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We study transport properties and the charge quantization phenomenon in a small metallic island connected to
the leads through two quantum point contacts (QPCs). The linear conductance is calculated perturbatively with
respect to weak tunneling and weak backscattering at QPCs as a function of the temperature T and gate voltage.
The conductance shows Coulomb blockade (CB) oscillations as a function of the gate voltage that decay with the
temperature as a result of thermally activated fluctuations of the charge in the island. The regimes of quantum
T � EC and thermal T � EC fluctuations are considered, where EC is the charging energy of an isolated island.
Our predictions for CB oscillations in the quantum regime coincide with previous findings by Furusaki and
Matveev [Phys. Rev. B 52, 16676 (1995)]. In the thermal regime the visibility of Coulomb blockade oscillations
decays with the temperature as

√
T/EC exp(−π 2T/EC), where the exponential dependence originates from the

thermal averaging over the instant charge fluctuations, while the prefactor has a quantum origin. This dependence
does not depend on the strength of couplings to the leads. The differential capacitance, calculated in the case of
a single tunnel junction, shows the same exponential decay, however the prefactor is linear in the temperature.
This difference can be attributed to the nonlocality of the quantum effects. Our results agree with the recent
experiment [Nature (London) 536, 58 (2016)] in the whole range of the parameter T/EC .

DOI: 10.1103/PhysRevB.96.155408

I. INTRODUCTION

The transport of electrons through small mesoscopic con-
ductors, such as metallic and semiconductor quantum dots, has
been extensively studied both experimentally and theoretically
[1]. One of the most popular experimental systems in this
field is the single electron transistor (SET), which consists of
a quantum dot (typically, a small micrometer-scale metallic
island) connected to two metallic leads by tunnel junctions
and capacitively coupled to an additional gate electrode [2].
Such a three-terminal device has been theoretically proposed
by Averin and Likharev [3], and fabricated and characterized
by Fulton and Dolan [4]. The most important characteristic
of these devices, which sets them apart from the conventional
field effect transistors, is that they can be switched between
insulating and conducting state by adding a small amount of
charge to the gate electrode as the charge of an electron e.

Such strong charge sensitivity of SETs is a consequence
of the fact that the charge of an isolated metallic island is
quantized in units of the elementary charge e. Tunneling of an
electron from a lead into the island changes its charge by e and
increases the charging energy of the system by the amount of
order EC = e2/2C, where C is a geometrical capacitance of
the island. When the temperature is small, T � EC , tunneling
is strongly suppressed except at degeneracy points between
states, where the number of electrons in the island differs
by one. Therefore, the conductance of the SET exhibits a
series of peaks as a function of the applied gate voltage.
This well-known phenomenon, called the Coulomb blockade
(CB) effect, is widely reviewed in the literature [1,2,5,6].
Recently, it has received renewing interest in the context of the
quantum information processing, where the semiconductor-
metal hybrid devices serve as crucial elements for quantum
computing [7], and in the quest for topologically protected
quantum bits [8].

The growing interest in single electron phenomena stimu-
lated further research and recently resulted in the publication
of the thorough experimental study of the decay of CB
oscillations in mesoscopic circuits induced by thermal and
quantum fluctuation of charge [9]. The experimental setup in
Ref. [9] is schematically shown in Fig. 1. The experimentalists
fabricated a hybrid SET based on a two-dimensional electron
gas in the integer quantum Hall (QH) regime by attaching
a central micrometer-scale metallic island to large electrodes
with the help of edge channels. Unlike in earlier experiments
[10–12], this new approach allows a precise control of coupling
of the island to the leads by using two QPCs, which mix
incoming and outgoing edge channels with the complex
amplitudes τL and τR . The metallic island has a negligible level
spacing, which implies that it can be considered a reservoir for
electron-hole excitations. The experimentalists measured the
visibility of CB oscillations in the linear conductance of the
SET as a function of the tunneling amplitudes τL,R and the
temperature T in the whole range of parameters. The purpose
of the present paper is to present the theory and interpretation of
the observed effects in the regimes of weak tunneling and weak
backscattering at QPCs, which are theoretically accessible by
using the tunneling Hamiltonian approach.

Between a large number of previous theoretical works on
the CB effect (see, e.g., Refs. [13–20]) the earlier theory [21] of
Furusaki and Matveev deserves special attention in the present
context, because they have addressed the CB oscillations with
the help of the model described above (see Fig. 1). Using the
standard bosonization technique, they have made quantitative
predictions for the visibility of CB oscillations in the quantum
regime T � EC in the case of strong tunneling, where one
or both QPCs are close to perfect transmission. Here we
extend these predictions to arbitrary temperatures by using an
alternative approach to bosonization [22,23], which is based
on the scattering theory for bosons as well as the Langevin
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FIG. 1. The experimental system in Ref. [9] is schematically
shown. In the integer quantum Hall regime, where only one spinless
edge mode contributes to the transport, a metallic island (containing
the charge Q) is connected to the leads by two QPCs, characterized
by the backscattering amplitudes τL and τR . The edge states are
described by four bosonic operators, labeled by α = in, out and
j = 1,2. The average current 〈I 〉 is calculated through the cross
section immediately to the right of the right QPC.

equation method. Our quantitative predictions fully agree with
the experimental data in the whole range of temperatures. In the
thermal regime T � EC , the amplitude of CB oscillations in
the conductance scales as δG ∝ √

T/EC exp(−π2T/EC), in-
dependently of the geometry of the system. Here the exponen-
tial function results from the averaging of CB oscillations over
the classical thermal fluctuations of the charge in the island,
while the power-law prefactor has a quantum origin. Interest-
ingly, the CB oscillations in the differential capacitance of the
island acquire the linear in T prefactor, which points to the
nonuniversality of this contribution and to its quantum origin.

The rest of the paper is organized as follows. In Sec. II
we introduce the model of the system, starting with the
Hamiltonian of all the constituting parts and the bosonization
prescription, and formulate the method of quantum Langevin
equations. In Sec. III we calculate the linear conductance
and the visibility of CB oscillations for the case of the
symmetric setup, i.e., for weak backscattering at both QPCs,
using the perturbation approach in backscattering amplitudes.
In Sec. IV we develop the perturbation theory for the case
of the asymmetric setup with weak tunneling at one of the
two QPCs and calculate the conductance and visibility in this
regime. Section V is devoted to the derivation of the differential
capacitance. We present our conclusions and the discussion in
Sec. VI. Details of the calculations are given in the Appendixes.
Throughout the paper we set e = h̄ = kB = 1.

