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Heat radiation and transfer for point particles in arbitrary geometries
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We study heat radiation and heat transfer for pointlike particles in a system of other objects. Starting from exact
many-body expressions found from scattering theory and fluctuational electrodynamics, we find that transfer and
radiation for point particles are given in terms of the Green’s function of the system in the absence of the point
particles. These general expressions contain no approximation for the surrounding objects. As an application,
we compute the heat transfer between two point particles in the presence of a sphere of arbitrary size and show
that the transfer is enhanced by several orders of magnitude through the presence of the sphere, depending on
the materials. Furthermore, we compute the heat emission of a point particle in front of a planar mirror. Finally,
we show that a particle placed inside a spherical mirror cavity does not radiate energy.
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I. INTRODUCTION

The theory of thermal radiation and radiative heat transfer
plays an important role in physics of all length scales: from
radiation of the sun to heat transfer between nanostructures.
Planck’s work on blackbody radiation [1] together with other
revolutionary discoveries led to the birth of quantum theory.
Theoretical computations of heat radiation (HR) and radiative
heat transfer (HT) are based on fluctuational electrodynamics
(FE), introduced by Rytov over 60 years ago [2,3]. (It may
also be used to study Casimir interactions [4,5].) The main
idea of FE is to relate quantum (thermal) fluctuations of the
electromagnetic (EM) field radiated by an electrically neutral
object to the fluctuating currents inside it. Assuming local
equilibrium within the object, the fluctuations can be related
to the response function of the object via the fluctuation
dissipation theorem (FDT) [6–9].

In the past 50 years, the formalism of FE has been exten-
sively applied to diverse problems of nonequilibrium systems.
HR of single macroscopic objects like a semi-infinite plate,
a sphere, or an infinitely long cylinder was studied in, e.g.,
Refs. [10–13]. HT between two plates [14–16], two spheres
[17], and a sphere and a plate [18–20] is particularly interesting
due to its dramatic enhancement in the near-field regime. Apart
from analytical calculations of nonequilibrium quantities for a
particular configuration of a couple of simple bodies, there are
general theories for arbitrary systems. Numerical scattering
techniques were applied to study HT in complex systems with
analytically unknown scattering properties, e.g., in systems
with periodic structures, cones, finite cylinders, or cubes
[21–24]. General formalisms for HR, HT, and nonequilibrium
Casimir forces in many-body systems have been recently
presented and applied [18,25–32]. HT in systems, where
objects are small compared to all other length scales, can be
relatively easily studied numerically because all the particles
can be modeled by dipole polarizabilities [33–39]. There
are several experimental studies of HT verifying theoretical
predictions on both qualitative and quantitative levels [40–46].

Fundamental research in the field of radiative heat transfer
is essential for creating various useful technologies. For
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example, near-field HT is an important mechanism for prac-
tical applications in energy storage and conversion, thermal
management and thermal circuits, near-field imaging and
nanomanufacturing [47–51]. Many-body aspects of HT are
especially important for implementation of devices controlling
the heat flux, so-called thermal transistors [34,51].

In this work, we present a detailed derivation of HR and
HT for pointlike nonmagnetic spherical particles (PP)1 in the
presence of arbitrary objects. Starting from exact expressions
given in Ref. [31] and deriving an explicit form of the
scattering operator of a small sphere, we obtain compact,
physically insightful formulas for HR and HT. These involve
only the Green’s function of the surrounding objects and
polarizabilities of the particles [see Eqs. (14) and (17) below].
While we take the dipole limit for the considered radiating
and absorbing particles, the surrounding objects have no
restrictions and can be of arbitrary shape, size, and material.
As an example, we study the HT between two SiC PPs in the
presence of a sphere (SiC, gold, or mirror), where we observe
a significant enhancement of the transfer compared to the case
where the sphere is absent. This is especially interesting if
the sphere is a perfect mirror, as then the heat transfer from
geometric optics vanishes exactly. Furthermore, we analyze
the heat emission of a PP in front of a semi-infinite mirror
plate. We also demonstrate that a PP placed inside a spherical
cavity with perfectly reflecting walls does not radiate energy.

The paper is organized as follows: In Sec. II, we repeat the
exact expressions for heat radiation and transfer in many-body
systems from Ref. [31]. These are then used in Sec. III to
derive the main formulas of the paper: heat radiation and
transfer for point particles. Section IV provides a consistence
check of the new formulas, by rederiving known results for
isolated point particles. In Sec. V, we study the HT between
point particles in the presence of a macroscopic sphere.
Results for the heat emission of a point particle in front of a
mirror plate are presented in Sec. VI. Section VII provides our
findings for the radiation of a point particle inside a spherical
cavity with mirror walls. We close the paper with a summary
and discussion in Sec. VIII.

