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Effect of edge plasmons on the optical properties of MoS2 monolayer flakes

Tuomas P. Rossi,1,* Kirsten T. Winther,2 Karsten W. Jacobsen,2 Risto M. Nieminen,1

Martti J. Puska,1 and Kristian S. Thygesen2,3,†
1COMP Centre of Excellence, Department of Applied Physics, Aalto University,

P.O. Box 11100, FI-00076 Aalto, Finland
2CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

3Center for Nanostructured Graphene (CNG), Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(Received 9 June 2017; revised manuscript received 15 September 2017; published 5 October 2017)

Finite MoS2 nanoparticles are known to support metallic edge states that are responsible for their catalytic
activity. In this work we employ time-dependent density-functional theory (TDDFT) to study the influence of such
edge states on the optical properties of triangular MoS2 monolayer flakes. We find that the edge states support
collective plasmon-like excitations that couple strongly to the optical field leading to pronounced absorption
peaks below the onset of interband transitions on the basal plane. Additionally, structural relaxation of the flakes
can significantly distort the edge states. Thus, we observe that while an evenly-spaced edge configuration supports
one-dimensional (1D) plasmon modes similar to those of an ideal 1D electron gas, the relaxed structures show
mixed plasmon and single-electron excitations in the low-energy response. Our findings illustrate the sensitivity
of the optical response of MoS2 nanostructures to the details of the edge configuration.
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I. INTRODUCTION

Atomically thin two-dimensional (2D) semiconductors are
currently being actively studied due to their unique electronic
and optical properties [1,2]. In particular the transition metal
dichalcogenides with the chemical formula MX2 (M: Mo or W;
X: S, Se, or Te) have been shown to undergo an indirect to direct
band gap transition when the layered bulk materials are thinned
down to a single monolayer [3,4]. The monolayers interact
strongly with light [5], and the possibility to modify their
electronic properties via mechanical strain, electric fields, or
van der Waals heterostructuring [6–8] makes the 2D materials
a unique platform for controlling light-matter interactions at
the atomic length scale.

In a different context, MoS2 nanoparticles are of interest
as nonprecious catalysts for hydrodesulphurization of crude
oil products [9] and as electrocatalysts for the hydrogen
evolution reaction [10]. It is understood that the edges of
the MoS2 nanoclusters are catalytically active [11–13] and
that this is due to the existence of metallic states present
at certain edge configurations [14–18]. It has recently been
shown that these states can lead to the formation of plasmons,
i.e., quantized oscillations of electron gas plasma, along the
edges of infinite MoS2 nanoribbons [19]. This suggests that
localized plasmon resonances could form at the edges of finite
MoS2 flakes. The existence of such plasmon resonances could
strongly influence the optical properties of the flakes and
could potentially be of interest for plasmonic photocatalysis
where hot electrons generated by the decay of plasmons
are used to drive chemical reactions [20,21]. We note in
passing that the plasmons in MoS2 flakes have recently
been studied by means of low-loss electron energy loss
spectroscopy [22].
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In this paper, we report a detailed computational study
of the optical properties of Mo-terminated triangular MoS2

monolayer nanoflakes with S2-saturated edges, using time-
dependent density-functional theory (TDDFT) [23,24]. This
edge configuration is particularly interesting because the
metallic edge state on the S2 dimers supports a strong 1D
edge plasmon [19]. Depending on the growth conditions, the
flakes favor different edge terminations or shapes [16,25–27].
However, for alternative S-terminated edges, the 1D plasmons
are expected to couple weaker to light [19] and they have
not been reported in previous computational studies of S-
terminated triangular flakes [28,29].

We find that the optical response of the MoS2 monolayer
flakes differs substantially from that of an infinite monolayer.
In particular, the absorption spectrum has multiple size-
dependent resonances below the absorption onset of the
monolayer. Additionally, we find that the optical response
is sensitive to the details of the edge geometry. In fact, the
structural relaxation of the flakes distorts the edge states,
which leads to mixed plasmon and single-electron excitations
in the low-energy response. In contrast, an evenly-spaced edge
configuration supports 1D edge plasmon resonances.

We analyze the character of the low-energy resonances
in detail from the quantum-mechanical Kohn-Sham (KS)
density-functional theory (DFT) [30,31] perspective. Specifi-
cally, we study the composition of the low-energy resonances
in terms of the underlying KS electron-hole transition contribu-
tions [32,33]. This analysis shows that the 1D edge plasmons
are similar to those of a confined 1D electron gas (1DEG)
[34–37], accompanied with screening from the central part of
the flake.

The structure of the paper is as follows. In Sec. II, the used
computational methods are outlined, and the studied MoS2

flakes are described in Sec. III. The results (Sec. IV) are
divided in subsections. First, we discuss the trends and overall
features in the optical response of the flakes of increasing
size. Then, we analyze the low-energy resonances and their
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character in detail. The work is concluded with discussion in
Sec. V.

