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Optical isolation based on space-time engineered asymmetric photonic band gaps
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Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies.
Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances
in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more
pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical
isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite
directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies,
and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.
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I. INTRODUCTION

Electromagnetic nonreciprocity plays a crucial role in mod-
ern electronic and optical technologies. Historically, breaking
Lorentz reciprocity has most often relied on magnetically
biased magnetoelectric [1,2] and magnetoplasmonic [3–8]
materials. However, magnetic materials are incompatible with
integrated circuit technology. Moreover, such magnet-based
technologies are based on bulky and expensive magnets. With
the emergence of integrated photonics [9–12], generating
on-chip optical nonreciprocity has become of paramount
importance, and novel—magnetless—nonreciprocal technolo-
gies have therefore become required.

Over the past few decades, extensive efforts have been
devoted to produce magnetless nonreciprocity, to eliminate the
aforementioned issues associated with magnets and magnetic
materials. An approach consists of using unilateral compo-
nents such as transistors, which break Lorentz reciprocity
from their semiconductor junction bias. This technology has
been used for several decades in microwave nonreciprocal
components and, more recently, in nonreciprocal metama-
terials. Nonreciprocal transistor-based circulators [13–16]
and nonreciprocal metamaterials based on transistor-loaded
unit cells [17–22] belong in this category. However, despite
being compatible with integrated circuit technology, these
devices suffer from relatively poor power handling and noise
figure [23]. Moreover, their application at THz and optical
frequencies is impeded by the frequency limitation of transistor
technology.

The Lorentz reciprocity theorem does not apply to nonlinear
materials. This fact has spurred considerable efforts to achieve
magnetless nonreciprocity and nonreciprocal devices based
on nonlinearity [24–29]. This approach leverages the spatial
asymmetry in the electromagnetic field intensity of a spatially
asymmetric nonlinear permittivity profile for producing non-
reciprocity. If nonlinearity is introduced at locations where
the forward and backward waves have a significant difference
in their electromagnetic field intensity, the forward and
backward waves see different nonlinear permittivity terms
and the structure hence exhibits nonreciprocity. However,
since nonlinear effects only get pronounced at high signal
levels, nonlinear techniques provide nonreciprocity only over
a restricted signal power range. It was shown that in the
presence of high-level input signals in a nonlinear optical

isolator, some low-level signals get reciprocally transmitted,
so that the structure does not really operate as a nonreciprocal
optical component [30].

Balanced loss-gain media, also known as PT-symmetric
media [31–33], have been reported to exhibit unidirectional
properties [24,34–37]. However, the nonreciprocity of the
corresponding devices [33,34] is due again to nonlinearity
rather than being a consequence of PT symmetry. Linear PT
media are constrained to be reciprocal, according to Lorentz
reciprocity theorem, and cannot produce optical isolation
[38,39].

Space-time modulation is another approach to break
Lorentz reciprocity [40–46]. This approach is particularly
suited for producing nonreciprocity at optical frequencies
where transistor technology is unavailable. There have
been several proposals to achieve magnetless nonreciprocity
leveraging space-time variation. The technique proposed in
Ref. [40] uses oblique space-time interband transitions be-
tween two different modes of an optical waveguide. However,
generating efficient coupling between the two waveguide
modes, which are generally orthogonal, requires complex
asymmetric modulation schemes. The techniques proposed in
Refs. [42,43] is based on counter-rotating resonant modes with
slightly shifted resonance frequencies. However, although it
can achieve nonreciprocity over a subwavelength footprint,
this approach requires sophisticated synchronized optical
sources [42,43].

This paper introduces a novel concept for realizing optical
isolation based on asymmetric band gap-engineered photonic
systems. In this approach, nonreciprocal media are used to
design photonic structures whose band gaps are aligned asym-
metrically. We specifically use space-time varying systems
for this purpose. Space-time variation in the permittivity of
a medium is used to generate photonic band structures that
are asymmetrically aligned with respect to the direction of
propagation. It is shown that, with proper excitation, such
a system can operate as a nonreciprocal (or unidirectional)
optical device, i.e., an isolator. The modulation is uniform
in the cross section of the waveguide, as opposed to that
in Ref. [40], which leads to a much simpler structure. In
addition, the required modulation frequency is relatively low,
and may thus be conveniently provided by acoustic waves.
The proposed approach may find applications in various
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FIG. 1. Principle of nonreciprocal Bragg reflection based on
asymmetric photonic band gaps. The red and blue colors represent
forward and backward propagation, respectively. The dashed curves
correspond to the dispersion curves of the input and output medium
while the solid and dotted curves represent the real (β) and imaginary
(α) parts of the wave number, respectively, of the (central) photonic
band gap medium, assuming the harmonic time dependence ejωt . The
horizontal line corresponds to the excitation frequency, ω0. (a) In a
reciprocal system, the band gap is symmetric with respect to positive
and negative directions. Red/blue dots correspond to evanescent
waves for excitation from the left/right. (b) In a nonreciprocal system,
the band gap is tilted with a given slope. Red/blue dots correspond to
evanescent and propagating waves, respectively, for excitation from
the left/right. In one direction, the wave is totally reflected; in the
opposite direction, it is fully transmitted.

integrated nonreciprocal optical systems. An experimental
proof-of-concept at microwave frequencies is presented.

