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Doped free carriers can substantially renormalize electronic self-energy and quasiparticle band gaps of two-
dimensional (2D) materials. However, it is still challenging to quantitatively calculate this many-electron effect,
particularly at the low doping density that is most relevant to realistic experiments and devices. Here we develop
a first-principles-based effective-mass model within the GW approximation and show a dramatic band-gap
renormalization of a few hundred meV for typical 2D semiconductors. Moreover, we reveal the roles of different
many-electron interactions: The Coulomb-hole contribution is dominant for low doping densities while the
screened-exchange contribution is dominant for high doping densities. Three prototypical 2D materials are
studied by this method: #-BN, MoS,, and black phosphorus, covering insulators to semiconductors. Especially,
anisotropic black phosphorus exhibits a surprisingly large band-gap renormalization because of its smaller
density-of-state that enhances the screened-exchange interactions. Our work demonstrates an efficient way to
accurately calculate band-gap renormalization and provides quantitative understanding of doping-dependent
many-electron physics of general 2D semiconductors.
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I. INTRODUCTION

The field of two-dimensional (2D) materials has expanded
greatly in the past few years, featuring a broad range of
applications for electronic, photonic, and piezoelectric devices
[1-4], as well as exciting new physics to be realized, such as
2D ferroelectricity, ferromagnetism, and exciton condensate
[5-8]. Almost all the applications are premised on a good
understanding of the electronic properties of the material,
especially the quasiparticle band gap. The ab initio GW method
has been the most successful first-principles approach of
calculating the quasiparticle band structure of bulk crystals as
well as molecules and low-dimensional structures [9-12]. In
particular, well-converged G W results in 2D crystals have been
achieved recently as the accurate treatments to 2D screened
Coulomb interaction were established [13—-16]. However,
much less is known about how doping, a common theme in
the 2D semiconductors and its heterostructures [17-20], can
affect the electronic structure.

Doped free carriers have several effects that are particularly
enhanced on the electronic structure of low-dimensional
materials. First, the large density of states (DOS) from the
van Hove singularity magnifies the contribution from electron
occupation. Second, the screening from doped free carriers
has a stronger effect on lower-dimension structures because of
the weaker intrinsic dielectric screening. Third, free carriers in
low-dimensional systems form a low-energy acoustic plasmon
which can dynamically couple with quasiparticles. These
effects result in an enhanced many-body renormalization of
quasiparticles energy, as shown from previous theoretical
GW calculations in both semiconducting carbon nanotubes
[21,22] and 2D transition metal dichalcogenides (TMDs) [23],
and from experimental measurements [24—27]. More recently,
beyond the nonlinear quasiparticle band-gap renormalization
of several hundred meV, the optical gap of monolayer TMDs
was predicted to stay nearly constant due to a cancellation with
the renormalization of exciton binding energy [28]. However,
a complete picture of the quasiparticle renormalization within
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a wide range of doping density is not clear because of
the limitation of k-point-grid-based first-principle method in
resolving the low doping density, which is, however, the most
essential for experiments and devices. Moreover, previous
works and methods cannot be directly applied to studying
several newly emerged 2D materials such as black phosphorus
(BP), whose electronic structure is significantly anisotropic.

In this work, we have developed an effective-mass model
and applied asymptotic analysis to resolve band-gap renor-
malization, using the GW approximation and the framework
of previous work [23]. The effective-mass model supplements
the ab initio calculation by bridging the gap around low doping
density. It reveals that the change of the dielectric screening,
which appears in terms of the Coulomb-hole self-energy, is the
dominating contributing factor to the band-gap renormaliza-
tion at low doping density. The change in electron occupation,
which appears in term of the screened-exchange self-energy, is
more important at high doping density. Additionally, we study
band-gap renormalization of doped monolayer BP, where we
generalize our method to systems with strong anisotropy, and
show that the smaller DOS of BP near the band edge enhances
the band-gap renormalization at high doping density.

The rest of the paper is organized as follows: In Sec. II
we lay down the theoretical framework of our approach,
show the computational details, and discuss the materials’
intrinsic properties. In Sec. III we construct our effective-mass
model of the GW self-energy and band-gap renormalization
of doped h-BN and MoS,. In Sec. IV, we discuss band-gap
renormalization of monolayer BP, where our model is to be
generalized to anisotropic systems. Finally, the main results
will be summarized in Sec. V.

II. COMPUTATIONAL DETAILS
AND INTRINSIC PROPERTY

In this work, we choose three prototype monolayer 2D
structures, including hexagonal BN (k-BN), 2H-phase MoS,,
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and BP. They cover 2D materials from semiconductors to
insulators and from isotropic ones to anisotropic ones. To
study the effect of doping, we calculate the quasiparticle band
structure of these materials from the first-principles density-
functional theory (DFT) + G W method. The DFT calculation
serves as a mean-field starting point for the GW calculation.
It is performed using the plane-wave pseudopotential method
implemented in QUANTUM ESPRESSO [29]. The Perdew-Burke-
Ernzerhof (PBE) parametrization of the generalized gradient
approximation exchange-correlation functional [30] is used
along with a plane-wave cutoff of 90, 75, and 35 Ry for
h-BN, MoS,, and BP, respectively. Doping is introduced
by changing the total electron number with a compensat-
ing jellium background. This resembles the gate-tunable
electrostatic doping commonly seen in 2D materials. Our
calculation shows that doping has very little effect on the DFT
eigenvalues and wave functions. This is not surprising because
DFT is known for its deficiency at capturing many-electron
effects that are, however, crucial for our studied band-gap
renormalization.

