballistic approach using the
phonon spectrum calculated from the secular equation det |D| = 0.
On the contrary, the curves denoted with dashed lines are obtained
by means of approximate Eq. (27).

is equivalent to that of a SWCNT with the effective radius
Reff . At T > T0, the higher frequency part of a DWCNT’s
vibrational spectrum is excited and PTCD starts to exceed both
PTCi and PTCo. In the light of all these considerations, one
can estimate the low-temperature PTC of a DWCNT using the
following approximate expression:

κ = 2
k2
BT

h

nmax∑
n=0

∑
α=l,h

∫ ∞

h̄ωα (n)
kB T

x2ex

(ex − 1)2 dx, (27)

where the frequencies ωα(n) are calculated using Eqs. (25)
and (26).

Thus the approximate Eq. (27) takes into account only
the contribution of the lowest frequency bendinglike and
composite modes. To analyze the quality of such approxi-
mation, we have chosen two DWCNTs, which are (15, 1)
at (19, 8) with R1 = 0.61 nm,R2 = 0.94 nm, and (29, 25) at
(42, 22) with R1 = 1.83 nm, R2 = 2.2 nm. According to
Ref. [46], the Gr/ρ moduli for these nanotubes are about 3150
and 3630 cm−2 nm, respectively. For each of these DWCNTs,
we have computed two plots: the first one is obtained by means
of Eq. (27) and the second calculation uses the direct numerical
solution of the secular equation. For the thicker DWCNT at
T < 10 K, both plots agree within 1% accuracy (see Fig. 3). In
turn, for the DWCNT of smaller radius, the temperature region
of that accuracy broadens up to 15 K. For both DWCNTs even
at T = 54 K, which is the temperature limit of the continuous
model applicability, Eq. (27) yields more than 70% to the total
PTC of both DWCNTs.

As it has been already stated in Introduction, the phonon
spectra of commensurate DWCNTs may be calculated
more precisely beyond the framework of continuous theory.
Nevertheless, as far as we know, there is only one paper
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FIG. 4. Thermal conductance of an individual DWCNT (5, 5) at
(10, 10) obtained within the framework of our model (solid line) and
calculated on the basis of the phonon spectrum presented in the paper
by M. Damnjanovic et al. [70] (dashed line).

[70], where such calculations are performed analytically.
In this article, devoted to symmetry and peculiarities of
commensurate DWCNTs dynamics, a phonon spectrum of
an individual DWCNT (5, 5) at (10, 10) obtained within the
framework of the force-constant model is presented. In order
to verify our model, we have calculated the ballistic thermal
conductance of the same DWCNT and compared the obtained
results with ours (see Fig. 4). As it can be seen, the thermal
conductance calculated on the basis of the phonon spectrum
[70] increases with temperature slightly faster that is due to
some difference in frequencies of the spectra obtained within
the approaches compared.

In our opinion, such difference in the spectra is mainly
explained by the fact that the value of “effective” bending
rigidity of the nanotube (which greatly depends on the choice
of fitting parameters used in force-constant model [70]) turns
out to be a bit less than the value we have taken from the
more recent Ref. [63]. Owing to the smaller value of effective
bending rigidity in Ref. [70], some phonon dispersion curves
lower their frequencies. For instance, at k = 0 frequency, the
difference can reach the value of several tens of cm−1 for
some modes with wavenumbers, which do not exceed their
upper limit in the continuous model. Consequently, the thermal
conductance calculated on the basis of the phonon spectrum
presented in the paper by M. Damnjanovic et al. [70] increases
with temperature slightly faster.

It is also worth noting that in Ref. [70] the doubly degenerate
transverse acoustic mode has a linear dispersion, although, as
it is generally accepted, this mode is to have a quadratic one,
according to the pioneer work in Ref. [71]. Thus the paper by
M. Damnjanovic et al. [70] possibly needs sufficient revision,
which, in our opinion, is beyond the scope of the present
work. It is probable that a comparison of our theory with a
more precise force-constant model of commensurate DWCNT
dynamics could lead to a better match of both predicted phonon
spectra and the physical properties of DWCNTs determined
by them.

FIG. 5. The ratio κint/κfree of the thermal conductance of a
pinned CNT and that of a free one. Curve 1 shows the temperature
dependence of this ratio for the DWCNT (15, 1) at (19, 8), while
the curve 2 does it for the SWCNT (18, 1). The inset shows the
temperature dependencies of PTC for the chosen CNTs. Solid curves
correspond to the free nanotubes; the dashed lines were obtained
provided that the interaction between CNTs and their environment
was taken into account (C/ρ = 50 cm−2).

C. Environmental influence on thermal conductance

Now we return to the fact that in the majority of ex-
periments, CNTs do interact with their environment and,
therefore, cannot be considered as free ones. The radial pinning
introduced previously in our model leads to the halving of
PTC of any CNT at T → 0, because the CNT pinned in
a such way loses half of its Goldstone degrees of freedom.
At the same time, the weak radial pinning barely influences
the frequencies of the experimentally observed modes of
SWCNTs and DWCNTs. In particular, at C/ρ < 500 cm−2,
the shift of the radial breathing mode of a SWCNT is less
than the experimentally measurable instrumental error, namely
1 cm−1 [47].