II. PRINCIPLE OF OPERATION

Consider a conventional reciprocal structure, e.g., a Bragg
grating or a waveguide filter that supports photonic band gaps,
as illustrated in Fig. 1(a). As the structure is composed of
reciprocal materials, the bandgaps are perfectly horizontal

in the dispersion diagram, i.e., symmetric with respect to
positive and negative Bloch-Floquet wave numbers. In the
band gaps, the Bloch-Floquet harmonics acquire an imaginary
part in their wave number and hence become evanescent.
Thus, when a wave incident on the structure is modulated
at a frequency falling within a gap, it excites a complex, and
hence evanescent, gap mode. This mode, marked by a red dot in
Fig. 1(a), decays exponentially. Therefore, assuming a proper
choice of parameters, almost no power is transferred across
the structure and, as a result of energy conservation, almost all
of the incident power is reflected. Since the dispersion curves
are symmetric with respect to the wave number axis, when
the structure is excited from the opposite end, the symmetric
evanescent Bloch-Floquet mode, marked by the blue dot in
Fig. 1(a), is similarly excited, and most of the power is
reflected. Now consider a structure with an oblique, and hence
asymmetric, band gap, where the band gap edges are different
for the positive and negative directions, as shown in Fig. 1(b).
When such a structure is excited from the left at the frequency
corresponding to the horizontal line, the evanescent mode,
marked by the red dot, is excited. If the structure is long
enough, almost no power reaches the opposite end of it and the
wave is fully reflected. In contrast, when the structure is excited
from the right, the mode marked by the blue dot in Fig. 1(b),
i.e., a propagating mode, is excited. Therefore, the incident
electromagnetic power is transferred to the other side of the
structure, and, assuming proper matching, is fully transmitted
across it.

Producing such asymmetric dispersion curves requires a
mechanism that breaks Lorentz reciprocity. In the next section,
we use a space-time varying medium for that purpose. In
such a medium, waves propagating in opposite directions
perceive different dispersions, and the medium is therefore
nonreciprocal. Corresponding dispersion curves are thus tilted
with a given slope and hence form asymmetric band gaps.
We next analyze a finite space-time modulated slab and
demonstrate its asymmetric band gap nonreciprocity.

III. UNBOUNDED SPACE-TIME MEDIUM

Consider an infinite space-time one-dimensionally periodic
medium with permittivity:

ε(r,t) = ε0εr [1 + Mfper(t ± z/vm)], (1)

where fper is a periodic function and M is the modulation
depth. This permittivity represents a periodic Bragg structure
whose spatial profile moves in time at the modulation velocity
vm. Related space-time periodic media were first studied in
the context of traveling-wave parametric amplification and
parametric energy conversion [45,47–52]. The electric field
in such a medium satisfies the following wave equation [50]:

∇ × ∇ × E + μ0
d2

dt2
[ε(r,t)E] = 0. (2)

This equation admits solutions in the space-time Bloch-
Floquet form [50]

E = ej (ωt−βz)
∞∑

n=−∞
Ene

jn(ωmt−kmz), (3)

155409-2



OPTICAL ISOLATION BASED ON SPACE-TIME . . . PHYSICAL REVIEW B 96, 155409 (2017)

where ωm = 2π/T is the modulation frequency, T being the
period of the function fper, and km = ωm/vm and Ens are
constant coefficients. The dispersion relation for the Bloch-
Floquet waves in such a medium is found by substituting
Eq. (3) and Eq. (1) into Eq. (2). The resulting equation
reduces, after truncation, to a matrix equation, Ax = 0, through
the orthogonality of the Fourier harmonics. Nullifying the
determinant, i.e., setting |A| = 0, which is generally done
numerically, provides the dispersion diagram of the medium.

In the following, we assume that the space-time profile
or the periodic function, fper, has a sinusoidal form. In this
case, closed-form solutions can be derived for the eigenmodes
and corresponding eigenvectors. An example of a dispersion
diagram for a space-time medium with permittivity

ε(r,t) = ε0εr [1 + M cos (ωmt − kmz)] (4)

is plotted in Fig. 2. It may be easily shown that each
solution, (β,ω), corresponds to a mode formed by an infinite
set of space-time harmonics (β ± nkm,ω ± nωm) distributed
along the vector (km,ωm). As a result, the Brillouin zone,
represented by the dashed lines in Fig. 2, is tilted. In
contrast to a purely spatial Bragg dispersion, the band gaps
appear asymmetric with respect to the positive (β > 0) and
negative (β < 0) directions of propagation, highlighted by
the oblique green region in Fig. 2. The yellow window
corresponds to the required asymmetric dispersion curve in
Fig. 1(b). In the following section, this asymmetry is leveraged
to generate space-time engineered optical isolation. However,
accurate analysis of the structure requires taking into account
all of the dispersion diagram, including the regions located
outside the yellow window. We shall next develop an exact
(full-wave) modeling technique to calculate the scattering
parameters for a space-time modulated slab. The proposed
method identifies all the modes excited inside the slab and
provides physical insight into the scattering mechanism.