II. METHODS

A. Time-dependent density-functional theory

In DFT, the ground state of the system is obtained from a
self-consistent solution of the Kohn-Sham equation

H
(0)
KSψ (0)

n (r) = εnψ
(0)
n (r), (1)

where H
(0)
KS is the KS Hamiltonian, ψ (0)

n (r) is the nth KS wave
function, and εn the associated eigenvalue. The ground-state
wave functions ψ (0)

n (r) are chosen to be real-valued functions.
For the response calculation, we use the real-time-

propagation TDDFT (RT-TDDFT) method with a δ-pulse
perturbation [38]. In this approach, the time-dependent Kohn-
Sham equation,

i
∂

∂t
ψn(r,t) = HKS(t)ψn(r,t), (2)

is propagated in discretized time steps with the initial state
given by the ground state, i.e., ψn(r,t = 0) = ψ (0)

n (r). The
time-dependent Hamiltonian contains a δ-pulse perturbation
of form

HKS(t) = H
(0)
KS + xKδ(t) (3)

describing the interaction with external electromagnetic radi-
ation within the dipole approximation. In Eq. (3), the electric
field is assumed to be aligned along the x direction and
the constant K is proportional to the external electric field
strength, which is assumed to be small enough to induce
only negligible nonlinear effects. During the propagation, the
quantities of interest are recorded, and as a post-processing
step the time-domain quantities can be Fourier transformed
into the frequency domain [see Eq. (5) in the next section].

B. Kohn-Sham decomposition analysis

We analyze the response of the MoS2 flakes by using a
recently implemented Kohn-Sham decomposition tool [33].
This analysis is based on the time-dependent KS density matrix
expressed in the KS electron-hole (eh) basis

ρx
ia(t) =

∑
n

〈
ψ

(0)
i

∣∣ψn(t)
〉
fn

〈
ψn(t)

∣∣ψ (0)
a

〉
, (4)

where fn is the occupation factor of the nth KS state, and the
indices i and a are associated to occupied and unoccupied KS
states, respectively. Here the superscript x reminds that the
time evolution of the density matrix is calculated for a specific
perturbation [see Eq. (3)]. The real part of the density matrix,
Re[ρx

ia(t)], can be used for accessing observables based on the
density, and its linear response in the frequency space is given
by the Fourier transform

δρx
ia(ω) = 1

K

∫ T

0
Re

[
ρx

ia(t) − ρia(0−)
]
eiωt e−σ 2t2/2dt, (5)

where T is the total propagation time. The Gaussian function
e−σ 2t2/2 in Eq. (5) ensures that the signal is damped at
t = T and leads to Gaussian line shapes for excitations in
the frequency space, modeling, e.g., the finite lifetime of

the excitations and instrumental broadening. Alternatively,
the Lorentzian line shape could be obtained by using an
exponential decay function e−ηt instead of the Gaussian
function in Eq. (5).

The linear-response density matrix δρx
ia(ω) gives access to

other relevant quantities, such as the induced electron density,

δnx(r,ω) = 2
eh∑
ia

ψ
(0)
i (r)ψ (0)

a (r)δρx
ia(ω), (6)

and the photoabsorption described by the dipole strength
function,

Sx(ω) = −4ω

π

eh∑
ia

μx
iaIm

[
δρx

ia(ω)
]
, (7)

where the summations are over the occupied (i) and unoc-
cupied (a) KS states, and μx

ia = 〈i|x|a〉 is the dipole matrix
element (see Ref. [33] for details).

In this paper, we first identify the optical resonances of the
system by considering the photoabsorption spectrum and then
analyze their resonant KS electron-hole contributions as given
by Im[δρx

ia(ω)]. However, the sign (negative or positive) of
Im[δρx

ia(ω)] depends on the signs of the real-valued ψ
(0)
i and

ψ (0)
a (or on their phase factors in general). Here, we fix the

sign convention to the sign of the transition dipole moment
μx

ia , that is, we analyze the transition contributions as given by
the weight

wia(ω) = 2 sgn
(
μx

ia

)
Im

[
δρx

ia(ω)
] = 2

μx
ia∣∣μx
ia

∣∣ Im
[
δρx

ia(ω)
]
.

(8)

With this convention, the sign of wia(ω) reflects the sign of the
photoabsorption contribution [see Eq. (7) and Ref. [33]], but
the magnitude of wia(ω) is not affected by the transition dipole
moment μx

ia . This allows us to observe in better detail those
KS transitions that have weak dipole contributions, which
is advantageous for analyzing the excitations that are not
dominantly of dipole character (see, e.g., the discussion on
the coupled quadrupole resonance in Sec. IV B).