Beyond DFT, we employ the GW approximation to study
quasiparticle energies. The self-energy in a doped material is
expanded into four terms:

Y =iGW =i(GinWint + §GWip + GinSW + 5GEW)
=Y+ 21 + 2 + X3, (1)

The first, “intrinsic” term (Xj,) indicates the self-energy
contribution coming from the intrinsic (undoped) system.
The second term (X;) is the self-energy correction due to
the change of electron (hole) occupation alone under the
intrinsic screening. The third term (X,) is due to the change
in screening, and the last term (X3) is related to both factors.
The calculation details of these doping-related terms will be
discussed in the next section. As we will see, the dielectric
screening W = ¢ ~!v and its change upon doping § W play a
central role in this band-gap renormalization.

The intrinsic term (Xj,) of the self-energy is calculated
with the usual GW routine implemented in the BERKELEYGW
package [11]. Truncated Coulomb interaction [31] is used
along with sufficient vacuum to eliminate interactions between
layers. The static dielectric function is calculated within
the random-phase approximation (RPA) with 8-Ry energy
cutoff, 120 and 140 conduction bands, and 24x24x1 and
28x20x 1 k-point grid, respectively, for 2-BN and BP, which
grants a converged band gap within 0.1 eV. For MoS,, 10-Ry
cutoff, 256 conduction bands, and 24 x24x 1 k-point grid is
used. Although it has been shown that the true convergence
of the band gap in MoS, would require a much larger
number of bands and dielectric cutoff [15], as far as our
main concern of band-gap renormalization goes, this set of
parameters is enough. This is because the doping effect is
mainly concentrated on small q and head (G = G’ = 0) part
of the dielectric function € lG (g,w)[23]. The dynamical part of
the dielectric function is then constructed from the generalized
plasmon-pole model.

Figure 1 shows the calculated static dielectric function
60_01 (g, = 0) of intrinsic 4-BN, MoS,, and BP. The dielectric
function approaches 1 as g — 0, following the formula
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FIG. 1. Static dielectric function e&,l (q,w = 0) of intrinsic ~-BN,
MoS,, and BP with the same size of vacuum (20 A).

6&)1(q) ~ 1/(1 4+ 2mwaypq), where the 2D polarizability aop
captures the macroscopic dielectric screening behavior of 2D
materials [32]. Due to this weaker screening, 2D semicon-
ductors and insulators have unusually large quasiparticle band
gaps, exciton binding energies, and band-gap renormalizations
compared with their bulk counterparts.

III. GW SELF-ENERGY AND EFFECTIVE-MASS MODEL:
h-BN AND MoS;

As we can see from Eq. (1), to determine the quasiparticle
self-energy of the doped system the primary goal is to find
the change in the dielectric screening, given by the dielectric
function Segé,(q,w) of a 2D crystal. To illustrate this process
in detail, we use p-doped #-BN as an example. #-BN is a wide-
gap 2D insulator which has been commonly used as substrate
and encapsulation for other 2D materials in van der Waals
heterostructures [33]. Its valence-band maximum (VBM) is at
the K point and its conduction-band minimum (CBM) at the
I" point.

For a doped system, the change to the dielectric screening
is concentrated on the head part of the dielectric func-
tion with small ¢ and low-frequency w and requires a
smaller number of bands to converge [23]. For this pur-
pose, within the first-principles approach, the static dielectric
function e&)' (g, =0) of the doped system is calculated
on a 120x120x1 k-point grid, as shown by the dots in
Fig. 2. For the frequency-dependent part, a simple plasmon-
3ep (4.0)05(9)

@?—wy(q)
e&)l (q,0) — ei;[l 00(q,0), well describes the difference between
the intrinsic and doped dielectric function, and the plasmon
frequency w,(q) is extracted from the ab initio calculation and
shown in the inset of Fig. 2.

Following Ref. [23], the GW self-energy of the doped
system can be calculated according to Eq. (1) term by term.

pole model 86&,1(q,w): , where (Se(i,l(q,O):
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FIG. 2. Static dielectric function of p-doped #-BN. Dots are from
the ab initio calculation and the solid lines come from the effective-
mass model. The inset shows the plasmon-pole frequency.

The first correction term X is given by

nk dzq %
SHE) == / (—fn,k,qun(k, -q,-G)

2
6o 2m)

X Mvn(kv —-q, — G/)ei;tl’G(;/(qu - 8n,k7q)
x vop(g + G), @

where v is the doped band index, f, is the electron occupation,
enk 1s the mean-field (DFT) energy, and M, (k,q,G) is the
plane-wave matrix element. This self-energy is calculated from
first principle by taking the difference of the total self-energy of
the intrinsic system from that of a doped one, both of which are
evaluated with the dielectric function of the intrinsic system.
To capture the change in occupation, the intrinsic dielectric
function is calculated on a relatively dense k-point grid of
36x36x1.