BZ

FIG. 2. Dispersion diagram for an infinite space-time modulated
medium with permittivity given by Eq. (4) and parameters εr =
12.25, M = 0.5, ωm/ω0 = 0.13, and km/k0 = −2.27. The dotted
lines represent the limit of vanishingly small modulation depth
M → 0. The red vector, (kma,ωma/c), corresponds to the space-time
modulation wave number and frequency, where a = 2π/km is the
spatial period and c is the velocity of light. The dashed lines represent
the Brillouin zone. The highlighted green region represents an oblique
band gap. The yellow window corresponds to the asymmetric band
gap structure in Fig. 1(b).

IV. SPACE-TIME MODULATED SLAB

The asymmetric band gaps in the dispersion diagram of
a space-time-modulated slab may be leveraged for realizing
optical isolation based on the principle explained in Sec. II.
Consider the periodic space-time modulation Eq. (1) or Eq. (4)
existing over a finite section of a background medium with
permittivity εr , as shown in Fig. 3. This structure may be
analyzed with full-wave simulation techniques that can handle
space-time varying media, such as the finite difference time
domain (FDTD) method [53]. However, such an analysis does
not provide much insight into the operation mechanism. For
gaining such insight, we shall use the mode-matching analysis
technique.

In this technique, the structural modes and space-time
Bloch-Floquet harmonics, excited inside the slab, are clearly
identified. The electromagnetic fields in the incidence region,
in the region at the other side of the slab, and the forward and
backward propagating fields inside the slab are represented
as superpositions of all the possible modal solutions in
each region with unknown coefficients, corresponding to the
weighting factors of the different modes. Details are provided
in the next section.

A. Mode-matching analysis

Consider a plane wave Ei = x̂ej (ωt−kz) incident on the
space-time modulated slab sandwiched between media with
permittivity εr , as shown in Fig. 3, where k = ω

√
εr/c. This

wave will excite an infinite number of modes inside the slab so
as to satisfy the boundary conditions on the two discontinuities
delimiting the slab, and each of them will be formed by an
infinite number of space-time harmonics. These modes are
plotted in Fig. 4(a), with red/blue dots corresponding to a
given excitation frequency. We now decompose the total field

forward excitation

backward excitation

FIG. 3. Scattering from a space-time modulated slab. A finite part
of a material with permittivity εr is spatiotemporally modulated with
the space-time varying permittivity Eq. (1) or Eq. (4). The structure
responds differently when excited from the left side or the right
side, and is therefore nonreciprocal. Top arrows represent forward
excitation, where the structure is excited from the left. Bottom arrows
represent backward excitation, where the structure is excited from
the right.
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FIG. 4. Bloch-Floquet modes excited in the space-time modu-
lated slab of Fig. 3, with the same parameters as in Fig. 2, by
an incident wave with frequency ω0. The horizontal dashed line
represents ω0 and the dots represent the corresponding excited modes.
The red dots represent the modes with a positive group velocity while
the blue dots represent the modes with a negative group velocity. The
dashed lines delimit by the (oblique) Brillouin zone. The green lines
represent the dispersion curves of the incident medium. (a) General
representation. (b) Modes or space-time harmonics transferred into
the Brillouin zone.

of the forward problem (excitation from the left) into modes
with positive group velocities, represented by the red dots,

E+(z,t) =
∞∑

p=−∞
a+

p E+
p (z,t), (5)

and the total field of the backward problem (excitation from the
right) into modes with negative group velocities, represented
by the blue dots:

E−(z,t) =
∞∑

p=−∞
a−

p E−
p (z,t). (6)

In Eqs. (5) and (6), the terms a±
p represent the unknown

modal coefficients, and each mode p is represented as the

space-time Bloch-Floquet expansion:

E±
p (z,t) = x̂ej(ωt−β±

p z)
∞∑

n=−∞
E±

p,ne
jn(ωmt−kmz), (7)

where βp represents the modal wave number, i.e., the pro-
jection of the dots onto the wave number (horizontal) axis.
Our convention for numbering positive (red) and negative
(blue) propagating modes is apparent in Fig. 4(a), with the
red/blue numbers corresponding to red/blue modes excited
at the frequency ω0. Each of these numbers correspond to
the index p in Eqs. (5) and (6). In a space-time modulated
medium, all the modes excited at ω0 are distinct, as may be
verified by transfer into the (oblique) Brillouin zone as shown
in Fig. 4(b). This transfer is achieved by shifting the modes
outside the Brillouin zone in Fig. 4(a) by multiple integers of
the oblique vector (kma,ωma/c) until they fall in the Brillouin
zone. In a conventional static (or purely spatially modulated)
Bragg structure, all the red/blue points would fold back onto
the same red/blue point in the Brillouin zone, i.e., represent
identical (linearly dependent) modes, so that all but one mode
may be discarded. In contrast, in a space-time modulated
medium, the modes numbered in Fig. 4(a) are distinct (linearly
independent), corresponding to different frequencies, and must
all be taken into account for a complete description of the
physics.