The transition contribution weight wia(ω) is conveniently
visualized as a transition contribution map (TCM) [32]. TCM
shows the KS electron-hole weight at a chosen ω on a two-
dimensional (2D) (εo,εu) plane spanned by the energy axes
for occupied and unoccupied states. To be specific, TCM is
given by

MTCM
ω (εo,εu) =

∑
ia

wia(ω) gia(εo,εu), (9)

where the discrete i → a transition contributions are broad-
ened by the 2D Gaussian function gia(εo,εu) = 1/2πσ 2 ·
exp[−[(εo − εi)2 + (εu − εa)2]/2σ 2] for presenting them on
the continuous (εo,εu) plane. The axes of TCM are augmented
with the density of states (DOS) plots corresponding to the
occupied and unoccupied DOSes. We apply σ = 0.04 eV to
TCMs and DOSes, corresponding to the full width at half
maximum (FWHM) of 94 meV.

We also consider projected TCMs and DOSes. The pro-
jections are done based on the LCAO coefficients C(0)

μn [see
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Eq. (10) in the next section]. The coefficients are used to obtain
projections to the chosen set atoms, e.g., to the edge atoms,
in which case the projection weight pn of the nth KS state is
given by pn = ∑

μ∈A |C(0)
μn|2/

∑
μ |C(0)

μn|2, where A is the set
of atoms on the edge. Then, the weight used in the projected
TCM is w

proj
ia (ω) = pipawia(ω).

C. Computational parameters

We perform calculations with the free GPAW code package
[39–41] employing the projector augmented-wave (PAW)
method [42]. Specifically, we use the RT-TDDFT implemen-
tation [43] based on the linear combination of atomic orbitals
(LCAO) representation for wave functions [44].

In the LCAO method, the wave function ψn(r,t) is
expanded in local basis functions φμ(r) centered at atomic
coordinates

ψn(r,t) =
∑

μ

φμ(r)Cμn(t), (10)

where Cμn(t) are the expansion coefficients. We use the
default double-ζ polarized (dzp) basis sets for describing the
wave functions [44]. We found that these basis sets yield
an accurate description of the response by a comparison
against the response calculated with the RT-TDDFT imple-
mentation [45] using the real-space-grid representation for
wave functions (see Appendix for comparison and further
discussion). The electrons in the 4d5s and 3s3p states of
Mo and S atoms, respectively, are explicitly included in the
calculations, and the remaining electrons are treated as a
frozen core within the PAW framework. All the PAW setups
and basis sets are generated using the default parameters
in GPAW.

For calculating the response of the MoS2 flakes, we employ
the orbital-dependent Gritsenko-van Leeuwen-van Lenthe-
Baerends [46] exchange-correlation (xc) potential with the
solid-state modification by Kuisma et al. (GLLB-SC) [47].
The occupations of the Kohn-Sham electron states are smeared
with a Fermi-Dirac distribution with kBT = 0.1 eV to facilitate
the convergence with the used xc potential.

The electron density and potentials are presented on a
real-space grid with grid spacing 0.3 Å, and the system is
surrounded by a vacuum region of at least 6 Å. In order
to evaluate the Hartree potential reliably in the response
calculations, we have extended the Poisson equation solver
in GPAW. The potential is first solved in a very large and

coarse grid (in the present case 307 × 307 × 154 Å
3

cell with
spacing of 1.2 Å) with the standard multigrid solver. The
large cell captures the slowly-decaying tail of the potential
created by dipolar charge oscillations excited by the perturbing
potential [Eq. (3)]. The obtained coarse potential is used to
correct the boundary condition for the Poisson equation on
a finer cell covering only a small central part of the initial
large cell. Such refinement is performed consecutively until
the original fine grid is reached. The advantage of the approach
is that it allows us to calculate the slowly-decaying tail of the
potential in an efficient manner. In the present case, the used
large grid leads to at least 120 Å vacuum around the MoS2

flakes.

The time propagation is performed in time steps of 20
attoseconds until the total propagation time T = 30 femto-
seconds is reached. In all the Fourier transforms to the
frequency space [see Eq. (5)], we use the Gaussian broadening
with σ = 0.08 eV (FWHM of 190 meV).

As an illustration of the computational cost of the used
methodology, the full time-propagation run with the above-
described parameters can be calculated in 18 hours by using
144 cores for the MoS2 flake of side length of M = 16 S2

dimers (Mo136S336, 2832 valence electrons; see Sec. III) [48].
In Sec. IV B, a sodium atom chain is used as a reference.

Its response is calculated in the Casida formalism [49] with
the Perdew-Burke-Ernzerhof (PBE) [50] xc functional and a
double-ζ basis set including diffuse unoccupied 3p atomic
orbital [43] (only the valence electrons originating from the
outermost 3s electron states of Na atoms are explicitly included
in the calculation).