II. THEORETICAL MODEL

A. Hamiltonian

We start by introducing the Hamiltonian of the experimental
system in Ref. [9], see Fig. 1. The relevant energy scales in this
experiment are sufficiently small compared to the Fermi energy
εF , which suggests using the effective low-energy theory of
QH edge states [24]. The advantage of this approach is that
it allows us to take into account Coulomb interaction at the
metallic island in a straightforward way [23]. According to
the effective theory, edge states can be described as collective
fluctuations of the charge densities ραj (x), where indexes label
the number of the channel j = 1,2 and the state α = in,out.
The charge density operators are expressed in terms of bosonic
fields φαj (x), namely, ραj (x) = (1/2π )∂xφαj (x). These free
bosonic fields satisfy canonical commutation relations

[∂xφαj (x),φβk(y)] = (−1)α2πiδαβδjkδ(x − y), (1)

where the sign determines the propagation direction of the
edge states.

The total Hamiltonian includes three terms

H = H0 + Hint + HT. (2)

Here

H0 = vF

4π

∑
α = in,out
j = 1,2

∫
dx[∂xφαj (x)]2 (3)

is the free part of the total Hamiltonian, and the Fermi velocity
vF is the same for each edge channel. The second term
describes Coulomb interaction at the metallic island:

Hint = (Q − Q0)2

2C
, (4)

where

Q = 1

2π

∫ ∞

0
dx[∂xφin1(x) + ∂xφout2(x)]

+ 1

2π

∫ 0

−∞
dx[∂xφin2(x) + ∂xφout1(x)] (5)

is the operator of the total charge on the metallic island, C being
its geometrical capacitance, and the parameter Q0 is propor-
tional to the gate voltage and the capacitance Cg between the
island and the gate, namely Q0 = CgVg . Thus the role of the
gate is to control the average charge of the metallic island.

The last term describes backscattering of electrons at the
left and right QPC,

HT = AL + AR + H.c.,

AL = τL

a
eiφin1(0)−iφout2(0), (6)

AR = τR

a
eiφout1(0)−iφin2(0),

where τi are the tunneling coupling constants, and a is the
ultraviolet cutoff [23,25–27]. Note that here we set the distance
between the grain and QPCs to zero, because in the experiment
it is much shorter than the characteristic wavelength of
excitations λ ∼ vF /T .

The Hamiltonian (2) gives the complete description of our
system. We note that the part H0 + Hint is quadratic in bosonic
operators, thus the dynamics associated with this Hamiltonian
can be accounted for exactly by solving linear equations
of motion. We follow Refs. [22,23] and complement these
equations with the boundary conditions in terms of dissipative
currents originating from the reservoirs and the metallic island.
Fluctuations of these currents are Gaussian, therefore, they
can be considered Gaussian sources in the so-arising quantum
Langevin equations. In contrast, the tunneling term (6) is
nonlinear in bosonic operators. Therefore, in Secs. III and
IV we develop the perturbation theory to leading order in
backscattering and tunneling amplitudes.

B. Quantum Langevin equations

As the first step, we consider the currents in the system
shown in Fig. 1, when QPCs are fully open (symmetric setup),
and write the equations of motion generated by the part
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H0 + Hint of the total Hamiltonian in the following form [23]:

dQ(t)

dt
=

∑
α=1,2

jinα(t) −
∑

α=1,2

joutα(t),

joutα(t) = Q(t) − Q0

RqC
+ j s

α(t), (7)

where Rq = 2π is a quantum resistance. Here the first equation
expresses the conservation of charge. The second line is
the Langevin equations, which have the following physical
meaning. The outgoing currents acquire two contributions: the
first one is the current induced by the time dependent potential
Q(t)/C, and the second j s

α are the Langevin current sources
originating from the metallic island.

Now we are ready to calculate the current 〈I 〉0 through the
system in absence of backscattering, i.e., in the case of fully
open QPCs. We define it as the average current in the cross
section immediately after the right QPC,

〈I 〉0 = 〈jout1〉 − 〈jin2〉. (8)

Assuming that the first channel is voltage biased with �μ,
while the second is grounded, we set 〈j2in〉 = 0. Averaging
Eqs. (7) and taking into account that the average incoming
current is equal to the average outgoing current, we obtain

〈jout1〉 + 〈jout2〉 = �μ/Rq,

〈jout1〉 = 〈jout2〉 = 〈Q〉 − Q0

RqC
. (9)

Next, we use these equations to calculate the average value
for the total charge stored in the metallic island 〈Q〉 = Q0 +
�μC/2, and the average current through the system 〈I 〉0 =
〈jout1〉 = �μ/2Rq . Therefore, in the absence of backscattering
the conductance acquires the value

G0 = 1
2Gq, (10)

where Gq = 1/Rq = 1/2π is the conductance quantum, i.e.,
the system behaves as two quantum resistances connected in
series.

According to Eqs. (7), the fluctuating currents satisfy the
following equations:

d

dt
δQ(t) =

∑
α=1,2

δjinα(t) −
∑

α=1,2

δjoutα(t),

δjoutα(t) = δQ(t)

RqC
+ δj s

α(t). (11)

These equations can be easily solved in the frequency
representation, and for the symmetric setup we obtain(

δjout1(ω)
δjout2(ω)

)

=
(

a(ω) b(ω) −b(ω) −b(ω)
b(ω) a(ω) −b(ω) −b(ω)

)⎛
⎜⎝

δj s
1 (ω)

δj s
2 (ω)

δjin1(ω)
δjin2(ω)

⎞
⎟⎠, (12)

where a(ω) = (iωRqC − 1)/(iωRqC − 2) and b(ω) =
1/(iωRqC − 2) are the scattering coefficients. Next, in order
to address a particular experimental situation [9], we also

FIG. 2. The asymmetric setup, where the left QPC is almost fully
open, while the right QPC is weakly transmitting, is schematically
shown. We investigate CB oscillations to leading order in the
backscattering amplitude τL and tunneling amplitude τR .

consider an asymmetric setup, i.e., where for instance the left
QPC is fully open, while the right one is fully closed (see
Fig. 2). We skip the details of the calculations, which are
analogous to those in the case of the symmetric setup, and
present the result

δjout1(ω) = δj s
1 (ω) + 1

iωRqC − 1

[
δj s

2 (ω) − δjin1(ω)
]
,

δjout2(ω) = iωRqC

iωRqC − 1
δj s

1 (ω) − 1

iωRqC − 1
δjin1(ω).