Consider first the forward problem (excitation from the
left). The waves reflected and transmitted by the slab may be
represented as superpositions of plane waves in the uniform
medium with relative permittivity εr , propagating in the −z

and +z directions, respectively. To satisfy the boundary con-
ditions, these waves must include all the temporal frequencies
generated inside the slab, leading to the expansions:

Er(z,t) = x̂
∞∑

p=−∞
ar

pej (ωpt+kpz), (8)

Et(z,t) = x̂
∞∑

p=−∞
at

pej (ωpt−kpz), (9)

where ωp = ω + pωm, kp = ωp

√
εr/c and ar

p, at
p are un-

known coefficients.
The magnetic field corresponding to each excited slab

mode, namely E±
p in Eq. (7), follows from the Maxwell-

Faraday equation, ∇ × E = −μ0
∂
∂t

H, leading to the modal
expansion:

H±
p (z,t) = ŷej(ωt−β±

p z)
∞∑

n=−∞
H±

p,ne
jn(ωmt−kmz), (10)

where

H±
p,n = β±

p + nkm

μ0(ω + nωm)
E±

p,n. (11)

Application of the boundary conditions, i.e., continuity
of the tangential electric and magnetic fields at the slab
interfaces, leads then to a system of equations for the
unknown coefficients, whose solutions provide the reflected
and transmitted fields as well as the fields inside the slab.
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B. Modal distribution and frequency transitions

Consider a space-time modulated slab with dispersion
curves shown in Fig. 4(a), where the modulation frequency
is tuned such that the incident frequency excites the gap
mode (red index 0) in the forward direction and a propagating
mode (blue index 0) in the backward direction, as shown in
Fig. 4(a). As explained in the previous section, due to the
tilt of the space-time diagrams, an infinite number of slab
modes are excited. The operation of the device depends on the
relative excitation strength of these modes. When the structure
is excited from the left/right, these modes are excited with
different weighting factors, i.e., the structure is nonreciprocal.
This section quantifies the reflection and transmission, and
corresponding isolation, as well as the modes inside the slab,
for excitation from the left/right.

1. Excitation from the left

Consider a space-time modulated slab with space-time
permittivity Eq. (4), background permittivity εr = 12.25,
modulation depth M = 0.02, temporal and spatial modulation
frequencies ωm = 0.13ω0, and km = −2.27k0, respectively,
and length L = 200λ, excited at the normalized frequency
ω0 = 0.259c/a, where a is the spatial period of the space-
time modulated slab. The corresponding permittivity profile
represents a sinusoidal Bragg grating, whose permittivity
perturbation propagates towards the left inside the space-time
modulated region, with velocity vm = −|ωm/km|.

For excitation from the left, the amplitude of the modes
excited inside the slab, calculated by the mode-matching
analysis presented in the previous section, are presented in
Fig. 5(a). The red lines/diamonds correspond to positive group
velocity (forward propagating) Bloch-Floquet modes, while
the blue lines/circles correspond to negative group velocity
(backward propagating) modes. It appears that mode p = 0
is much more excited, by at least 50 dB, than the other
ones, which indicates that all the modes falling outside the
highlighted yellow window in Fig. 4(a) play an insignificant
role, and that the performance of the space-time modulated
slab can be closely predicted by the intuitive picture presented
in Fig. 1(b). The reason why the mode p = 0 is so much more
excited than the others is because it is the only one that is close
to the incident medium dispersion curve, as seen in Fig. 4(a),
and hence the only well phase—and impedance—matched to
the incident medium.

Moreover, Fig. 4(a) shows that this mode falls in a band
gap of the modulated structure. It is thus evanescent and
exponentially decaying in the modulated structure, carrying
almost no power to its right end. Since the system is assumed
to be lossless, the incident power can only be reflected towards
the input medium. This is confirmed in Fig. 6(a), which plots
the transmitted and reflected amplitudes for different tem-
poral frequency harmonics. The transmission level is below
−40 dB for all frequency harmonics, and the power is almost
fully reflected at the blue-shifted frequency ω0 + ωm. This
is a space-time blue Doppler shift due to the fact that the
space-time varying medium profile has an opposite (negative)
phase velocity, vm = ωm/km, with respect to the source on the
left. This effect will be detailed in Sec. IV B 3.

forward

excitation

(a)

backward

excitation

(b)

FIG. 5. Magnitude of the modes excited in the space-time
modulated slab of Fig. 4 with L = 200λ. The normalized excitation
frequency is ω0 = 0.259c/a. (a) Slab excited from the left. The gap
mode [red index 0 in Fig. 4(a)] is excited dominantly. All the other
forward propagating modes (red) and backward propagating modes
(blue) are very weakly excited. (b) Slab excited from the right. The
dominantly excited mode is a propagating mode [blue index 0 in
Fig. 4(a)].

The levels of the transmitted and reflected power may be
controlled by tuning the modulation depth and the length of
the slab. For a given modulation depth, it is always possible to
reduce the transmitted power to a desired level by increasing
the length of the slab. Notice that the reflected power is slightly
greater than unity. This is not at odds with energy conservation
since energy is pumped into the space-time varying medium.