The other two terms X, and X5 are expressed in summations
that only involve intraband transitions with small momentum
as follows:

nk dzq 2
XYNE) ==+ W'Mnn(kv —q,0)]

S€g (4,0)

2+ ]

vop(q), 3)

nk qu 2
2:3 (E) = - Wafn,k—q“wrm(k, - ‘I,O)|

S€gy (4,0
X%Uz})(q). (4)
1 - [feet ]

@q(q)

The + in Eq. (3) is for conduction and valence states,
respectively. Due to the interaction of the quasiparticle with the
low-energy acoustic plasmon, ¥, and X3 contains a resonance
profile near the mean-field energy ¢,. To this end, we employ
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FIG. 3. On-shell self-energy of p-doped #-BN at VBM and CBM.
Dots represent the ab initio result and the solid line is from the
effective-mass model.

the “on-shell” approximation to ¥, and X3 by rigidly shifting
the whole resonance profile along the energy axis such that
the on-shell energy coincides with the QP solution [23]. The
on-shell self-energies X, ¥,, and ¥3 of the VBM and CBM
at K for p-doped n-BN calculated from first-principles are
shown by the dots in Fig. 3.

However, this first-principles approach suffers a drawback
as the dense k-point sampling required to accurately capture
the electron occupation and dielectric screening limits its
resolution at smaller doping density (~10'?/cm~2), which is,
unfortunately, the most useful range for device applications.
Therefore, we propose a first-principle-based effective-mass
model to solve this problem and gain insight for the band-gap
renormalization behavior at low doping density.

To construct the effective-mass approximation for the
dielectric function, we decompose the static polarizability
function x of the doped system as a sum of interband
transitions and intraband transitions within the doped band. We
assume the interband part remains the same as the polarizabil-
ity of the intrinsic system, neglecting the small contributions
from the virtual interband transitions near the VBM. The
intraband part, within the effective-mass approximation, is
approximated by the polarizability of the two-dimensional
electron gas (2DEG), given by the Lindhard function [34]:

NgN,m*
2

[ 4k
X [ 1=0(g —2kp), |1 ——= |, (5)
q

where Ny = N, = 2isthe spin and valley degeneracy, m* is the
effective mass of the 2DEG (m* = 0.78 for p-doped h-BN),
kp is the Fermi wave vector, and © is the step function. The
singularity of x2PEC at ¢ = 2k manifests itself as a kink in
the dielectric function, as indicated by the arrow in Fig. 2.

x*P(q.0 =0) = —
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Given the assumptions above, the static polarizabil-
ity within the effective-mass model is xgg(q.0) =
Xg“c,(q,O)+%X2DEG(q,0) for all G vectors with G, =
G, =0, where L is the cell periodicity in the z direc-
tion. The RPA dielectric function is then determined by
€66'(4.0) = 86 — xG6'(q.0)v2p(g + G'), where vyp(q) =
4—’;[1 — e Inl/2 COS(%)] is the 2D truncated Coulomb in-
teraction [28]. The input from ab initio calculations can
be further reduced by observing that the behavior of the
intrinsic polarizability xg“z;,(q,O) as ¢ — 0 is determined
by the 2D polarizability: Xg‘é;,(q,O)— Xg‘b,(O 0) — %~ q°
In practice, we find that only including the G, = 0 il
elements of xi;“z,(0,0) is sufficient to construct an effective-
mass model for 60_01 (q,0) that accurately reproduces the ab
initio one, as shown by the lines in Fig. 2. Meanwhile,
within the effective-mass approximation, the plasmon-pole

frequency follows the 2DEG dispersion relation w dDEG(q)

VES 4 9P+ s + 521/ + 4) [35], which also fits
the ab initio values well, as shown by the inset of Fig. 2.

With the effective-mass model, we calculate asymptotic
behavior of self-energy terms Eqgs. (2)—(4) in the low-density
limit. At low doping density, keeping only the leading
contribution, X; at the VBM reduces to

dZ
BVBM / G (@ Ozp(@). ©)
q<kr

Meanwhile, the on-shell self-energies ¥, and X3 are
reduced to the following as g — 0:

voni _1 d’q 5600_@0) van(@). ™)
(27[)2 1— wd(q)
d2
nYBM / q2 S€gy (4.0)v2n(q). ®)
q<kr (2 )

where the term &, /w,(q) is dropped from Eq. (4) because as
q—0,e5 x q* while wy(q) o /q s0 &4/wa(q) — 0. In the
leading order, both ¥, and X5 affect only the band which has
been doped (and does not affect the self-energy at the CBM),
while X, affects all states at the same time.