III. MODELS

We consider triangular MoS2 flakes that have been cut from
a monolayer of MoS2 (lattice constant 3.18 Å and thickness
3.19 Å). The flakes are terminated with Mo atoms and each
Mo atom is saturated with a S2 dimer. We have relaxed
the atomic coordinates with the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) energy minimization algorithm as imple-
mented in the free ASE package [51,52]. The minimization
uses energies and forces calculated with DFT using the PBE
[50] xc functional. The computational parameters are similar
to those used in the response calculations (see Sec. II C), except
a finer grid spacing of 0.2 Å is used and the Hartree potential
is solved on the ordinary calculation cell. The D3h symmetry
of the flake was enforced during the relaxation. The flake
geometry was initialized by setting the edge S2 dimers in a
configuration resembling the corresponding edge of a MoS2

ribbon [19] and then distorting the S2 edge without breaking
the D3h symmetry. Then, the system was relaxed until the
atomic forces were converged to less than 0.02 eV/Å.

The relaxation affects the overall structure of the MoS2 flake
especially in the corners, but most importantly, the relaxation
leads to an uneven distribution of S2 dimers on the edges
of the flake. This feature seems to be in agreement with
earlier calculations [12,13,26] and possibly with the scanning-
tunneling-microscope images of MoS2 triangles exhibiting a
period of two along the Mo edges [12,15,27]. The resulting
structure and the corresponding S2−S2 distances are shown
in Fig. 1. The changes in the edge configuration affect the
delocalized electron states on the edge and leads to significant
changes in the optical response (see the next section).

In order to have a tractable MoS2 reference for analyzing
the optical properties, we consider an “ideal” MoS2 flake
with an evenly-spaced edge configuration. The ideal structure
is cut directly from the MoS2 monolayer, but the S atoms
forming the S2 edge have been displaced closer to each
other so that the edge configuration resembles that of an
infinite MoS2 nanoribbon [19]. This S2-edge configuration
is similar to the relaxed one in Fig. 1 with the exception
that the S2 dimers are distributed evenly along the edge [see
Fig. 1(b)].
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FIG. 1. (a) Top view of the relaxed MoS2 flakes of side lengths
of M = 4 and M = 16 S2 dimers. S2 and Mo edge atoms are marked
with different colors. (b) Side view of the M = 16 flake and the
S2−S2 distances of the S2 dimers on the edge. The relaxation leads
to similar uneven S2-edge configuration in smaller flakes also (see
Sec. S1.1 in Supplemental Material) [53].

IV. RESULTS

A. Size-dependent trends in the optical response

We have calculated the optical response of the flakes with
the side length ranging from M = 4 to M = 16, measured
as a number of S2 dimers on each edge. Due to the D3h

symmetry of the flake, the photoabsorption spectrum has
the symmetry Sx(ω) = Sy(ω) on the plane of the flake (xy

plane). However, despite this symmetry, the local features in
the response (visible in the induced electron density) depend
on the orientation of the perturbation. Here, we consider the
electric field perturbation aligned along one of the edges of
the flake (x direction). Such a perturbation could be realized
by an electromagnetic field propagating perpendicularly to the
plane of the flake.

The calculated in-plane photoabsorption spectra of the
relaxed MoS2 flakes are shown in Fig. 2(a). The spectra
consist of discrete low-energy (<2 eV) peaks and broad
absorption at higher energies. As the flake size is increased,
the spectrum starts to resemble that of the infinite monolayer
with the exception that the low-energy peaks remain below
the absorption onset of the monolayer. The low-energy peaks

FIG. 3. Analysis of the 3.23 eV resonance of the relaxed M = 16
MoS2 flake. (a) Transition contribution map [Eq. (9)] at 3.23 eV.
The axes determine the eigenvalues of the occupied and unoccupied
KS states. The Fermi level is at 0 eV. The red and blue colors
on the map correspond to positive and negative KS transition
contributions [Eq. (8)], respectively, and the color intensity represents
the magnitude of the contributions. DOS is decomposed as in
Fig. 2(c). (b) Imaginary part of the induced density at 3.23 eV as
in the inset of Fig. 2(a).

show a general redshifting trend as the flake size is increased,
analogously to the low-energy peaks in S-terminated MoS2

flakes [28]. However, the number of peaks and their intensities
show varying trend as the size is increased. The induced
electron densities of the low-energy peaks have a substantial
contribution from the edge analogously to S-terminated MoS2

flakes [28]. In contrast, the main contribution to the prominent
3.23 eV excitation originates from the central region of the
flake, in agreement with its coincidence with the absorption
peak of the infinite monolayer.

For the 3.23 eV resonance, we show in Fig. 3(a) the TCM
analysis (see Sec. II B). In agreement with the induced density
[Fig. 3(b)], the TCM shows that the resonance is built up from
a vast number of transitions localized mostly in the central part
of the flake (see the DOS decomposition). The most positive
contribution (red areas) originates from transitions relatively
close to the resonance energy ω, reflecting the single-particle

FIG. 2. In-plane photoabsorption spectra of (a) relaxed and (b) ideal MoS2 monolayer flakes of sizes from M = 4 to M = 16. Insets show
the imaginary parts of the induced electron densities at the marked resonances (red and blue colors correspond to the positive and negative 10%
isosurfaces, respectively). The hollow markers show the spectrum of M = 16 flake with a relaxed interior but an ideal S2 edge. (c) Densities
of states (DOS) with respect to the Fermi level. Each DOS is decomposed into three contributions (see Fig. 1): S2 edge (orange; bottom), Mo
edge (green; middle), and the other atoms (purple; top). The M = ∞ spectra show the absorption (in arb. units) and DOS (with the Fermi level
aligned with that of the flakes) of an infinite MoS2 monolayer [54,55].
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character of the resonance [37]. However, some contribution
comes also from transitions below ω, indicating that coupling
is present among the contributing transitions. We observe also
negative contributions (blue areas) from transitions above the
resonance frequency, reducing the intensity of the resonance.