2. Excitation from the right

For excitation from the right, the amplitudes of the modes
excited in the slab are plotted in Fig. 5(b). The negative group
velocity (backward propagating) mode p = 0 is excited much
more, by at least 40 dB, than the others, because it is much
better matched to the incident wave. As seen in Fig. 4(a), this
slab mode is a propagating one, and it therefore carries almost
all the power to the other end. Hence, the structure is expected
to be highly transparent. This is confirmed in Fig. 6(b). Almost
all the power is transmitted at the incident frequency, and the
reflected power from the slab is below −40 dB for all the
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FIG. 6. Reflection and transmission (outside the modulated slab)
for the space-time modulated slab with the same parameters as
in Fig. 5. (a) Slab excited from the left. The dominantly excited
evanescent gap mode decays exponentially and conveys no power to
the transmitted region. All of the power is reflected. The reflected
wave is blue-shifted. (b) Slab excited from the right. The dominantly
excited propagating mode transfers all its energy to the other end.
Almost all the power is transmitted at the fundamental frequency
(ω0).

harmonics. The amount of reflected power is proportional to
the mismatch between the space-time modulated and incident
media, which is, in turn, proportional to the modulation depth.

3. Explanation of the Doppler shift in the reflected wave

Although not including any matter motion, the slab medium
in Fig. 3 supports space-time perturbation motion [Eq. (4)]
[54]. This is why the wave reflected from the band-gap
structure experiences the temporal frequency shift observed
in Fig. 6(a). We shall next show that this shift, from ω0 to
ω0 + ωm, and hence of magnitude ωm, corresponds to the
conventional relativistic Doppler shift for a wave reflected
from a moving medium with the velocity vm,

	ω =
(

1 + |vm|/c
1 − |vm|/c − 1

)
ω0. (12)

00 -1 -1 -2 -32

FIG. 7. Dispersion diagram and geometrical parameters in the
limit M → 0 for explaining the Doppler shift of the reflected wave
in Fig. 6(a). The solid lines represent the dispersion curves of the
background medium and c represents the velocity of light in this
medium. The green bands correspond to the infinitesimal gaps.

Figure 7 shows the dispersion diagram for an infinitesimal
modulation depth and the corresponding geometrical parame-
ters related to the frequency shift in Fig. 6(a). Note that at the
band gap corresponding to the spatial and temporal frequencies
(β0,ω0), the forward harmonic n = 0 crosses the backward
harmonic harmonic n = −1. Since the backward harmonic
n = −1 is a version of the backward harmonic n = 0 that is
shifted by the vector −(km,ωm), the endpoint of the vector
(β0,ω0) + (km,ωm) lies at the intersection of the backward
dispersion curve n = 0 and the forward dispersive curve n =
−1, as shown in Fig. 7. This leads to the geometrical relation

|km| = 2β0 + |ωm|/c (13)

highlighted in the figure. Therefore, the velocity of the
space-time medium reads

|vm| = |ωm|
|km| = |ωm|

2β0 + |ωm|/c . (14)

Substituting Eq. (14) into Eq. (12) results in the observed
frequency shift, 	ω = |ωm|, which shows that perturbation
motion leads to the same Doppler effect as matter motion. Note
that this is true only in the absence of dispersion, corresponding
to the straight line condition of Eq. (14), while introducing
dispersion would allow one to depart from Eq. (12) and
engineer the Doppler shift.

The frequency shift may also be explained in terms of
intraband photonic transitions [40] between the forward and
backward propagating modes of a single-mode waveguide.
For small modulation depth (M � 1), instead of considering
the exact periodic problem involving the infinite set of
space-time harmonics, the problem may be approximated as
follows. As an electromagnetic wave with momentum and
frequency (k0,ω0) in the background medium penetrates into
the space-time modulated section, the space-time medium
provides the extra momentum and energy corresponding to
±(km,ωm) to the wave. If the resulting momentum and energy
(k0 ± km,ω0 ± ωm) correspond to a mode of the waveguide,
coupling to this mode occurs and the incoming waveguide
mode is then gradually transformed into the waveguide mode
at (k0 ± km,ω0 ± ωm) [40]. In contrast, if (k0 ± km,ω0 ± ωm)
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FIG. 8. Explanation of the frequency upshift in the reflected
field in terms of intraband photonic transitions. The dashed lines
correspond to the dispersion curves of the background medium.
The arrows represent the momentum end energy provided by
the space-time modulated region, ±(km,ωm). (a) Left excitation:
the forward propagating mode gradually transforms into a back-
ward propagating mode with frequency ω0 + ωm and is reflected.
(b) Right excitation: the propagating mode passes through the
space-time section, as (k0 ± km,ω0 ± ωm) does not correspond to any
waveguide mode.

does not correspond to a mode of the waveguide, the
corresponding wave passes through the space-time modulated
region almost unaffected. This interband transition picture
and the associated coupled-mode analysis are accurate only
for very small modulation depths, and should therefore be
considered with great care in the case of strong modulations, as
it ignores the rich spectral features of the electromagnetic band
structure of the space-time modulated system. Nonetheless,
this explanation provides an alternative intuitive understanding
of the Doppler frequency shift described above.