(13)

Finally, the two-point correlation functions of the incoming
currents and Langevin sources are given by the equilibrium
spectral function [28]〈
δj s

α(ω)δj s
β(ω′)

〉 = 〈δjinα(ω)δjinβ(ω′)〉 = δαβδ(ω + ω′)S(ω),

(14)

where S(ω) = 2πGqω/(1 − e−ω/T ). With the help of
Eqs. (12), (13), and (14), one obtains two-point correlators
of the currents at QPCs. In the following sections we use these
correlators to derive the corrections to the bare conductance
perturbatively in the cases of the symmetric and asymmetric
setup. Below we will use that Rq = 2π and Gq = 1/2π

explicitly. These quantities are easily restored in the final
results for conductance.

III. SYMMETRIC SETUP

We consider the regime of low bias �μ � T and evaluate
the linear conductance through the metallic island in the
symmetric setup shown in Fig. 1:

G = d〈I 〉
d�μ

∣∣∣∣
�μ=0

. (15)

In the interaction representation the average current is given
by the expression

〈I 〉 = Tr[ρ0U
†(t, − ∞)I (t)U (t, − ∞)], (16)

where

U (t1,t2) = T̂ exp

[
−i

∫ t1

t2

dtHT(t)

]
(17)

is the evolution operator. The current operator is defined in the
cross section immediately after the right QPC,

I (t) = − 1

2π
∂t [φout1(xr,t) − φin2(xr,t)], (18)

and ρ0 ∝ exp[−(H0 + Hint)/T ] is the equilibrium density
matrix.
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We evaluate the average current perturbatively expanding
the evolution operator to the lowest order in backscattering
amplitudes,

〈I 〉 = 〈I 〉0 + δ〈I 〉0, (19)

where the nonperturbed current 〈I 〉0 = �μ/2Rq was derived
in the previous section, and the second term can be written as
(for details, see Appendix A)

δ〈I 〉0 = Idir + Iosc =
∑

l,l′=L,R

Ill′ ,

Ill′ = −1

2

∫
dt〈[A†

l (t),Al′(0)]〉0, (20)

where the average is taken with respect to the equilibrium
nonperturbed state with the density matrix ρ0 and Idir =
ILL + IRR is the direct contribution to the current, while
Iosc = ILR + IRL is the oscillating part. The later one oscillates
as a function of the parameter Q0, proportional to the gate
voltage, as cos(2πQ0), which is the manifestation of the CB
effect. Finally, the prefactor 1/2 in this expression comes from
the fact that the metallic island mixes the edge channels equally
even in the absence of backscattering.

A. Quantum regime

We evaluate the correction δG to the linear conductance
by using the Kubo formula (20) and split it in a direct
and oscillating part: δG = δ〈I 〉0/�μ = Gdir + Gosc. In the
low-temperature quantum regime T � EC we obtain (see
Appendix B for details)

Gdir = −| τL |2 + | τR |2
v2

F

eγ EC

8π2T
, (21)

where γ ≈ 0.5772 is Euler’s constant. For the oscillating
contribution in this regime we obtain the expression

Gosc = −2 | τL || τR |
v2

F

eγ EC

8π2T
cos(2πQ0). (22)

Taking into account that Gq = 1/2π and combining Eqs. (10),
(21), and (22), we present the total linear conductance in the
following form:

G = Gq

2

(
1 − �(Q0)

T

)
, (23)

where

�(Q0) = eγ EC

2πv2
F

[|τL|2 + |τR|2 + 2|τL||τR| cos(2πQ0)]. (24)

It is important to mention that in Eq. (23) we kept only leading
order terms in the parameter EC/T , and according to our
perturbation approach in weak backscattering T � �(Q0). In
this limit our results fully agree with the earlier theory of
Furusaki and Matveev [21]. Interestingly, the same expressions
were derived for the conductance of a one-dimensional (1D)
system with two defects [29].

B. Thermal regime

In the thermal regime T � EC we derive (see Appendix B
for details) the following expressions for direct:

Gdir = − 1

8π

| τL |2 + | τR |2
v2

F

(25)

and the oscillating term

Gosc = −|τL||τR|
2v2

F

√
πT

EC

exp

[
−π2T

EC

]
cos(2πQ0). (26)

Taking into account that Gq = 1/2π and combining Eqs. (10),
(25), and (26), we obtain the following expression for the total
linear conductance:

G = Gq

2

[
1 − |τL|2 + |τR|2 + 2|τL||τR|F (T ) cos(2πQ0)

2v2
F

]
,

(27)

where the temperature dependent factor is given by

F (T ) = 2π

√
πT

EC

exp

[
−π2T

EC

]
. (28)

In contrast to the quantum regime, here the temperature
influences only CB oscillations.

We note that these results have an interesting interpretation.
While at high temperatures the bare currents at the left and right
QPC can be considered being independent 1D currents, at low
temperatures T � EC (and consequently at low frequencies)
the metallic island splits them equally. This leads to the
phenomenon of charge fractionalization (half of an electron
is reflected by the island), and thus reduces the exponent of the
power-law correlators in (20) by the factor of 2. As a result, the
direct conductance in (21) acquires the singular temperature
dependence 1/T .

C. Visibility

The strength of the CB oscillations is described by the
visibility function

V = Gmax − Gmin

Gmax + Gmin
, (29)

where Gmax(min) is the maximum (minimum) SET conductance
over one gate voltage period.