However, the introduced pinning strongly affects the fre-
quencies of bending modes of SWCNTs [see Eq. (22)], since at
small n the values Kn4

R4 and C turn out to be of the same order
of smallness. Nevertheless, the contribution of any phonon
mode to PTC is determined not only by its frequency but
rather by the temperature-dependent value xmin = h̄ωi

kBT
[see

Eqs. (11) and (12)]. Thus, if we discuss the experimentally
considered temperature region starting at 8–10 K, then the
weak environmental influence is not crucial. At sufficiently
high temperatures T > Tc, a correction to xmin caused by
pinning turns out to be small and Tc can be estimated as

T 2
c 
 Ch̄2

ρk2
B

. (28)

A similar consideration is also applicable to DWCNTs
with the only difference that the right part of Eq. (28) is
multiplied by R2

R1+R2
and, consequently, the temperature region,

where pinning should be taken into account, narrows. Our
conclusions are illustrated in Fig. 5, where the environmental
influence on the PTC of the SWCNT (18, 1) and the DWCNT
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(15, 1) at (19, 8) is shown. Note that the radius of the former
nanotube is equal to the effective radius of the latter one.

V. COMPOSITE MATERIALS WITH CNTs
AS HEAT CONDUCTORS

All experimental studies of individual carbon nanotubes
are quite difficult and most of TC measurements are carried
out on samples consisting of SWCNT ropes or bundles. So,
to compare predictions of the developed theory with the
known experimental results, we have to relate the PTC of
individual CNT with the TC of a bulk material containing
CNTs. We solve this problem in the simplest way and consider
a hypothetic composite material representing a heat insulator
matrix containing heat conducting CNTs with a volume
concentration c. Let the CNTs be arbitrarily oriented and
have a mean length L. The concentration c is supposed to
be small, thus the nanotubes are freely distributed throughout
the composite and their different orientations are equally
probable. Following the results of Ref. [45], we further
simplify the model and assume that the thermal conductance
between the ends of CNTs is infinite. Let a considered sample
of composite material have the length H and the cross-sectional
area S. Then the probability that an arbitrary chosen nanotube
crosses the section S is expressed as

P = L cos θ

H
. (29)

If there is a certain temperature gradient gradT between the
ends of the bulk sample, a temperature difference between the
ends of any nanotube is given by

�T = L cos θgradT , (30)

where θ is the angle between the nanotube orientation and
the direction of gradT . Thus a total heat flow J across the
section S is calculated as an average over all possible nanotubes
orientations:

J = 〈HScP�j 〉. (31)

Taking into account that the mean value of cos2θ over the
sphere equals 1/3, we obtain the following expression for the
TC χ of the considered hypothetical composite:

χ = cL2

3
〈k〉. (32)

where 〈k〉 is the mean thermal conductance of a single CNT.
Figure 6 shows the comparison of our results with the

experimental data [3]. Using Eq. (32), we have fitted the
experimental TC [3] of the sample containing SWCNT
bundles. The average nanotubes’ length and radius were taken
from the same Ref. [3]. The best fitting of experimental data
is achieved at c ≈ 2.49 × 106 μm−3 and C/ρ ≈ 100 cm−2.

In conclusion of this paper, we will also consider the
prospect of applying the CNT-based composite materials as
bulk heat conductors. For this purpose, let us estimate the
highest possible TC of such material. Recall that Eq. (32)
was obtained in the limit of small nanotube concentration.
In the opposite case of the maximal concentration (which
corresponds to the maximal TC of the material), all nanotubes
should be parallel to each other and CNT concentration in

FIG. 6. Experimental thermal conductivity [3] (empty circles) of
a sample containing SWCNT bundles; SWCNTs in the sample studied
in Ref. [3] had a mean length of 100 nm and a mean diameter of
1.4 nm. The data fit (solid curve) was performed using Eq. (32).

the matrix turns out to be inversely proportional to the mean
volume occupied with one nanotube. Thus the TC coefficient
becomes proportional to the average nanotube length L and its
explicit form reads

χ = 2
√

3L

3R2
a

〈κ〉, (33)

where Ra is a mean distance between the nanotube axes in
the perfect composite. Using Eq. (33), one can easily obtain
the upper possible value for the TC of the hypothetical perfect
composite material, in which the heat transfer is carried out
by CNTs only. Note that the TC coefficient 〈κ〉 is a slowly
increasing function of the CNT radius. Since the denominator
of Eq. (33) contains R2

a , then the highest value of TC coefficient
χ is reached in composite materials consisting of CNTs with
the minimal possible radii. Also, since TC of any DWCNT
exceeds that of a SWCNT with the same radius at T >

15 K, it seems to be more effective to use DWCNTs instead
of SWCNTs when designing the most perfect composite
material. However, our further calculations demonstrate that
the advantage of DWCNT usage is very small.