For the space-time modulated problem considered in
Sec. III, the dispersion curves of the single-mode back-
ground medium and the corresponding momentum and energy,
±(km,ωm), provided by the space-time medium, are plotted
in Fig. 8(a), for excitation from the left. As (k0 + km,ω0 +
ωm) corresponds to a backward propagating mode of the
background medium, the incident forward propagating mode
gradually transforms to a blue-shifted backward propagating
mode, i.e., it reflects with a frequency upshift exactly equal
to 	ω = ωm. In contrast, for a wave exciting the space-
time modulated region from the right, the corresponding
momentum and energy ±(km,ωm) provided by the space-time
medium is plotted in Fig. 8(b). As (k0 + km,ω0 + ωm) does

(a)

(b)

FIG. 9. Electric field pattern and frequency spectrum of the gap
mode for excitation from the left. (a) Electric field pattern for the
evanescent gap mode, corresponding to the red index 0 in Fig. 4(a).
(b) Frequency harmonics of the evanescent gap mode plotted in (a).
This mode has only two significant harmonics, at frequencies ω0 and
ω0 + ωm.

not correspond to a mode of the background medium, it passes
through the space-time region almost unaffected.

To see how the forward propagating wave is transformed
into a backward propagating wave at an upshifted frequency
when the structure is excited from the left, it is instructive
to inspect the electric and magnetic field profiles of the
dominantly excited gap mode. The electric field profile for
the gap mode [red index 0 in Fig. 4(a)] and the corresponding
temporal frequency spectrum are plotted in Figs. 9(a) and
9(b), respectively. This evanescent mode has two dominant
frequency harmonics, one at ω0 and one at ω0 + ωm, where
ω0 is the incident frequency and ωm is the modulation
frequency. The remaining frequency harmonics are at least
50 dB weaker and, hence, may be safely ignored. The ratio
of the electric to the magnetic field E/H for each harmonic,
i.e., the corresponding impedance is plotted in Fig. 10, where
Z0 is the impedance of the incident medium. The harmonic
at the fundamental frequency (ω0) is forward propagating,
Zω > 0, and completely matched to the incident medium,
i.e., Zω = Z0. The harmonic at frequency ω0 + ωm has a
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FIG. 10. Normalized impedance for the different harmonics of
the gap mode plotted in Fig. 9. Each point represents the normalized
impedance corresponding to the ratio En/Hn for the frequency
harmonic ωn = ω0 + nωm. The harmonic at frequency ω0 has a
positive impedance (forward propagating), and is fully matched
to the incident region. The harmonic at frequency ω0 + ωm has a
negative impedance (backward propagating), and is fully matched to
the incident region.

negative impedance Zω+ωm = −Z0. Therefore, this harmonic
propagates backward, while also being fully matched to the
incident medium. The blue-shift mechanism is schematically
explained in Fig. 11. As the incident wave and the forward
harmonic are fully matched and have the same frequency,

forward harmonic

backward harmonic

slab’s interface

reflected wave

incident wave

FIG. 11. Transformation of an incident forward propagating wave
to an upshifted backward propagating wave. An incident field with
frequency ω0 impinges on the slab from the left side. The only
two significant harmonics of the gap mode, at frequencies ω0 and
ω0 + ωm, are represented at the right side, where ωm is the modulation
frequency. The incident wave is fully matched to the evanescent
harmonic at frequency ω0, therefore it excites this harmonic without
back-reflection. The excited evanescent harmonic at frequency ω0

decays exponentially inside the slab, and its energy is transferred to
the backward propagating harmonic at frequency ω0 + ωm, whose
energy increases exponentially as it reaches the slab interface. The
backward propagating harmonic is fully matched to the incident
region. It excites the reflected wave at frequency ω0 + ωm without
any back-reflection inside the slab.

ω0, the incident wave excites this harmonic without any
reflection at frequency ω0. The forward harmonic is evanescent
and exponentially decays inside the slab. As it decays, it
is converted to the backward propagating harmonic, which
exponentially grows towards the interface with frequency
ω0 + ωm. This effect is clearly seen in the time domain
simulation of the gap mode (see animation in Supplemental
Material [55]). The backward harmonic, which is also fully
matched to the incident region, then excites the reflected wave
at frequency ω0 + ωm when it hits the interface, without any
back-reflection inside the slab.

V. COMPARISON WITH MOVING SYSTEM

It should be noted that asymmetric photonic band gaps can
also be produced in moving photonic crystals [56]. Consider
a moving photonic crystal slab with a gap at frequency ω0

in its reference frame. Assume that the crystal moves with
constant velocity towards the left, and that a wave impinges on
it from the left with frequency ωF . In the reference frame of
the moving photonic crystal, this incident wave is blue-shifted
by the frequency amount 	ω corresponding to the relativistic
Doppler effect, and it would be reflected if this blue-shifted
frequency fell in the band gap of the reference frame of the
photonic crystal, or if ωF + 	ω = ω0. In other words, for a
static observer, the band gap would appear red-shifted to the
frequency ωF = ω0 − 	ω. Similarly, in the reference frame
of the moving photonic crystal, a wave incident from the right
with frequency ωB would be perceived as red-shifted by the
frequency amount 	ω, and it would be reflected if ωB − 	ω =
ω0, i.e., to the frequency ωB = ω0 + 	ω for the static observer
the gap is blue shifted. Thus, in the reference frame of the static
observer, the photonic band gaps are asymmetric.