In the quantum regime the visibility is given by

V = |τL||τR|eγ EC

πv2
F T

, T � Ec, (30)

and according to the perturbation approach in weak backscat-
tering, V � 1. In the thermal regime we obtain the following
result:

V = 2|τL||τR|
v2

F

π

√
πT

EC

exp

[
−π2T

EC

]
, T � EC. (31)

The exact dependence of the visibility on the temperature
in whole range of temperatures, from quantum to thermal
regime, is found by calculating time integrals in Appendix B
numerically. The results are presented in Fig. 3 together with

155408-4



THERMAL DECAY OF COULOMB BLOCKADE OSCILLATIONS PHYSICAL REVIEW B 96, 155408 (2017)

FIG. 3. The exact temperature dependence of the visibility
(green line) is shown for the case of the symmetric setup to-
gether with the asymptotic low- and high-temperature solutions
(dashed lines) and experimental results (black squares). The vis-
ibility is normalized to the value V0 = |τL||τR|/v2

F in order to
get rid of the nonuniversal backscattering amplitudes. The ex-
perimental results are obtained for various transmissions at the
left QPC [9]: GL/Gq = 0.983, 0.974, 0.974, 0.75, 0.75, 0.75 for
T/EC = 0.055, 0.108,0.157, 0.273, 0.397, 0.553, respectively. The
transmission at the right QPC, GR/Gq , is kept very close to 1.

asymptotic solutions (30) and (31), and the results of the
experiment [9]. It is worth mentioning a good agreement with
the experiment.

IV. ASYMMETRIC SETUP

In this section we study the case of the asymmetric
setup, namely, we assume that the right QPC is almost
closed (pinched-off), while the left one is almost open (see
Fig. 2). To find the conductance of the system we apply the
perturbation expansion in two steps: we first calculate the linear
conductance perturbatively in the tunneling at the right QPC,
and then consider corrections to it taking into account weak
backscattering at the left QPC.

The electron current is defined as a rate of change of the
electron number NR in the right arm, namely

IR = i[HT ,NR] = i(AR − A
†
R). (32)

We evaluate the average current to the lowest order in the
tunneling amplitude τR:

〈IR〉 =
∫

dt〈[A†
R(t),AR(0)]〉. (33)

Here the average is taken with respect to the density matrix

ρ = U (0, − ∞)ρ0U
†(0, − ∞), (34)

perturbed by weak backscattering at the left QPC. To the lowest
order in the backscattering amplitude τL, the evolution operator

is given by the expression

U (t1,t2) = 1 − i

∫ t1

t2

dt(AL + A
†
L). (35)

Using Eq. (33), we present the linear conductance G =
〈IR〉/�μ in the following form:

G = i|τR|2
a2

∫
dt t[K0(t)G1(t) − K∗

0 (t)G2(t)], (36)

where

K0(t) = −iT

2vF sinh[πT (t − i0)]
(37)

is the two-point correlation function of free fermions in the
right arm of the system in Fig. 2. The correlation functions

G1(t) = 〈U †(t, − ∞)e−iφout1(t)

×U (t,0)eiφout1(0)U (0, − ∞)〉0, (38)

G2(t) = 〈U †(0, − ∞)eiφout1(0)

×U (0,t)e−iφout1(t)U (t, − ∞)〉0 (39)

are calculated perturbatively to the lowest order in the
backscattering amplitude τL, i.e., by using Eq. (35). After
expanding Eqs. (38) and (39) and substituting them into
Eq. (36), one can split the conductance G in the sum of two
terms

G = Gdir + Gosc. (40)

Here the term Gdir is proportional to |τR|2, and does not depend
on the gate parameter Q0. In contrast, the contribution Gosc is
proportional to |τL||τR|2 and demonstrates CB oscillations.
Detailed calculations of these two terms are presented in
Appendix C.

A. Quantum regime

Repeating the same steps as in the Sec. III, we obtain the fol-
lowing expression for the direct and oscillating contributions
to the conductance in the limit of low temperatures T � EC

(see Appendix C):

Gdir(T ) = 2π4T 2GR

3e2γ E2
C

, (41)

where GR = |τR|2/2πv2
F is the bare conductance of the right

QPC. The oscillating contribution acquires the form

Gosc = −2π4T 2GR

3e2γ E2
C

ξ
|τL|
vF

cos(2πQ0). (42)

Substituting Eqs. (41) and (42) into Eq. (40), we arrive at the
following expression for the total linear conductance:

G = 2π4T 2GR

3e2γ E2
C

[
1 − ξ

|τL|
vF

cos(2πQ0)

]
, (43)

where ξ = 4eγ is the dimensionless numeric constant [21].
Note that even in the absence of backscattering at the left QPC
the conductance scales as T 2.
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B. Thermal regime

In this case, T � EC , we get the following expressions for
the direct and oscillating contributions to the total conductance
(details of calculations are presented in Appendix C):

Gdir = |τR|2
2πv2

F

= GR (44)

and

Gosc = −GR

|τL|
vF

M(T ) cos(2πQ0), (45)

where the temperature dependent factor is given by

M(T ) = 2π

√
πT

EC

exp

[
−π2T

EC

]
. (46)

Combining two terms, we present the total conductance as

G = GR

[
1 − |τL|

vF

M(T ) cos(2πQ0)

]
. (47)

Note that the temperature affects only the oscillating contribu-
tion, in contrast to the quantum regime.

C. Visibility

As it follows from Eq. (43), the visibility in the quantum
regime is constant:

V = ξ
|τL|
vF

, T � EC. (48)

In the thermal regime [see Eq. (47)], the visibility acquires the
following form:

V = 2π |τL|
vF

√
πT

EC

exp

[
−π2T

EC

]
, T � EC. (49)

The results of the exact numerical calculation of time integrals
for the visibility in Appendix C are shown in Fig. 4 together
with the asymptotic forms and the experimental data [9]. Our
results agree quite well with the experiment.

V. DIFFERENTIAL CAPACITANCE

Without loss of generality, we consider here an asymmetric
case, namely, we assume that the right QPC is pinched-off
with τR = 0 (see Fig. 2), while the left QPC is almost open
with the weak backscattering amplitude τL. In this case, the
CB effect manifests itself in the oscillations of the equilibrium
characteristics of the system, such as its ground state energy
or the average charge of the island. The single-electron
capacitance spectroscopy of quantum dots [30,31] can be
used to measure experimentally the differential capacitance
between the gate and the lead. The differential capacitance is
defined, up to a nonuniversal constant prefactor, as

Cdiff = − ∂2F

∂Q2
0

, (50)

where F is the free energy of the system

F = −T log(Z), (51)

and Z = Tr(e−H/T ) is the partition function.