Equations (6) and (8) share a similar form of an integral over
the doped region. Equation (6) shows that 3 corresponds to
“bare” exchange energy of a 2DEG, where the bare interaction
refers to the screened interaction of the intrinsic system without
the additional screening from the 2DEG. Meanwhile, Eq. (8)
suggests that 33 corresponds to the difference between the
“bare” exchange and the screened-exchange energy of 2DEG.
In fact, X3 cancels most part of X, because ei;tl’oo(q,O) >

e()_ol(q,O) for g < kr and thus ¥; > ¥; 4+ X3. Their sum,

2

d°q
. On )2600 '(q.00vp(g), (9

is the actual screened-exchange contribution to the self-energy.
It grows linearly with the doping density because E&)l (g,0) is
linear in ¢ as ¢ — 0. Due to the 2DEG polarizability from
Eq. (5), it is also proportional to the inverse of the density-
of-state effective mass 1/N;N,m*. The linear behavior from
this asymptotic analysis, as shown by the red line in Fig. 3,

EVBM 4 EVBM /
q
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FIG. 4. (a) DFT and GW band structure of intrinsic #-BN. (b)
Renormalization of the direct band gap at K for p-doped /#-BN. Inset
shows the quasiparticle energy. Dots represent the ab initio result and
the solid line is from the effective-mass model.

accurately describes the ab initio results, even for the points
with relatively high doping density.

On the other hand, X,, which corresponds to the Coulomb-
hole part of the self-energy [36], has a very different asymptotic
behavior at low doping density. The integral in Eq. (7) goes
over the whole BZ. As the integrant, the change in dielectric
function & e&,] (¢g,0), given by the difference between the curves
in Fig. 2, is rapidly increasing at low doping density but
saturates at high doping density. This causes the term X, to
dominate the low-density part of the band-gap renormalization,
and saturate at high density. The self-energy calculated from
Eq. (7) is shown by the black and blue curves in Fig. 3 and
they are also in good agreement with the ab initio results.
To sum up, it is shown that the band-gap renormalization
is dominated by the nonlinear Coulomb-hole term (X,) in
the low doping density region, while the linearly increasing
screened-exchange term (X; + X3) takes over in the high
doping density region as the Coulomb-hole term saturates.

Finally, we show the quasiparticle band-gap renormaliza-
tion of p-doped A#-BN in Fig. 4. Based on our calculated DFT
and GW band structure shown in Fig. 4(a), intrinsic 2-BN has
an indirect band gap of 6.4 eV with VBM at the K point and
CBM at the I" point of the Brillouin zone. The direct band
gap at K is 7.3 eV. Figure 4(b) shows the renormalization of
the direct band gap at K. With hole doping, the band gap
drops rapidly by about 1 eV with doping density around
10" — 103 cm™2. With further increase in doping density,
the band-gap renormalization saturates to a slower rate. The
renormalizations of the VBM and CBM quasiparticle energy
are shown in the inset of Fig. 4(b). They are nearly symmetric
because the dominating Coulomb-hole self-energy term given
by Eq. (7), which is not sensitive to which band is occupied by
doped carriers, makes almost equal but opposite contribution
to valence and conduction bands. The slight difference is from
the fact that the screened-exchange term affects the doped
band, causing the VBM energy to have a larger shift than the
CBM at large doping density.

InFig. 5, we show similar results for the n-doped MoS,. De-
spite having a much smaller intrinsic band gap around 2.7 eV
(without considering the spin-orbit coupling), MoS, shares
similar honeycomb lattice structure and isotropic effective
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FIG. 5. (a) DFT and GW band structure of intrinsic MoS,.
(b) Quasiparticle band-gap renormalization of n-doped MoS,. Dots
represent the ab initio result and the solid line is from the effective-
mass model.

mass with A-BN. Therefore, MoS, shows a similar band-gap
renormalization behavior. A moderate doping density (around
10" cm™2) can induce a band-gap reduction of 400 meV.
The solid line is from our effective-mass model. It perfectly
captures the low-density results while slightly overestimating
the reduction for high doping densities. This is not surprising
because our effective-mass model does not include the band-
structure effects and the off-diagonal elements of the dielectric
function, which would gradually gain importance at higher
doping density.

IV. BAND-GAP RENORMALIZATION OF MONOLAYER BP

BP is a layered semiconductor that has attracted great
interest recently [20,37,38]. It has a direct band gap that is
tunable, with the number of layers ranging from 0.3 eV in
bulk to 2.0 eV in a monolayer [39]. Adatoms and doping have
been found to strongly affect the band gap of thin-film BP
[40]. It also shows strong in-plane anisotropy, which results
in unusual behaviors of anisotropic exciton and thermal and
electrical transport [41,42]. The band structure of monolayer
BPis shownin Fig. 7(a). The most special character is that, near
the band edge at the I" point, BP has a parabolic band dispersion
with large effective mass in the x (zigzag) direction and an
almost linear band dispersion with very small effective mass
in the y (armchair) direction. Consequently, the screenings in
intrinsic and doped BP are also anisotropic. Therefore, we must
modify the above isotropic effective-mass model to calculate
the band-gap renormalization in doped monolayer BP.