Similar to space-time modulated media, such asymmetry
might be leveraged for the realization of nonreciprocal optical
devices [56]. However, despite similarities, moving media and
space-time modulated systems have very distinct natures. A
moving medium produces a drag effect (Fizeau drag). As a
result, forward and backward harmonics appear to propagate
with different group velocities in the reference frame of a static
observer. In contrast, space-time modulated media do not alter
the group velocities of the forward and backward harmonics,
compared to the group velocities in the unmodulated medium.
Moreover, in the case of a moving (isotropic) medium, the
material parameters appear bianisotropic to a static observer
due to the drag effect [57–59]. This complexity is eliminated
by Lorentz transformation to the reference frame of the
moving medium, where the medium becomes static and hence
again isotropic. In contrast, space-time modulation does not
alter the constitutive relations, i.e., a space-time modulated
isotropic material would remain isotropic. However, there is
generally no frame of reference that can transform a space-time
modulated medium to a completely static medium.

VI. ISOLATION, MODULATION AND BANDWIDTH

The proposed space-time system can achieve very high
isolation levels even for extremely weak modulations. This is
achieved by a sufficiently long space-time modulated region.
Isolation levels for different modulation depths and slab
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FIG. 12. Isolation versus modulated slab length for different
modulation depths. For weaker modulations, longer space-time
sections are required to achieve a specific amount of isolation. For
each modulation depth, the isolation saturates at a specific level due
to coupling to the undesired propagating modes, which act as a noise
floor. For weaker modulations, coupling to undesired modes is weaker
and higher isolation levels are achievable.

lengths are plotted in Fig. 12. As the modulation becomes
weaker, longer space-time sections are required to get the
desired isolation levels. Note that for each modulation depth,
isolation saturates at a specific level as the length of the
space-time modulated section is increased. This saturation is
caused by coupling to the undesirable modes of the space-time
slab [red indices −1,1, − 2,2, . . . in Fig. 4(a)], whose level
represents an effective noise floor to the desired wave. For
weaker modulations, coupling to the undesirable modes is
weaker, and therefore higher isolation levels are achievable.

The required modulation frequency for creating the re-
quired asymmetric band gaps is relatively low. It is pro-
portional to the width of the band gap, which is directly
proportional to the modulation depth. For lower modulation
levels, the band gaps are narrower and, therefore, it takes a
smaller modulation frequency to misalign the forward and
backward gaps. For very small modulation depths (M � 1),
the width of the first band gap can be approximated as
	ω/ω0 = 2M/[π (1 − M)] [60]. Therefore, a modulation
frequency in the order of ωm = 	ω = 2M/[π (1 − M)] is
sufficient to displace the band gaps as to achieve nonreciproc-
ity. Decreasing the modulation depth reduces the required
modulation frequency as much as desired. For modulation
depths smaller than 10−7, optical isolation may be achieved
through ultrasound waves. However, the isolation bandwidth
would be proportionally small, and the length of the device
would be proportionally long. In such a case, the waveguide
may be folded into a space-time modulated ring resonator for
device footprint reduction [40].

The nonreciprocity operation bandwidth is directly propor-
tional to the width of the band gap since nonreciprocity is
produced by the band gaps. The isolation versus frequency for
different modulation depths is plotted Fig. 13. The lengths of
the space-time slabs are chosen according to the saturation
isolation knee points in Fig. 12. For modulation depths
M = 0.1, M = 0.01, and M = 0.001, the bandwidth is less

FIG. 13. Isolation versus frequency for different modulation
depths and slab lengths corresponding to the knee points in
Fig. 12. The bandwidth is directly proportional to the modulation
depth.

than 5%, 1%, and 0.1%, respectively. A given bandwidth and
isolation level may be achieved from an interplay between the
modulation depth and the length of the space-time modulated
section.

VII. UP- AND DOWN-CONVERSION REFLECTION MIXER

As the forward excited wave is fully reflected at a shifted
frequency, the structure can also operate as a reflection-type
optical mixer. Assuming modulation propagation to the left,
the incident signal is upshifted if the structure is excited from
the left at the first band gap, and downshifted when the structure
is excited from the right at the second band gap, as depicted
in Fig. 14. The amount of frequency shift is equal to the
modulation frequency. The mixing operation is almost perfect
as the incident power is almost fully transferred to the desired
up- or downshifted frequency, without generating undesirable
harmonics and intermodulation products.

BZ

FIG. 14. Operation of the space-time modulated slab as a
reflection-type mixer. When the structure is excited from the left
at the down-tilted forward band gap, the wave is fully reflected
and blue-shifted. When the structure is excited from the right at
the up-tilted backward band gap, the wave is fully reflected and
red-shifted.

155409-9



CHAMANARA, TARAVATI, DECK-LÉGER, AND CALOZ PHYSICAL REVIEW B 96, 155409 (2017)

RF biasmatched 

load

forward 

excitation

backward 

excitation

(a) signal transmission line

bias transmission line

varactorsground

port 1 port 2

RF biasto matched

 load

(b)

FIG. 15. Experimental realization of the space-time varying
system in the form of a space-time varying artificial microstrip
transmission line. (a) Schematic of the system, with distributed-
capacitance varactors modulated by a radio wave emulating Eq. (4).
(b) Photograph of the fabricated structure. The varactors are BB833
from Infineon Technologies, with capacitance ratio Cmax/Cmin = 12.
The structure is L = 8 in long and is excited at ω0 = 2π × 2.5 GHz.
The substrate is RT6010 from Rogers with permittivity 10.2, thickness
h = 100 mil, and tan δ = 0.0023.