FIG. 4. The exact temperature dependence of the visibility (green
line) is shown for the case of the asymmetric setup together with
the asymptotic low- and high-temperature solutions (dashed lines)
and experimental results (black squares). The visibility is normalized
to the value V0 = |τL|/vF in order to get rid of the nonuniversal
backscattering amplitude. The experimental results are obtained for
transmission at the left QPC [9]: GL/Gq = 0.075 for T/EC =
0.055, 0.108, 0.157, 0.273, 0.397, 0.553 and the transmission at the
right QPC, GR/Gq , is kept very close to 1. The green shadowed
region shows the error bars of the numerical evaluation.

The fully open island does not exhibit the QB effect,
therefore we evaluate the partition function perturbatively
in the backscattering amplitude τL and concentrate on the
correction to the capacitance. We write

Z = Z0 + δZ, (52)

where Z0 = Tr[e−(H0+Hint)/T ] is the bare part, while the
correction is given by

δZ = −Tr

[
e−(H0+Hint)/T

∫ 1/T

0
dτHT(τ )

]
, (53)

where τ is the imaginary time. Consequently, the free energy
can be rewritten as

F = F0 + δF, (54)

where F0 = −T log(Z0), and the correction has the following
form:

δF = −T
δZ

Z0
= Tr(ρ0HT), (55)

where HT = AL + A
†
L.

Next, we write the right-hand side of Eq. (55) in bosonic
operators using the definition (6), and evaluate the correlation
function 〈eiφout2(0)e−iφin1(0)〉0 by using the scattering matrix (13)
for bosons in the asymmetric setup and the Gaussian character
of the theory. Thus, we obtain

δF = 2|τL|
a

cos(2πQ0)ey(T ), (56)
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where

y(T ) = −
∫

dxx

1 + x2

1

1 − e−x/2πT C
. (57)

We evaluating y(T ) in the limit of high temperatures T � EC :

y(T ) = log(a/4π2vF C) − 2π2T C + log(4π2T C), (58)

and find the correction to the free energy

δF = 2|τL|
vF

T e−π2T/EC cos(2πQ0). (59)

Consequently, the correction to the differential capacitance in
the thermal regime is given by

δCdiff = 8π2 |τL|
vF

T exp

[
−π2T

EC

]
cos(2πQ0). (60)

Interestingly, the differential capacitance contains the same
exponential factor as in the linear conductance for both setups.
This can be easily explained by the fact that the exponential
dependence on the temperature simply follows from averaging
CB oscillations over instant fluctuations of the charge in the is-
land, which are distributed with the equilibrium Gibbs weights
ρG ∝ exp[−Q2EC/T ]. However, the power-law prefactor in
the differential capacitance is different from the one in the
linear conductances [see Eqs. (28) and (46)], which can be
understood taking into account its quantum character, since
one of the contributions to it comes from high-energy modes.

VI. CONCLUSION

The charge of an isolated metallic system is quantized in
units of the elementary electron charge. This phenomenon
manifests itself in oscillations of the conductance, if a
system is attached to metallic leads, and in the oscillations
of the differential capacitance. The degree of the charge
quantization is described by the dimensionless visibility V

of such oscillations. In the recent experiment conducted in
the group of Pierre [9], the transport through a small metallic
island connected to two leads by QPCs (as schematically
shown in Fig. 1) has been thoroughly studied in the regime,
where the QPCs are pinched-off to allow only one mode to
partially propagate. In such systems quantum and thermal
fluctuations of the current at QPC gradually reduce the
quantization of charge as the tunneling coupling strength at
QPCs is increased, and the CB oscillations vanish for fully
open contacts. The work [9] has reported measurements of
the visibility of CB oscillations as a function of temperature
as well as of the tunneling coupling strength at QPCs.

Motivated by this experiment, we have developed a quanti-
tative theory of the linear conductance and differential capaci-
tance of the metallic island in the whole range of temperatures,
from below to above the charging energy EC , in the cases of
symmetric and asymmetric tunneling coupling at QPCs. To
do so, we have use the quantum Langevin equation approach
to account for the dynamics and fluctuations of the collective
charge fluctuations in a fully open system, and the tunneling
Hamiltonian approach to account for weak backscattering and
weak tunneling of electrons at QPCs [23,25]. This method is
based on the fact that the electrical circuit elements typically
create only Gaussian fluctuations and therefore the fully open

system in the bosonic picture remains Gaussian, because the
interaction part of Hamiltonian is quadratic in bosonic fields.

We have found that in the low-temperature quantum regime
T � EC the temperature dependence of the linear conduc-
tance coincides with the results of Furusaki and Matveev [21]
in both cases of symmetric and asymmetric setup. For instance,
in the symmetric case (see Fig. 1) the direct and oscillating
part of the weak backscattering contribution to the conduc-
tance of the system both acquire the power-law temperature
dependence δG ∝ EC/T . On the other hand, in the case of
asymmetric setup (see Fig. 2) the total conductance including
the oscillating correction acquires the temperature dependence
G ∝ (T/EC)2, thus the visibility of CB oscillations stays con-
stant. Different power-law scaling of the conductance with the
temperature depending on the geometry of the system indicates
that an important role is played by the character of mixing of
the collective modes in the metallic island. For instance, in the
case of the symmetric setup the metallic island splits equally
incoming currents, and thus the scaling EC/T originates from
the charge fractionalization induced by such a current splitter,
which is known to affect the power-law exponents.

In the high-temperature limit T � EC the temperature
dependence of the oscillating correction to the conduc-
tance is entirely different: it is given by the product of
a power-law prefactor and exponentially decaying function
δG ∝ √

T/EC exp(−π2T/EC), both for the symmetric and
asymmetric setup. In order to compare our theory to the
experiment [9], we have found the visibility of CB oscillations
exactly in the entire range of temperatures by calculating
time integrals numerically. Our results are shown in Figs. 3
and 4 together with the asymptotic forms and the results of
measurements. This comparison shows a good agreement of
our theory with the experiment.