The static dielectric function 6&)1 (g, = 0) of intrinsic and
doped BP is calculated on a 112x80x 1 k-point grid and their
values along the x and y direction are shown in Fig. 6(a),
respectively. It is clear that the dielectric screenings of both the
intrinsic and doped system are anisotropic. Notably the kink
at g = 2ky due to the singularity in the 2DEG polarizability is
still present in the dielectric function of doped BP, although k
takes different values in the x and y direction. Before the kink
e~ ! is isotropic and corresponds to a constant polarizability
of the 2DEG despite its anisotropic effective mass, while after
the kink €~! turns up and merges into the intrinsic dielectric
function. It should be noted that although the effective mass
along the x and y direction differs by about a factor of 7, the
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FIG. 6. (a) First-principles static dielectric function of n-doped
BP in different direction. (b) Polar plot of the loss function in n-
doped BP. The dashed line is a fit to the plasmon frequency with the
anisotropic effective mass.

difference of the intrinsic and doped dielectric function is only
weakly dependent on the direction of q.

In contrast to the static case, the band anisotropy has a
much greater impact on the frequency-dependent part of the
dielectric function. The polar plot in Fig. 6(b) shows the loss
function Im[eo_o1 (g,w)] as a function of w and the direction of q.
The darker region in the plot corresponds to a peak in the loss
function corresponding to the plasmon excitation, showing
that the plasmon is highly anisotropic in BP. We find that
the angular-dependent plasmon frequency can be well fitted
cos?6 + sin%6

My my

by the relation wy(q) o , where m, = 1.22my

and m, = 0.16m, are the electron effective masses in the
two directions and 6 is the direction of g. Apart from this
anisotropy, the plasmon frequency follows the characteristic
of 2DEG and is proportional to /g and /n for small g and
low doping density . The screening properties of BP obtained
with our ab initio calculation agree well with a previous study
using the effective Hamiltonian approach [43].

The quasiparticle self-energy of the doped BP is expanded
similarly into X;, ¥, and X3 following Eq. (1). Each term is
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FIG. 7. (a) DFT and G W band structure of intrinsic BP. (b) Quasi-
particle band-gap renormalization of n-doped BP. Dots represent the
ab initio result and the solid lines are from the effective-mass model.
(c),(d) The on-shell self-energy X;, X,, and X5 at the VBM and CBM
as a function of doping density.

calculated according to Egs. (2)—(4) with the difference that
the integral over ¢ now needs to be done in 2D instead of
one dimension (1D). The ab initio static dielectric function
6&,1(q,a) = 0) and the plasmon frequency w,(g) on the 2D
grid is used as input for the integrals. We find these two-
dimensional integrals can be further simplified by modeling the
angular dependence of e&f (¢, = 0) and w,(q). By assuming
56&)1 (g, = 0) to be the average of the x and y direction and
isotropic, as well as using the angular dependence of w,(q)
shown above, we can further reduce the ¢ points needed for
the ab initio calculation only along the line I'-X and I'-Y.
This yields similar results to the full 2D integration with a
difference in the on-shell self-energy at VBM and CBM of
less than 10 meV.

The resulting quasiparticle band-gap renormalization of
n-doped BP is shown in Fig. 7(b). The quasiparticle band
gap drops rapidly from 1.95 eV to around 1.58 eV with light
doping up to density n = 2x10'2 cm~2. However, there is a
notable difference from ~-BN and MoS, that the band-gap
renormalization of BP is less saturated at high doping density.
As the inset in Fig. 7(b) shows, this is due to a continued
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decrease of the CBM quasiparticle energy at large doping
density, while the VBM quasiparticle energy has already
saturated to nearly constant. The on-shell self-energy values
at VBM and CBM, shown in Figs. 7(c) and 7(d), respectively,
reveal the reason behind this unusual behavior. Same as h-BN
and MoS,, the Coulomb-hole term X,, as shown by the red
curves, is dominant at low doping density but saturates at
higher doping density. However, the screened-exchange term
¥ 4+ X3 as shown by the magenta curve in Fig. 7(d), which
controls the CBM self-energy renormalization at high density,
is notably larger than that in #-BN and MoS,. As we have
discussed in the asymptotic analysis, the screened-exchange
self-energy is inversely proportional to the density-of-state
effective mass. Due to the lack of valley degeneracy and highly
anisotropic, quasi-1D band dispersion, electrons in BP have a
small DOS effective mass Jmy, ~ 0.44, which is about two
times smaller than MoS, and three times smaller than 4-BN.
The calculated slope of the screened-exchange self-energy
versus doping density is indeed three times larger for BP than
h-BN, which confirms that the smaller DOS of BP is the root
cause of its large, unsaturated band-gap renormalization.

V. SUMMARY

In summary, we have discussed the band-gap renormaliza-
tion in doped 2D materials within the GW approximation
for three prototypical materials: h-BN, MoS,, and black
phosphorus. We have combined ab initio results and effective-
mass model to determine the dielectric screening, quasiparticle
self-energy, and band-gap renormalization at arbitrary doping
density. With asymptotic analysis, we have shown that the
main contribution to the band-gap renormalization can be
separated into two terms. One is the Coulomb-hole term
coming from the change of the dielectric screening, which
is highly nonlinear and dominant at low doping density. The
other is the screened-exchange term coming from the change
in electron occupation, which is linear and more important
at high doping density. We have also studied the anisotropic
dielectric screening of BP. We find BP has a larger band-gap
renormalization at high doping density, which we attribute to
the smaller density of state of BP near the band edge.