In order to understand the origin of the low-energy peaks
better, we compare the spectra of relaxed flakes to those
of ideal MoS2 flakes (see Sec. III). The absorption spectra
of the ideal flakes are shown in Fig. 2(b). Analogously
to the relaxed structures, the ideal flakes exhibit a strong
resonance at 3.2 eV with similar characteristics. In contrast
to the complex low-energy response of relaxed flakes, in the
ideal flakes the low-energy region is dominated mainly by a
single peak. With the increasing side length of the flake, this
peak shows a clear redshift from 1.6 eV (M = 4) to 0.7 eV
(M = 16) accompanied with a gradual increase in intensity.
Such resonance energy and intensity trends are very similar
to those of 1DEG and Nan atom chains [34–37], hinting that
the low-energy resonance would correspond to a 1D plasmon
mode excited at the metallic edge of the flake [19]. This is
supported by the induced density showing a dipole charge
density oscillation over the horizontal edge, in analogy to main
longitudinal plasmon mode in Nan [34–37].

The large differences between the low-energy responses of
the relaxed and ideal structures illustrate that the low-energy
response is very sensitive to the exact edge configuration.
In Figs. 2(a) and 2(b) we also show as hollow markers
the spectrum of an additional M = 16 structure that is
identical to the relaxed structure except that the S2-edge
configuration is evened to be similar to that of the ideal
flake. It is interesting to note that above 2 eV, the spectrum
of this structure follows closely that of the relaxed flake,
but for the low-energy response below 2 eV, the response
is similar to its ideal counterpart. This strongly illustrates that
the low-energy response is determined by the edge effects.
Furthermore, relatively small energies are enough to distort
the edge configuration. The above-described reconstruction
of the ideal S2 edge on top of the relaxed flake interior
increases the PBE ground-state energy by 20 meV per S atom
forming the S2 edge in comparison to the relaxed structure.
This energy difference is of the order of thermal energy at
room temperature, kBT = 25 meV at T = 300 K. Thus, in
actual experimental conditions, the edge configuration and the
optical response is likely to vary.

In order to understand the changes caused by different edge
configurations, we show in Fig. 2(c) the densities of states of
the relaxed and ideal M = 16 flakes as well as DOS of an
infinite monolayer. Whereas the monolayer has a clear band
gap, the finite flakes show expectedly states inside the band
gap. The DOS is decomposed into its contributions from the S2

dimers and Mo atoms on the edge. In the ideal flake, we observe
a set of states localized on the S2 and Mo edges. These states
constitute discrete finite-size counterparts of the corresponding
1D electron bands in MoS2 nanoribbon [compare to the band
structure, e.g., in Fig. 2(a) of Ref. [19]]. Due to the symmetry
of the flake, the peaks in the S2-edge DOS originate from
three nearly-degenerate KS states. The distortion of the evenly-
spaced S2 edge by the structural relaxation opens a band gap
in the corresponding 1D electron band analogously to Peierls
distortion of 1D crystal. This is visible in the DOS of the

relaxed flake [Fig. 2(c)] as a grouping of S2-edge-localized
states. Importantly, such S2-edge states are not present near
the Fermi level in the relaxed flake.

The differences in the electronic structure cause the
major changes in the optical response. In the following two
subsections, we analyze its effect on the different low-energy
resonances. The main conclusion is that in the ideal flakes
the low-energy resonances correspond to the edge plasmons
similar to those of 1DEG, whereas in the relaxed flakes the
resonances have mainly single-electron character.

B. Ideal flakes: 1D edge plasmons

We focus on the low-energy resonances originating from
the S2 dimers on the edge using the ideal M = 16 MoS2 flake
as a prototype. In Fig. 4, we show the S2-edge-projected TCMs
(see Sec. II B) and induced densities of the resonance peaks
at 0.71 eV, 1.02 eV, and 1.42 eV. Here, we consider only the
projected TCM emphasizing the contribution from the edge.
The full TCMs show screening and other contributions by the
KS transitions localized in the other parts of the flake (see
Sec. S1.2 of Supplemental Material for the full TCMs) [53].
Such contributions are also visible in the full induced densities
shown in Figs. 4(a1)–4(c1). The KS transitions marked in
TCMs [Figs. 4(a)–4(c)] are characteristic for the resonances
and their S2-edge-projected induced density contributions are
shown in Figs. 4(a2)–4(c2). We also consider a Na16 atom chain
with a bond length of 3.5 Å as a reference system modeling a
confined 1DEG.