Finally, we have investigated CB oscillations in a partially
closed system, where the right QPC is disconnected from
the circuit (τL = 0, see Fig. 2) by evaluating the differ-
ential capacitance of the metallic island. Interestingly, the
oscillating correction to the differential conductance in the
high-temperature limit acquires the same exponential decay
with the temperature as the one for the linear conductance.
Such universality can be explained by the fact that this effect is
completely classical and originates from the thermal averaging
of the CB oscillations over instant configurations of the charge
in the island with the equilibrium Gibbs weights. On the
contrary, the power-law prefactor is different [see Eq. (60)],
which can be attributed to its quantum origin.
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APPENDIX A: DERIVATION OF THE KUBO FORMULA
FOR SYMMETRIC SETUP

In this Appendix we derive Eq. (20). The operator of
outgoing current to the right from the right QPC at point xr > 0
(see Fig. 1) expressed in bosonic fields reads

I (t) = − 1

2π
∂t [φout1(xr,t) − φin2(xr,t)]. (A1)
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Then the average current is given by the following expression:

〈I 〉 = 〈U †(t, − ∞)I (t)U (t, − ∞)〉0, (A2)

where the average is taken with respect to the unperturbed
state ρ0 ∝ exp[−(H0 + Hint)/T ], and the evolution operator
in interaction picture is expanded to second order in tunneling
Hamiltonian Eq. (6):

U (t, − ∞) = 1 − i

∫ t

−∞
dt1HT(t1)

−
∫ t

−∞
dt1

∫ t1

−∞
dt2HT(t1)HT(t2). (A3)

By substituting (A3) into (A2) and doing simple algebra, one
arrives at the expression (19).

The first term in (19) has been evaluated in Sec. II with the
result (8). Here we concentrate on the second term in (19) and
rewrite it in the following form:

δ〈I 〉 = −
∫ t

−∞
dt1

∫ t1

−∞
dt2〈[[I (t),HT(t1)],HT(t2)]〉0. (A4)

The integrand contains four nonzero terms,

〈[[I (t),HT(t1)],HT(t2)]〉0 = �1 + �2 + c.c., (A5)

where the first two terms read

�1 = 〈[[I (t),AL(t1)],A†(t2)]〉0,

�2 = 〈[[I (t),AR(t1)],A†(t2)]〉0. (A6)

Next, we concentrate on the first term �1 (the second
term �2 can be evaluated in the same way) and simplify the
commutator in �1:

[I (t),AL(t1)] ∝ [∂tφout1(xr,t) − ∂tφin2(xr,t),e
i[φin1(t1)−φout2(t1)]]

(A7)

by using the following properties of operators. If an op-
erator D = [B,C] satisfies [B,D] = [C,D] = 0, then the
following relations hold: [B, exp(C)] = [B,C] exp(C) and
exp(B) exp(C) = exp(B + C) exp ([B,C]/2). Thus, we obtain

�1 = R(t − t1)KL(t1 − t2), (A8)

where KL(t1 − t2) = 〈[AL(t1),A†(t2)]〉0 and R(t − t1) =
− 1

2π
{∂tφout1(xr,t) − ∂tφin2(xr,t),i[φin1(t1) − φout2(t1)]} Then,

using the Langevin equations (12) and the commutator
of incoming currents [jinα(ω),jinβ(ω′)] = ωδ(ω + ω′)δαβ , we
obtain the relation

R(t − t1) = 1

4π

∫
dωω2

ω2 + η2

(
eiωxr/vF

iπωC − 1
− e−iωxr /vF

iπωC + 1

)

× e−iω(t−t1). (A9)

It can be shown similarly that

�2 = F (t − t1)KR(t1 − t2), (A10)

where KR(t1 − t2) = 〈[AR(t1),A†(t2)]〉0 and F (t − t1) =
−δ(t − xr/vF − t1) − δ(t + xr/vF − t1) − R(t − t1).

Finally, substituting expressions (A8) and (A10) into
Eq. (A5), and then into Eq. (A4), we arrive at the following

expression:

δ〈I 〉 = − 1

4π

∫
dω

(
K(ω)

iω + α
+ K∗(ω)

−iω + α

)
, (A11)

where α → +0, and K(ω) = KL(ω) + KR(ω). We use
the property K(ω) = K∗(ω), which follows from K∗(t) =
〈[A(t),A†(0)]〉∗ = 〈[A(0),A†(t)]〉 = K(−t). Thus, only ω = 0
contributes in the integral, and we obtain

δ〈I 〉 = −1

2

∫
dt〈[A†(t),A(0)]〉0, (A12)

and eventually, Eq. (20) in the main text.

APPENDIX B: PERTURBATION THEORY FOR
SYMMETRIC SETUP

In this Appendix we derive the leading order corrections to
the conductance of the system in the symmetric setup. We use
the Gaussian character of the theory to present the average of
four vertex operators in Eq. (20) in the following form:

〈eiλ1φ1eiλ2φ2eiλ3φ3eiλ4φ4〉0

= exp

⎛
⎝−1

2

4∑
i=1

λ2
i

〈
φ2

i

〉
0 −

4∑
i<j

λiλj 〈φiφj 〉0

⎞
⎠,

λi = ±1, (B1)

where the average is taken with respect to the equilibrium
density matrix ρ0 ∝ exp[−(H0 + Hint)/T ]. We evaluate two-
point correlation functions on the right-hand side of this
expression using the quantum Langevin equation approach
(12). According to Eq. (20), the correction to the average
current consists of the direct and oscillating part δ〈I 〉0 =
Idir + Iosc. Here we consider them separately.

The direct term has the following form:

Idir = −| τL |2 + | τR |2
2

∫
dtei�μt/2[Kff(t)e

−β(t) − c.c.],

(B2)

where β(t) is given below, and

Kff(t) = 1

a2
exp

(
2
∫

dωω

ω2 + η2

e−iωt − 1

1 − e−ω/T

)

= −T 2

4v2
F sinh2[πT (t − i0)]

(B3)

is the square of the free fermion correlation function. The
oscillating term is given by the following expression:

Iosc = −2 | τL || τR |

× Re

[
e−2πiQ0+αS (T )

2a2

∫
dtei�μt/2(eβ(t) − c.c.)