ACKNOWLEDGMENTS

The authors are supported by the National Science Foun-
dation (NSF) CAREER Grant No. DMR-1455346 and NSF
Grant No. EFRI-2DARE-1542815. The computational re-
sources have been provided by the Stampede of Teragrid at the
Texas Advanced Computing Center (TACC). This work used
the Extreme Science and Engineering Discovery Environment
(XSEDE), which is supported by National Science Foundation
Grant No. ACI-1548562.

[1] Q. H. Wang, Q. Hua, K. Kalantar-Zadeh, A. Kis, J. N. Coleman,
and M. S. Strano, Electronics and optoelectronics of two-
dimensional transition metal dichalcogenides, Nat. Nanotech.
7,699 (2012).

[2] M. Bernardi, M. Palummo, and J. C. Grossman, Extraordinary
sunlight absorption and one nanometer thick photovoltaics using
two-dimensional monolayer materials, Nano Lett. 13, 3664
(2013).

155410-6


https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1038/nnano.2012.193
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y
https://doi.org/10.1021/nl401544y

RENORMALIZATION OF THE QUASIPARTICLE BAND GAP ...

[3] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle,
A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou,
S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi,
A. H. Castro Neto, and K. S. Novoselov, Strong light-matter
interactions in heterostructures of atomically thin films, Science
340, 1311 (2013).

[4] H. Tian, J. Tice, R. Fei, V. Tran, X. Yan, L. Yang, and H. Wang,
Low-symmetry two-dimensional materials for electronic and
photonic applications, Nano Today 11, 763 (2016).

[5] R. Fei, W. Kang, and L. Yang, Ferroelectricity and Phase
Transitions in Monolayer Group-IV Monochalcogenides,
Phys. Rev. Lett. 117, 097601 (2016).

[6] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao,
C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia,
and X. Zhang, Discovery of intrinsic ferromagnetism in two-
dimensional van der Waals crystals, Nature (London) 546, 265
(2017).

[7] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R.
Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire,
D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and
X. Xu, Layer-dependent ferromagnetism in a van der Waals
crystal down to the monolayer limit, Nature (London) 546, 270
(2017).

[81 . Wu, E Xue, and A. H. MacDonald, Theory of two-
dimensional spatially indirect equilibrium exciton condensates,
Phys. Rev. B 92, 165121 (2015).

[9] G. Onida, L. Reining, and A. Rubio, Electronic excitations:
Density-functional versus many-body Green’s-function ap-
proaches, Rev. Mod. Phys. 74, 601 (2002).

[10] M. S. Hybertsen and S. G. Louie, Electron correlation in
semiconductors and insulators: Band gaps and quasiparticle
energies, Phys. Rev. B 34, 5390 (1986).

[11] J. Deslippe, G. Samsonidze, D. A Strubbe, M. Jain, M. L.
Cohen, and S. G. Louie, BerkeleyGW: A massively paral-
lel computer package for the calculation of the quasiparti-
cle and optical properties of materials and nanostructures,
Comput. Phys. Commun. 183, 1269 (2012).

[12] C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie,
Excitonic Effects and Optical Spectra of Single-Walled Carbon
Nanotubes, Phys. Rev. Lett. 92, 077402 (2004).

[13] F. Hiiser, T. Olsen, and K. S. Thygesen, How dielectric screening
in two-dimensional crystals affects the convergence of excited-
state calculations: Monolayer MoS,, Phys. Rev. B 88, 245309
(2013).

[14] F. A. Rasmussen, P. S. Schmidt, K. T. Winther, and K. S.
Thygesen, Efficient many-body calculations for two-
dimensional materials using exact limits for the screened
potential: Band gaps of MoS,, h-BN, and phosphorene,
Phys. Rev. B 94, 155406 (2016).

[15] D. Y. Qiu, H. Felipe, and S. G. Louie, Screening and many-
body effects in two-dimensional crystals: Monolayer MoS,,
Phys. Rev. B 93, 235435 (2016).

[16] H. Felipe, D. Y. Qiu, and S. G. Louie, Nonuniform sampling
schemes of the Brillouin zone for many-electron perturbation-
theory calculations in reduced dimensionality, Phys. Rev. B 95,
035109 (2017).

[17] K. F. Mak, K. He, C. Lee, G. H. Lee, J. Hone, T. E. Heinz, and
J. Shan, Tightly bound trions in monolayer MoS,, Nat. Mater.
12, 207 (2013).

PHYSICAL REVIEW B 96, 155410 (2017)

[18] S. Mouri, Y. Miyauchi, and K. Matsuda, Tunable photolumines-
cence of monolayer MoS,via chemical doping, Nano Lett. 13,
5944 (2013).

[19] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F.
Schmitt, J. Lee, R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo,
Z. Hussain, A. Bansil, and Z.-X. Shen, Direct observation of the
transition from indirect to direct bandgap in atomically thin
epitaxial MoSe,, Nat. Nanotech. 9, 111 (2014).