For the 0.71 eV resonance, the main positive contributing
comes from a few low-energy transitions localized on the S2

edge [Fig. 4(a); note that the occupation number smearing
used in the calculations to facilitate convergence leads also
to contributions from fractionally occupied transitions with
εo > 0 or εu < 0 near the Fermi level]. The marked positively
contributing transitions lead to dipole charge density oscil-
lation on the edge [Fig. 4(a2)], which is present in the full
induced density also [Fig. 4(a1)]. The dipole charge density
oscillation is clearest along the edge parallel to the electric field
direction (horizontal x direction), but also the other two edges
show the pattern. This indicates that the interaction between
individual edges is relatively weak and, as an approximation, a
superposition of the 1D dipole plasmons along all three edges
of the flake is observed.

The 0.71 eV excitation of the MoS2 flake is analogous
to the longitudinal dipole plasmon in sodium atom chains
[34–37]. Even though such a plasmon mode comprises mostly
a single Kohn-Sham transition [57], its resonance energy is
much higher than that of the underlying KS transition due
to the Coulomb interaction. This is a distinct characteristic
of plasmonic excitations [37]. Similar characteristics are also
true for the 0.71 eV excitation of the MoS2 flake (in TCM the
diagonal line marking ω is much higher than the contributing
transition near the Fermi level). Overall, the S2-edge-projected
TCM is very similar to the TCM of Na16 dipole plasmon [inset
of Fig. 4(a)]. Thus, we interpret the 0.71 eV resonance as a 1D
dipole edge plasmon resonance.

Considering the fainter 1.02 eV resonance, it interest-
ingly corresponds to an antisymmetric combination of 1D
quadrupole plasmon modes at the two slanted edges of the

155407-5



TUOMAS P. ROSSI et al. PHYSICAL REVIEW B 96, 155407 (2017)

FIG. 4. Analysis of the edge plasmon modes of ideal M = 16
flake. S2-edge-projected TCMs at (a) 0.71 eV, (b) 1.02 eV, and (c)
1.42 eV. DOS show only the contribution from the S2 edge. TCMs
of the corresponding plasmon modes of Na16 chain are shown as
insets [56]. The subpanels on the right-hand side depict the 10%
isosurfaces of the imaginary part of (a1)–(c1) the full and (a2)–(c2)
partial induced densities of the edge plasmon modes, and (a3)–(c3)
the analogous densities of the Na16 chain. The partial induced density
corresponds to the contribution from the KS transitions marked in
TCMs.

flake [Fig. 4(b1,2)]. Due to the fact that such an antisymmetric
combination is possible in the present triangular geometry,
the total response is dipole active and observed in the
photoabsorption spectrum. This indicates that the interaction
between different edges is not negligible but sufficient to
render such coupled quadrupole plasmon modes visible in
the spectrum. A similar quadrupole mode can also be found
in the sodium atom chain as a dipole-forbidden resonance.

The TCMs of the 1.02 eV resonance and the analogous
quadrupole mode of Na16 [Fig. 4(b)] [56] are again very
similar.

Further, at 1.42 eV, we observe a linear octupole edge
plasmon mode [Fig. 4(c1,2)]. This mode is analogous to the
dipole mode but it has an increased number of nodes in
the charge density pattern. The resonance is similar to the
corresponding one in Na16, both in terms of TCM [Fig. 4(c)]
and induced density pattern [Fig. 4(c3)].

The TCMs of the 1D plasmon modes of the considered
M = 16 MoS2 flake and those of the Na16 chain have
a particular difference though. The dipole plasmon mode
[Fig. 4(a)] has a negative contribution from the KS transitions
that form the quadrupole plasmon mode [Fig. 4(b)]. Similarly,
the quadrupole mode has negative contribution from the
octupole plasmon transitions [Fig. 4(c)]. While some of this
mixing can originate from the used spectral broadening, we
expect that the main contribution comes from the interaction
between the resonances, allowing the lower-energy plasmon
mode to be screened by the higher-energy plasmon mode. In
Na16, such interaction is not present because the quadrupole
resonance is strictly dipole forbidden [56] and it cannot
couple to the dipole and octupole modes. In contrast, the
triangular composition of the edges in MoS2 flakes renders
the coupled quadrupole mode dipole active and it is further
able to couple to the other plasmon modes. This leads to
a more detailed edge response in the full induced density
[Figs. 4(a1)–4(c1)] in comparison to the intact plasmon mode
[Figs. 4(a2)–4(c2)].