]
. (B4)

Here

αS(T ) = −2
∫

dx
x

1 + x2

1

1 − e−x/πT C

= 2γ + 2 log

(
a

2π2vF C

)
+ 2π2T C

+ 2 log(2π2T C) + 2�(1/2π2T C), (B5)
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�(x) = d log[�(x)]/dx is the digamma function of real
variable x, �(x) is the gamma function, and β(t) = β1(t) +
Reβ2(t) + iImβ2(t).

Below we need the expressions for β1(t) and β2(t) only for
positive times t > 0, where they take the following form:

β1(t) = −2
∫ ∞

0

dω

ω2 + η2

ω

1 + (πωC)2

cos(ωt) − 1

1 − eω/T
, (B6)

Reβ2(t) =
∫ ∞

0
dω

ω

ω2 + η2

cos(ωt) − 1

1 + (πωC)2

= −γ − log(t/πC) + e−t/πC

2
Ei(t/πC)

+ et/πC

2
Ei(−t/πC), (B7)

Imβ2(t) = −
∫ ∞

0
dω

ω

ω2 + η2

sin(ωt)

1 + (πωC)2

= −π

2
(1 − e−t/πC). (B8)

Here Ei(x) = − ∫ ∞
−x

dye−y/y is the exponential integral for
real nonzero values of x. Below we use derived in this
Appendix integral representations for the current, take the
derivative with respect to �μ to obtain the conductance, and
find analytic expressions for the thermal T � EC and quantum
T � EC regimes.

1. Quantum regime

We first consider the direct term (B2). The contribution
from the poles to the time integral at small times t ∼ 1/εF is
a constant of temperature, while the dominant contribution to
(B2) scales as EC/T . Therefore, we neglect the contributions
from poles and present the direct part of the conductance as an
integral over positive times, because the integrand is an even
function of variable t in this case:

Gdir = −| τL |2 + | τR |2
v2

F

∫ ∞

0
dtt

T 2

4 sinh2(πT t)
e−β1(t)−Reβ2(t)

× sin
[π

2
(1 − e−t/πC)

]
.

(B9)

Next, taking into account that T � EC , we set C = 0 in
β1(t) and obtain β1(t) = − log ( sinh(πT t)

πT t
). Then, the main

contribution to integral for Gdir comes from large times,
namely t/πC � 1. In this case, we can simplify Reβ2(t) =
−γ − log(t/πC) and use sin [π

2 (1 − e−t/πC)] ∼ 1. After sub-
stitution these expressions in Eq. (B9), we obtain

Gdir = −| τL |2 + | τR |2
v2

F

eγ

4π4T C

∫ ∞

0
dx

x

sinh(x)

= −| τL |2 + | τR |2
v2

F

eγ EC

8π2T
. (B10)

In the oscillating term, at small temperatures T � EC , the
factor αS(T ) simplifies as αS(T ) ≈ 2γ + 2 log(a/2π2vF C).
Then, using the same arguments as for the direct term, we

obtain

Gosc = −2 | τL || τR |
v2

F

cos(2πQ0)
eγ

4π4T C

∫ ∞

0
dx

x

sinh(x)

= −2 | τL || τR |
v2

F

eγ EC

8π2T
cos(2πQ0). (B11)

Combining (B10), (B11), and (10) we obtain Eq. (23) in the
main text.

2. Thermal regime

In this regime T � EC , the prefactor αS(T ) has the
following form:

αS(T ) ≈ 2 log(a/2π2vF C) − 2π2T C + 2 log(2π2T C).

(B12)

We evaluate β(t) by expanding the distribution function 1/(1 −
e−ω/T ) at large temperatures:

β(t) =
∫

dω
ω

ω2 + η2

e−iωt − 1

1 + (πωC)2

[
T

ω
+ 1

2

]

= π2T C(1 − e−|t/πC|− | t/πC |)
− iπ

2
(1 − e−|t/πC|)sgn(t), (B13)

and then expanding the right-hand side of this equation in
series of t/πC � 1, taking into account the fact that the main
contribution to the time integral comes from small times, and
that T � EC . Thus, we obtain the following expression:

β(t) = −T t2

2C
− it

2C
. (B14)

Now we are ready to write the correction for the conductance.
The direct term reads

Gdir = | τL |2 + | τR |2
16v2

F

∫
dtitT 2eT t2/2C

×
(

eit/2C

sinh2[πT (t − i0)]
− c.c.

)
. (B15)

In this integral the main contribution comes from small times
t ∼ 1/εF , and we can neglect exponential factors in the
integrand. Introducing the dimensionless variable x = πT t ,
we write

Gdir = | τL |2 + | τR |2
16π2v2

F

×
∫

dxix

(
1

sinh2[x − i0]
− 1

sinh2[x + i0]

)

= − 1

8π

| τL |2 + | τR |2
v2

F

. (B16)

Next, we take derivative with respect to �μ in Eq. (B4) to get
the following expression for the oscillating part:

Gosc = −4 | τL || τR |
v2

F

T 2C2e−2π2T C cos(2πQ0)

×
∫

dyy sin y exp(−2T Cy2), (B17)
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where we introduced the dimensionless variable y = t/2C.
Evaluating this integral, we obtain

Gosc = −|τL||τR|
2v2

F

√
πT

EC

exp

[
−π2T

EC

]
cos(2πQ0). (B18)

Here we neglected the factor exp(−1/4π2T C), because T �
EC . Combining (B16), (B18), and (10), we arrive at the
expression for conductance (27) in the main text.

APPENDIX C: PERTURBATION THEORY
FOR ASYMMETRIC SETUP

In this Appendix we use Eqs. (36)–(40) to derive the
leading order contribution to the conductance in the case of the
asymmetric setup. We recall that the direct contribution Gdir is
proportional to |τR|2, while the oscillating term Gosc comes as a
correction proportional to |τL||τR|2 due to weak backscattering
at the left QPC, and thus acquires oscillations as a function
of the parameter Q0. We derive analytical expressions in the
quantum T � EC and classical T � EC regimes.

1. Quantum regime

We first concentrate on the direct contribution. We use
the solution Eq. (13) of quantum Langevin equations for the
asymmetric setup to evaluate bosonic correlators that arise in
the perturbative expansion for the conductance and arrive at
the following expression:

Gdir = −|τR|2
4v2

F

∫
dtit

(
T 2

sinh2[πT (t − i0)]
e2β(t) − c.c.