We calculated the TC temperature dependencies for two
virtual ideal composite materials consisting of single- and
double- walled carbon nanotubes with minimal possible radii
(see Fig. 7). Since the mean length of CNTs is ordinarily of the
order of few micrometers, in our calculations it is assumed to
be 10 µm. In order to obtain the TC upper limit, the interaction
between individual nanotubes in the composite is neglected
(C/ρ = 0 cm−2). As our estimations show, in spite of the
nearly linear dependence of the composite TC on temperature,
the diamond TC (which increases proportionally to T 3 at low
temperatures) starts to exceed the latter one at temperatures of
5–7 K (see inset in Fig. 7). Slightly going beyond the limits of
applicability of the continuous approach, here we extrapolate
the curves describing the TC of ideal composites up to 100 K.
It turns out that the obtained values of ideal composite’s TC at
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FIG. 7. Comparison of the thermal conductivities of diamond
and the virtual perfect composite materials consisting of carbon
nanotubes. TC plots of synthetic and natural (2a type) diamond
[72,73] are denoted with filled and empty circles, respectively. Curves
1 and 2 are the TC temperature dependencies for two ideal composite
materials (for more details see the text) consisting of SWCNTs (9, 9)
and DWCNTs (15, 1) at (19, 8), respectively. In both composites the
mean length of CNTs is chosen to be equal to 10 μm. The inset shows
the thermal conductivities of the materials listed above at T < 8 K on a
larger scale. Different outer radii of single- and double-walled carbon
nanotubes used in the composites considered result in different slopes
of curves 1 and 2 at T → 0 [see Eq. (33)].

T = 100 K are an order of magnitude less than the TC of both
synthetic and natural diamonds [72,73], whereas they are of
the same order as the TC of pyrolytic graphite [74]. Moreover,
according to our estimations, the unusually high values of
the TC coefficient at T = 100 K, which were reported in a
number of papers [9,11,14,22], could be implemented only in
long CNTs with a phonon mean free path lf > 50 μm.

Certainly, we can also consider the longer nanotubes. Since
Eq. (33) strongly depends on the nanotube mean length L,
increase in this value leads to a proportional rise of the
calculated TC. Nevertheless, it is obvious that to challenge the
diamond, the real composite material (in contrast to the ideal
one) should be based on defect-free nanotubes with the
mean length exceeding at least one hundred of micrometers.
Possibly, future progress in CNT synthesis will make the
production and application of bulk materials based on CNTs
of such length a reality. However, at present it seems more
effective to use for heat exchange not bulk CNT composites
but individual nanotubes, which can be successfully used in
different nanodevices.

VI. CONCLUSION

In this paper, we develop the theory of low-temperature
PTC of single- and double-walled CNTs. For this purpose,

we use the Landauer’s ballistic approach together with the
proposed model of continuous dynamics. It allows us to
calculate the low-frequency modes of phonon spectrum in both
free CNTs and the ones interacting with their environment. At
T < 75 K (this condition limits the region of joint applicability
of continuous theory and ballistic approach for SWCNTs),
the major contribution to the PTC of such nanotubes is made
by low-frequency acoustic and bending modes. Furthermore,
in the proposed framework, one can also consider DWCNTs,
but only up to a temperature of about 55 K. In this case,
a significant contribution to the PTC of a DWCNT is made
not only by the acoustic and bending modes, but also by those
corresponding to the relative rotation and slipping of two shells
of the DWCNT.

It is well known that in the temperature region near the
absolute zero, the PTC of free CNTs grows proportionally
to the temperature increase. However, as we have shown,
this temperature region is very small and starting from 3–6
K the PTC grows faster due to the consecutive excitation
of the numerous low-frequency modes of CNTs. We have
also obtained simple and previously unknown analytical
expressions for frequencies of these modes, as well as the ones
describing the PTC nonlinear dependence on temperature.

Considering the low-temperature PTC of free individual
SWCNTs and DWCNTs, we have established the relation
PTCi < PTCD < PTCo between the thermal conductance of
a DWCNT (PTCD) and the thermal conductances of the inner
(PTCi) and outer (PTCo) uncoupled nanotubes forming a
DWCNT. This relation is correct for temperatures less than
10–15 K. At such temperatures, the modes corresponding to
the relative motion of the tubular walls are frozen. Therefore
the thermal excitations in any DWCNT are fully equivalent
to the modes of a SWCNT of a particular effective radius.
The value of the latter is in between the radii of the inner
and outer nanotubes comprising a double-walled one. Along
with further temperature growth, PTCD exceeds both PTCi and
PTCo but remains lower than their sum. Thus the value of van
der Waals interaction between the tubular layers determines
the low-temperature thermodynamic properties of DWCNTs.

To compare our theoretical model with the available
experimental data on low-temperature TC of SWCNT bundles,
we use the minimal model describing the ballistic heat transfer
in CNT composite materials. This model allows us to estimate
the upper limits of low-temperature TC in such composites. It
was found that the perfect hypothetical CNT-based composite
can challenge diamond (the best-known heat conductor) only
when the mean length of defect-free CNTs in the composite
reaches at least one hundred of micrometers. Therefore, at
present, it seems not effective to apply bulk CNT-based
composite materials for the heat exchange.
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