It is intriguing to consider the trends observed in the TCMs.
Both in the M = 16 MoS2 flake and the Na16, the number of
(nondegenerate) positively contributing transitions increases
by one from the dipole to the quadrupole mode and from
the quadrupole to the octupole mode. This can be readily
understood as follows. In a confined 1DEG, single-particle
wave functions are particle-in-a-box-like, i.e., of the form
ψn(x) ∼ sin(n2πx/L), where L is the length of the box. The
first excitation (dipole) corresponds to an excitation from high-
est occupied molecular orbital (HOMO) to lowest unoccupied
molecular orbital (LUMO), i.e., to a change in the quantum
number of �n = 1. The second excitation (quadrupole)
corresponds to a constructive superposition of two transitions
HOMO − 1 → LUMO and HOMO → LUMO + 1, both of
which have �n = 2 (and no other transitions have �n = 2).
Similarly, the third excitation (octupole) corresponds to a
constructive superposition of the three possible transitions with
�n = 3. TCMs show that such transitions with a similar nodal
character couple strongly together and form the corresponding
plasmon mode. In all the cases, analogously to the dipole
plasmon mode, the constructively contributing KS transitions
are low in energy in comparison to the excitation frequency
due to the strong Coulomb coupling (i.e., they lie well below
the εu − εo = ω line), illustrating their plasmonic character
[37]. In comparison to infinite 1DEG with a 1D metallic band,
the present plasmon modes can be considered as localized
counterparts of the extended 1D plasmon with different q

vectors.
The low-energy resonances of smaller flakes [Fig. 2(b)]

have similar characteristic as described here for the M = 16
flake (see Sec. S1.2 in Supplemental Material) [53]. As
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a general size effect, the decreasing flake size leads to
increasingly prominent quantization of the discrete electron
states associated to the same 1D electron “band.” The edge
length and the order of the plasmon mode can be associated
with the wavelength of the plasmon oscillation. As the flake
size and the wavelength are decreased, the resonance energy
increases [Fig. 2(b)]. This is analogous to the energy–q-
vector dispersion of extended 1D plasmon modes [19]. In the
smallest M = 4 flake, the low-energy resonance at 1.61 eV
starts to be close to the onset of the nearly continuum
of electron transitions localized in the central parts of the
flake.

C. Relaxation: Plasmons vs interband excitations

The relaxed M = 16 flake shows three main low-energy
resonances at 0.31 eV, 0.92 eV, and 1.21 eV [Fig. 2(a)].
First, we analyze the most intense 0.92 eV and 1.21 eV
resonances that originate from the S2 edge. The S2-edge-
projected TCMs and DOSes are shown in Figs. 5(a) and 5(b).
Due to the distortions in the configuration of the edge atoms,
the electronic structure of the S2 edge is greatly different
from that of the ideal flake [compare DOSes in Figs. 5(a) and
5(b) to those in Figs. 4(a)–4(c)]. Specifically, the HOMO and
LUMO states on the S2 edge are separated by nearly 0.8 eV,
corresponding to an opening of a band gap in the 1D electron
band on the S2 edge [see the “bands” marked in the DOSes
of Figs. 4(a) and 5(a)]. Similar increased separation between
HOMO and LUMO S2-edge state is present in the other
flake sizes also (see the DOSes in Sec. S1.2 of Supplemental
Material) [53]. Such difference causes the S2-edge-localized
resonances to be higher in energy in comparison to the edge
plasmons of the ideal flakes discussed in the previous section.

It is interesting to consider how the characters of the
S2-edge resonances change in comparison to the ideal flake.
The 0.92 eV resonance [Fig. 5(a)] is mostly a HOMO-LUMO
transition like the 0.71 eV dipole plasmon in the ideal flake.
However, the coupling strength is smaller, i.e., the resonance
energy is closer to the underlying KS single-electron transition
energy. In addition, in the 1D electron band picture, this
transition would correspond to an interband transition, whereas
the dipole plasmon in the ideal flake ideal corresponds to an
intraband transition, although both transitions are HOMO-
LUMO transitions of the finite flake. The small Coulomb
coupling and the interband character of the resonance indicate
the single-electron character of the resonance. Despite these
remarks, it is interesting to note that the induced density pattern
is delocalized over the whole S2 edge, analogously to the edge
plasmon.

The qualitative features of the 1.21 eV resonance are similar
to the 0.92 eV resonance. While the induced density shows
slightly delocalized oscillation over the edge, the coupling
strength appears to be small in comparison to the edge
plasmons of the ideal flake, indicating the single-electron
character of the transition [37].

At the 1.21 eV resonance, we can also find a contribution
from a charge density pattern similar to the quadrupole 1.02 eV
plasmon in the ideal flake. This is illustrated by considering
the induced density contribution [Fig. 5(b3)] of the two KS
transitions marked in Fig. 5(b). A quadrupole pattern similar to

FIG. 5. Analysis of the low-energy resonances of the relaxed
M = 16 flake. S2-edge-projected TCMs at (a) 0.92 eV and (b) 1.21 eV,
and Mo-edge-projected TCM at (c) 0.31 eV. DOSes show only the
corresponding projections. The full and partial induced densities are
shown analogously to Fig. 4.