VIII. OTHER BAND-GAP ENGINEERED SYSTEMS

The proposed idea of band-gap engineering can in general
be realized by any material that breaks Lorentz reciprocity,
including magnetic materials [61] and nonlinear photonic
crystals [62]. A moving medium is another example of
band-gap engineered systems. As pointed out in Sec. V, in
the reference frame of a static observer, a moving photonic
crystal appears to have tilted forward and backward band gaps.
Wang [56] proposes such a structure for optical isolation. The
moving medium in their paper is emulated by electromagnetic-
induced transparency (EIT) [63], where optical response of
the medium is modulated by a periodic moving laser field.

excited 

from right

excited 

from left

FIG. 16. Dispersion diagram corresponding to Eq. (16) with
parameters ωm = 2π × 0.675 GHz, km = 415.79 rad/m, and M =
Cm/Cav = 0.15 in the structure of Fig. 15. The yellow window
corresponds to the asymmetric band gap structure in Fig. 1(b). The
red and blue dots represent the dominantly excited mode for forward
and backward excitations, respectively.

Similar asymmetric band gaps may also be produced for other
types of waves such as acoustic and elastic waves, as was
demonstrated by Trainiti [64] for elastic waves in space-time
modulated elastic media.

IX. EXPERIMENTAL DEMONSTRATION

The space-time modulated system was realized at mi-
crowave frequencies in the form of a space-time varying
artificial microstrip transmission line shown in Fig. 15. To
provide spatiotemporal control on the distributed capacitance
of the transmission line, it is loaded with an array of
subwavelengthly spaced shunt varactors [65]. The bias line at
the bottom provides a DC bias VDC plus a propagating RF bias

V (z,t) = VDC + Vm cos(ωmt + kmz) (15)

to the varactors, where ωm is the modulation frequency. The
bias phase velocity vm = ωm/km is related to the bias line
per-unit-length capacitance (Cav) and inductance (Lav) by

forward

excitation

(a)

(b)

backward

excitation

FIG. 17. Experimental (solid lines) vs theoretical (dashed lines)
results for the isolator in Fig. 15 for the same parameters as in
Fig. 16. (a) Forward excitation: the wave is almost fully reflected
at the blue-shifted frequency ω0 + ωm = 2π × 3.175 GHz with a
transmission level less than −10 dB. (b) Backward excitation: the
backward incident wave is fully transmitted at ω0 = 2π × 2.5 GHz.
For clarity, the theoretical results are shifted by 0.1ωm.
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vm = 1/
√

LavCav. The varactors are reverse biased and act as
voltage-controlled capacitors. They thus add the space-time
varying distributed capacitance

C(z,t) = Cav + Cm cos(ωmt + kmz) (16)

to the signal transmission line. The structure in Fig. 15
therefore emulates a material with space-time varying
permittivity Eq. (4), with background permittivity εr ∝ Cav,
and modulation depth M = Cm/Cav.

Figure 15 shows a photograph of the space-time varying
microstrip line. The modulation circuit is comprised of 39 unit
cells of antiparallel varactors, uniformly distributed along the
microstrip line, with the subwavelength period p = 5 mm,
corresponding to p/λm ≈ 1/19. Therefore, effectively, the
structure represents a medium with the continuous permittivity
Eq. (4). The corresponding dispersion curves are plotted in
Fig. 16, where the horizontal line represents the excitation
frequency. The incident frequency is chosen to excite the
evanescent mode marked by the red dot in the forward
direction and the propagating mode marked by the blue point
in the backward direction. The corresponding length at this
frequency is L = 6λ0.

The scattering parameters are plotted in Figs. 17(a) and
17(b) for forward and backward excitations, respectively. The
evanescent mode decays by 10.5 dB before reaching the end
of the structure, corresponding to −10.5 dB transmission in

Fig. 17(a). The rest of the power is reflected at the upshifted
frequency ω0 + ωm = 2π × 3.175 GHz. In the backward
direction, the incident wave is almost fully transmitted.
Therefore, the isolation level is 10.5 dB. Higher isolation levels
may be achieved by increasing the length of the structure.
The small discrepancy between theory and experiment are
attributed to the metallic and dielectric losses in the experiment
that have not been accounted for in the theory.

X. CONCLUSIONS

Space-time modulation has been introduced as a technique
to tilt the band structure of photonic crystals, resulting in
asymmetrically aligned photonic band gaps for opposite
directions of propagation. Such space-time modulated slabs
have been excited at the frequency corresponding to a photonic
band gap, exciting the evanescent band-gap mode in the
forward direction while exciting a propagating mode in the
opposite direction. Using a full-wave modal analysis, it has
been shown that, in the forward direction, all the energy
is reflected at a Doppler-shifted frequency. In the opposite
direction, the incident wave is fully transferred to the other
end of the space-time modulated slab by strongly coupling
to one of its propagating modes, hence realizing an optical
isolator and a reflection-type mixer.
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