[20] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H.
Chen, and Y. Zhang, Black phosphorus field-effect transistors,
Nat. Nanotech. 9, 372 (2014).

[21] C. D. Spataru and F. Léonard, Tunable Band Gaps and Excitons
in Doped Semiconducting Carbon Nanotubes Made Possible by
Acoustic Plasmons, Phys. Rev. Lett. 104, 177402 (2010).

[22] C. D. Spataru and F. Léonard, Quasiparticle and exciton renor-
malization effects in electrostatically doped semiconducting
carbon nanotubes, Chem. Phys. 413, 81 (2013).

[23] Y. Liang and L. Yang, Carrier Plasmon Induced Nonlinear Band
Gap Renormalization in Two-Dimensional Semiconductors,
Phys. Rev. Lett. 114, 063001 (2015).

[24] S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim,
A. H. MacDonald, and E. Tutuc, Band offset and negative
compressibility in graphene- MoS, heterostructures, Nano Lett.
14, 2039 (2014).

[25] J. M. Riley, W. Meevasana, L. Bawden, M. Asakawa, T.
Takayama, T. Eknapakul, T. K. Kim, M. Hoesch, S.-K. Mo,
H. Takagi, T. Sasagawa, M. S. Bahramy, and P. D. C. King,
Negative electronic compressibility and tunable spin splitting in
WSe,, Nat. Nanotech. 10, 1043 (2015).

[26] A. Chernikov, C. Ruppert, H. M. Hill, A. F. Rigosi, and
T. F. Heinz, Population inversion and giant bandgap renor-
malization in atomically thin WS, layers, Nat. Photon. 9, 466
(2015).

[27] E. A. A. Pogna, M. Marsili, D. De Fazio, S. Dal Conte, C.
Manzoni, D. Sangalli, D. Yoon, A. Lombardo, A. C. Ferrari,
A. Marini, G. Cerullo, and D. Prezzi, Photo-induced bandgap
renormalization governs the ultrafast response of single-layer
MoS;, ACS Nano 10, 1182 (2016).

[28] S. Gao, Y. Liang, C. D. Spataru, and L. Yang, Dynamical
excitonic effects in doped two-dimensional semiconductors,
Nano Lett. 16, 5568 (2016).

[29] P. Giannozzi et al., QUANTUM ESPRESSO: A modular
and open-source software project for quantum simulations of
materials, J. Phys.: Condens. Matter 21, 395502 (2009).

[30] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[31] S. Ismail-Beigi, Truncation of periodic image interactions for
confined systems, Phys. Rev. B 73, 233103 (2006).

[32] P. Cudazzo, 1. V. Tokatly, and A. Rubio, Dielectric screen-
ing in two-dimensional insulators: Implications for excitonic
and impurity states in graphene, Phys. Rev. B 84, 085406
(2011).

[33] A.K.Geim and L. V. Grigorieva, Van der Waals heterostructures,
Nature 499, 419 (2013).

[34] G. F. Giuliani and G. Vignale, Quantum Theory of the Electron
Liguid (Cambridge University Press, Cambridge, 2005).

[35] A. Czachor, A. Holas, S. R. Sharma, and K. S. Singwi,
Dynamical correlations in a two-dimensional electron gas:

155410-7


https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1126/science.1235547
https://doi.org/10.1016/j.nantod.2016.10.003
https://doi.org/10.1016/j.nantod.2016.10.003
https://doi.org/10.1016/j.nantod.2016.10.003
https://doi.org/10.1016/j.nantod.2016.10.003
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1103/PhysRevLett.117.097601
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22060
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/nature22391
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/PhysRevB.92.165121
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1016/j.cpc.2011.12.006
https://doi.org/10.1103/PhysRevLett.92.077402
https://doi.org/10.1103/PhysRevLett.92.077402
https://doi.org/10.1103/PhysRevLett.92.077402
https://doi.org/10.1103/PhysRevLett.92.077402
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.88.245309
https://doi.org/10.1103/PhysRevB.94.155406
https://doi.org/10.1103/PhysRevB.94.155406
https://doi.org/10.1103/PhysRevB.94.155406
https://doi.org/10.1103/PhysRevB.94.155406
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.93.235435
https://doi.org/10.1103/PhysRevB.95.035109
https://doi.org/10.1103/PhysRevB.95.035109
https://doi.org/10.1103/PhysRevB.95.035109
https://doi.org/10.1103/PhysRevB.95.035109
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1038/nmat3505
https://doi.org/10.1021/nl403036h
https://doi.org/10.1021/nl403036h
https://doi.org/10.1021/nl403036h
https://doi.org/10.1021/nl403036h
https://doi.org/10.1038/nnano.2013.277
https://doi.org/10.1038/nnano.2013.277
https://doi.org/10.1038/nnano.2013.277
https://doi.org/10.1038/nnano.2013.277
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.1038/nnano.2014.35
https://doi.org/10.1103/PhysRevLett.104.177402
https://doi.org/10.1103/PhysRevLett.104.177402
https://doi.org/10.1103/PhysRevLett.104.177402
https://doi.org/10.1103/PhysRevLett.104.177402
https://doi.org/10.1016/j.chemphys.2012.08.021
https://doi.org/10.1016/j.chemphys.2012.08.021
https://doi.org/10.1016/j.chemphys.2012.08.021
https://doi.org/10.1016/j.chemphys.2012.08.021
https://doi.org/10.1103/PhysRevLett.114.063001
https://doi.org/10.1103/PhysRevLett.114.063001
https://doi.org/10.1103/PhysRevLett.114.063001
https://doi.org/10.1103/PhysRevLett.114.063001
https://doi.org/10.1021/nl500212s
https://doi.org/10.1021/nl500212s
https://doi.org/10.1021/nl500212s
https://doi.org/10.1021/nl500212s
https://doi.org/10.1038/nnano.2015.217
https://doi.org/10.1038/nnano.2015.217
https://doi.org/10.1038/nnano.2015.217
https://doi.org/10.1038/nnano.2015.217
https://doi.org/10.1038/nphoton.2015.104
https://doi.org/10.1038/nphoton.2015.104
https://doi.org/10.1038/nphoton.2015.104
https://doi.org/10.1038/nphoton.2015.104
https://doi.org/10.1021/acsnano.5b06488
https://doi.org/10.1021/acsnano.5b06488
https://doi.org/10.1021/acsnano.5b06488
https://doi.org/10.1021/acsnano.5b06488
https://doi.org/10.1021/acs.nanolett.6b02118
https://doi.org/10.1021/acs.nanolett.6b02118
https://doi.org/10.1021/acs.nanolett.6b02118
https://doi.org/10.1021/acs.nanolett.6b02118
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1103/PhysRevB.73.233103
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1103/PhysRevB.84.085406
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385
https://doi.org/10.1038/nature12385