Fig. 4(b2,3) is observed. These transitions contribute to the total
induced density and affect the full induced density patterns
[Fig. 5(b1)] especially along the two edges that are slanted
with respect to the horizontal x axis.

By the above analysis, the low-energy 0.92 eV and 1.21 eV
resonances seem to be single-electron transitions localized
on the edge, though particular similarities to the 1D edge
plasmons in ideal flakes can be found. The low-energy
resonances of smaller flakes share similar general features
(see Sec. S1.2 of Supplemental Material) [53].

Finally, we analyze the lowest 0.31 eV resonance, which
is of different character and originates mainly from the Mo
edge of the flake. The Mo-edge-projected TCM shown in
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Fig. 5(c) reveals that the constructive positive contribution
originates from various coupled transitions localized on the
Mo edge. We observe nearly a continuum of Mo edge
localized states at the Fermi level, and in the 1D electron band
picture, the 0.31 eV resonance corresponds to an intraband
transition. In fact, the induced density resembles the 1D edge
plasmon localized on the Mo edge atoms, which is also
observed in MoS2 nanoribbons [19]. The relaxation does not
significantly disturb the configuration of the Mo edge atoms,
and correspondingly such a plasmon mode can be observed.
Analogous plasmon modes can also be observed in smaller
flakes [see Fig. 2(a) and Sec. S1.2 of Supplemental Material for
TCMs] [53].

In the ideal flake, the Mo-edge plasmon analogous to the
0.31 eV resonance has a diminishing intensity. We expect this
to be due to the interplay between the Mo- and S2-edge plas-
mons. In the ideal flakes, the S2-edge plasmon dominates the
low-energy response and screens strongly the lower-lying Mo-
edge plasmon and suppresses its intensity. Such a suppression
can be observed in the relaxed flake also. Namely, in the full
induced density [Fig. 5(c1)], we observe a counterdipole on the
S2 edge. This screening originates mainly from the same S2-
edge-localized transition that builds up the 0.92 eV resonance
(see the full TCM at 0.31 eV in Sec. S1.2.2 of Supplemental
Material) [53].

V. CONCLUSIONS

In this paper, we have studied the optical properties of MoS2

monolayer flakes with S2-saturated Mo edges. Our calculations
suggest that the edge-localized electron states lead to a strong
optical response below the absorption onset of the monolayer.
Such low-energy resonances were found to be sensitive to
the exact edge configuration, and the structural relaxation was
found to distort the evenly-spaced S2 edge.

We analyzed the low-energy resonances in detail in terms
of the contributing Kohn-Sham single-electron transitions as
well as by considering their full and edge-projected real-
space induced density responses. The analyses allowed us to
recognize 1D edge plasmons supported by the evenly-spaced
S2 edge. In contrast, the low-energy resonances in the relaxed
distorted edge were found to have mainly single-particle
character. However, the distortion renders the 1D plasmon
localized on the Mo atoms on the edge visible in the absorption
spectrum.

It is important to note that the energy required to alter the
edge configuration is relatively small. Thus, the experimental
conditions such as finite temperature or underlying substrate
can dictate the edge structure and, correspondingly, the optical
low-energy response. When evenly-spaced edge is present,
our work suggests that MoS2 edges might be suitable for
realizing atomically confined 1D plasmons at finite scale
[34–37,57–59], complementing experiments on analogous
extended 1D plasmons [60–62]. On the other hand, the
low-energy response of MoS2 flakes might be advantageous
for photocatalysis [20]. Similar optical properties might also
be exhibited by the metallic states on defect lines [63] and
domain boundaries [64–66]. All in all, our study emphasizes
the rich optical response of MoS2 nanoflakes, simultaneously

illustrating the importance of powerful analysis tools for
extracting information on the optical response.
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APPENDIX : BASIS SET CONVERGENCE

In Fig. 6, we show the photoabsorption spectrum of the
ideal M = 6 flake calculated with the dzp LCAO basis sets
and with the finite-difference real-space grid representation,
which essentially corresponds to the complete-basis-set limit.
In the finite-difference calculation, the wave functions are
represented on a uniform rectangular grid. The grid spacing of
0.3 Å and all the other computational parameters (including
the extended Poisson solver, see Sec. II C) are the same as
with the LCAO calculation. (The spectra are only minimally
affected by decreasing the grid spacing to 0.2 Å, increasing
the vacuum size to 8 Å, or decreasing the time step to 10 as.)

The used dzp basis sets yield only a small deviation from
the complete-basis-set limit in the considered energy range.
This is in contrast to metal nanoparticles, where the default
dzp basis sets are insufficient due to the lacking diffuse
functions [43,71]. We expect that the reason for the better
performance of the dzp basis sets for MoS2 flakes is that for
these structures the diffuse functions are not so important due
to minimal spill-out of surface charge in comparison to metal
nanoparticles.

FIG. 6. Photoabsorption spectrum of the ideal M = 6 flake
calculated with the dzp LCAO basis sets and with the real-space grid
representation of the wave functions yielding the complete-basis-set
limit.
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