)
,

(C1)

where β(t) is given by the same expressions as in Appendix B
with C replaced by 2C, simply because in the asymmetric setup
the conductance is twice as small. The expression (C1) holds
for arbitrary temperatures and serves as a starting point for
evaluating low- and high-temperature limits. The contribution
from the poles at small times t ∼ 1/εF takes the constant
value |τR|2/2πv2

F . Using the same arguments as in case of the
symmetric setup (see Appendix B), we obtain the expression
for the direct part in the form:

Gdir = |τR|2
2πv2

F

− |τR|2
v2

F

∫ ∞

0
dt

π2T 4t3

sinh4(πT t)
e2Reβ2(t)

× sin[π (1 − e−t/2πC)]. (C2)

In the low-temperature limit T � EC , the main contribution
to the integral in Gdir comes from times much smaller then
the inverse temperature t � 1/πT . Thus, we can expand the
temperature dependent part of the integrand in small T t :

Gdir = |τR|2
2πv2

F

− 4|τR|2
v2

F

∫ ∞

0
dtπ2T 4t3

×
[

1

π4T 4t4
− 2

3π2T 2t2

]
e2Reβ2(t) sin[π (1 − e−t/2πC)].

(C3)

From the last equation it is obvious that Gdir consists of a
constant part and a temperature dependent part. The former

can be presented as

Gdir(T = 0) = |τR|2
2πv2

F

− |τR|2
2πv2

F

C1. (C4)

It turns out that the constant C1 is exactly equal to 1, and
Gdir(T = 0) vanishes. However, the easiest way to prove this
fact is to rewrite equation (C1) for T = 0 in the form

Gdir(T = 0) ∝
∫

dss

[
eM(s)

(s − i0)2
− eM∗(s)

(s + i0)2

]
, (C5)

where M(s) = 2
∫ ∞

0
dx(e−ixs−1)

x(1+x2) , and s and x are dimensionless
variables. Here we note that M(s) is an analytical function
in the low half plane. Moreover, it behaves as −2 log |s| at
Im(s) → −∞. Therefore, in the first term of the integral
(C5) the contour may be deformed to Im(s) → −∞. Next,
at Im(s) → −∞ the integrand behaves as 1/|s|3, and thus
the integral vanishes. The same arguments are applied to the
second term, where M∗(s) is analytical in the upper half plane.
Thus, we have proven that Gdir(T = 0) = 0.

Now we consider the temperature dependent term. To
integrate over t in Eq. (C3), we use the following integral
identity

∫ ∞
0 dxxe2Reβ2(x) sin[π (1 − e−x)] = π

2e2γ , where x =
t/2πC is the dimensionless variable. Introducing the bare
conductance GR = |τR|2/2πv2

F , we present the final result

Gdir(T ) = GR

2π4T 2

3e2γ E2
C

. (C6)

Similar arguments may be used for the oscillating part of
the conductance to show that it is proportional to (T/EC)2 as
well. We confirm this fact by the exact numerical evaluation
of the time integrals (see Fig. 4). Therefore, the final result in
the case of an asymmetric setup at small temperatures can be
written as (43).

2. Thermal regime

In the limit T � EC the exponential factor in the integrand
can be neglected and the main contribution to the integral
comes from poles, i.e., from small times t ∼ 1/εF :

Gdir = −|τR|2
4v2

F

∫
dtit

[
1

sinh2(t − i0)
− 1

sinh2(t + i0)

]

= |τR|2
2πv2

F

= GR. (C7)

Next, the oscillating term has the following form:

Gosc = −2
|τR|2

a
exp[αA(T )]Re(τLe−2πiQ0G1), (C8)

where

αA(T ) = −
∫

dxx

1 + x2

1

1 − e−x/2πT C

= γ + log

(
a

4π2vF C

)
+ 2π2T C

+ log(4π2T C) + �(1/4π2T C), (C9)
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γ being the Euler gamma constant, �(x) is the digamma
function, and

G1 =
∫ ∞

−∞
dtit[K(t)A1(t) − K∗(t)R1(t)]. (C10)

Here we introduced K(t) = Kff(t)e2β(t),Kff(t) is given by (B3)
and expressions for A1(t), R1(t) read

A1(t) =
∫ −∞

0
dt1[eF (t−t1)−F (−t1) − 1]

+
∫ 0

t

dt1[eF (t−t1)+F (t1) − 1]

+
∫ t

−∞
dt1[e−F (t1−t)+F (t1) − 1],

R1(t) =
∫ −∞

t

dt1[eF (t−t1)−F (−t1) − 1]

+
∫ t

0
dt1[e−F (t1−t)−F (−t1) − 1]

+
∫ 0

−∞
dt1[e−F (t1−t)+F (t1) − 1], (C11)

where

F (t1) = 4πiC

∫
dω

1

1 + 4(πωC)2

e−iωt1 − 1

1 − e−ω/T
. (C12)

One should note that F ∗(t1) = −F (−t1), which implies
that R1(t) = −A∗

1(t), and thus we need to calculate only the
function A1(t). At large temperatures T � EC we expand
1/(1 − e−ω/T ) ≈ T/ω + 1/2 in the integrand of (C12), and
after integrating over ω we obtain

F (t1) = −iπ (1 − e|−t1/2πC|)

+ 4π2T C(1 − e−|t1/2πC|)sgn(t1). (C13)

Next, using again T � EC we conclude that the main
contribution to the integral (C10) comes from times smaller
than 2πC, because T � EC , therefore one can expand (C13):
A1(t) = R1(t) ≈ i(e2πT t − 1)/T .

Substituting A1(t) and R1(t) into Eq. (C10), we arrive at
the following expression:

G1 = −iT

4v2
F C

∫
dtt2e−T t2/2C e2πT t − 1

sinh2(πT t)
, (C14)

where we have simplified K(t) = Kff (t)e−T t2/2C−it/2C , be-
cause the integral comes from t/C � 1. Moreover, the main
contribution comes from times t � 1/T , so that (e2πT t −
1)/ sinh2(πT t) ≈ 4. After integrating over t , we get G1 =
−i

√
2πC/2v2

F

√
T . Finally, combining this with Eqs. (C7)

and (C8), and absorbing the phase factor e−iπ/2 into τL, we
arrive at the result (47) in the main text.
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