SHIYUAN GAO AND LI YANG

First-order perturbation theory, Phys. Rev. B 25, 2144
(1982).

[36] L. Hedin, New method for calculating the one-particle Green’s
function with application to the electron-gas problem, Phys. Rev.
139, A796 (1965).

[37] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Toméanek,
and D. Y. Peide, Phosphorene: An unexplored 2D semi-
conductor with a high hole mobility, ACS Nano 8, 4033
(2014).

[38] F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus
as an anisotropic layered material for optoelectronics and
electronics, Nat. Commun. 5, 4458 (2014).

[39] V. Tran, R. Soklaski, Y. Liang, and L. Yang, Layer-controlled
band gap and anisotropic excitons in few-layer black phospho-
rus, Phys. Rev. B 89, 235319 (2014).

PHYSICAL REVIEW B 96, 155410 (2017)

[40] J. Kim, S. S. Baik, S. H. Ryu, Y. Sohn, S. Park, B.-G. Park,
J. Denlinger, Y. Yi, H. J. Choi, and K. S. Kim, Observation of
tunable band gap and anisotropic Dirac semimetal state in black
phosphorus, Science 349, 723 (2015).

[41] R. Fei and L. Yang, Strain-engineering the anisotropic electrical
conductance of few-layer black phosphorus, Nano Lett. 14, 2884
(2014).

[42] R. Fei, A. Faghaninia, R. Soklaski, J. Yan, C. Lo, and L. Yang,
Enhanced thermoelectric efficiency via orthogonal electrical
and thermal conductances in phosphorene, Nano Lett. 14, 6393
(2014).

[43] T. Low, R. Rolddn, H. Wang, F. Xia, P. Avouris, L. M. Moreno,
and F. Guinea, Plasmons and Screening in Monolayer and
Multilayer Black Phosphorus, Phys. Rev. Lett. 113, 106802
(2014).

155410-8


https://doi.org/10.1103/PhysRevB.25.2144
https://doi.org/10.1103/PhysRevB.25.2144
https://doi.org/10.1103/PhysRevB.25.2144
https://doi.org/10.1103/PhysRevB.25.2144
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1021/nn501226z
https://doi.org/10.1021/nn501226z
https://doi.org/10.1021/nn501226z
https://doi.org/10.1021/nn501226z
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1038/ncomms5458
https://doi.org/10.1103/PhysRevB.89.235319
https://doi.org/10.1103/PhysRevB.89.235319
https://doi.org/10.1103/PhysRevB.89.235319
https://doi.org/10.1103/PhysRevB.89.235319
https://doi.org/10.1126/science.aaa6486
https://doi.org/10.1126/science.aaa6486
https://doi.org/10.1126/science.aaa6486
https://doi.org/10.1126/science.aaa6486
https://doi.org/10.1021/nl500935z
https://doi.org/10.1021/nl500935z
https://doi.org/10.1021/nl500935z
https://doi.org/10.1021/nl500935z
https://doi.org/10.1021/nl502865s
https://doi.org/10.1021/nl502865s
https://doi.org/10.1021/nl502865s
https://doi.org/10.1021/nl502865s
https://doi.org/10.1103/PhysRevLett.113.106802
https://doi.org/10.1103/PhysRevLett.113.106802
https://doi.org/10.1103/PhysRevLett.113.106802
https://doi.org/10.1103/PhysRevLett.113.106802