1A PP is a nonmagnetic spherical particle which is small compared
to any other length scale related to it (e.g., thermal wavelength, skin
penetration depth, distances between the particle and other objects).
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FIG. 1. Configuration of a many-body system in vacuum. Section
II reviews the most general case, where all objects are completely
arbitrary, and expressions (1) and (2) can be used to compute HR and
HT. In this paper, we focus on the situation, where objects 1 and 2
reduce to spherical point particles, as depicted in Figs. 2 and 3.

II. HEAT RADIATION AND HEAT TRANSFER IN A
MANY-BODY SYSTEM

In this section, we briefly discuss the setup under study
and give general expressions for HR and HT in a many-
body system composed of arbitrary objects [31]. For detailed

theories of HR and HT in arbitrary systems, we refer the reader
to Refs. [18,25–31]. A description of the relevant EM operators
can be found in Appendix A.

We consider a system of N objects labeled by α =
1 . . . N in vacuum and embedded in an environment. The
objects have time-independent homogeneous temperatures
{Tα} and the temperature of the environment is Tenv. The
environment may be treated as an enclosing blackbody
placed sufficiently far away from the objects. The objects
are characterized by their electric and magnetic response,
›(ω; r,r′) ≡ εij (ω; r,r′) and —(ω; r,r′) ≡ μij (ω; r,r′). In the
given nonequilibrium (stationary) situation, each object is
assumed to be at local equilibrium, such that the current
fluctuations within each object independently satisfy the FDT
[6–9].

Our goal is to compute the heat emission H
(1)
1 of object 1,

i.e., the rate of heat emitted by object 1 and reabsorbed by it,
and the heat transfer rate H

(2)
1 from object 1 to object 2, i.e.,

the rate of heat emitted by object 1 and absorbed by object 2
(see Fig. 1).

H
(1)
1 and H

(2)
1 read as [31]

H
(1)
1 = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Im Tr

{
(I + G0T1)

1

I − G0T1G0T1
G0[Im[T1] − T1 Im[G0]T∗

1]
1

I − G∗
0T

∗
1
G∗

0T
∗
1

}
, (1)

H
(2)
1 = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Tr

{
[Im[T2] − T∗

2 Im[G0]T2]
1

I − G0T2G0T2
(I + G0T)

1

I − G0T1G0T

× G0[Im[T1] − T1 Im[G0]T∗
1]

1

I − G∗
0T

∗G∗
0T

∗
1

(I + G∗
0T

∗)G∗
0

1

I − T∗
2G

∗
0T

∗
2
G∗

0

}
. (2)

Here, c is the speed of light in vacuum, h̄ and kB are Planck’s
and Boltzmann’s constants, respectively; T1 and T2 are the
scattering operators of objects 1 and 2, respectively; Ti is
the operator of the system without object i present, and T is
the composite operator of the gray objects in Fig. 1 (i.e., of the
system with objects 1 and 2 absent); G0 is the free Green’s
function (GF);2 I is the identity operator. We emphasize that
Eqs. (1) and (2) contain no approximations regarding the
properties of the objects.

Using the expressions for HR and HT, one can compute
other important nonequilibrium quantities. For example, the
total heat absorbed by object 1, i.e., the heat radiated by all
objects and the environment and absorbed by object 1, is given
by the sum over the heat transfer contributions from all objects
[30,31]:

H (1)({Tα},Tenv) =
N∑

α=1

[
H (1)

α (Tα) − H (1)
α (Tenv)

]
. (3)

Another important quantity is the net HT from object 1 to
object 2, i.e., the heat emitted by object 1 and absorbed by
object 2 minus the heat emitted by object 2 and absorbed by

2In this paper, we use words “Green’s function” and symbol G for
electric Green’s dyad.

object 1:

H 1→2 = H
(2)
1 (T1) − H

(1)
2 (T2) = H

(2)
1 (T1) − H

(2)
1 (T2), (4)

where the last step follows from the symmetry of HT.3

Expressions (3) and (4) reflect the principle of detailed
balance: at global thermal equilibrium, where all temperatures
are equal, all radiative fluxes cancel each other, such that
H (1) = H 1→2 = 0.

III. HEAT RADIATION AND TRANSFER FOR POINTLIKE
SPHERICAL PARTICLES IN ARBITRARY GEOMETRIES

In this section, we first deduce the scattering operator of a
small sphere. By evaluating Eqs. (1) and (2) in the PP limit for
objects 1 and 2, we derive formulas for HR and HT for PPs in
the presence of an arbitrary collection of objects.

3The symmetry of HT means that H (2)
1 (T ) = H

(1)
2 (T ), which implies

no net HT H 1→2 = H
(2)
1 (T1) − H

(1)
2 (T2) between the objects at equal

temperatures. Using the positivity and the symmetry of HT, one can
show that the net energy flow is always from the warmer object to the
colder one [30,31].
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A. Scattering operator of a small sphere

Consider a homogeneous isotropic nonmagnetic (μ = 1)
sphere of radius R with local potential (see Appendix A for its
relation to the Helmholtz equation)

Vs(r,r′) =
{
k2(ε − 1)I(r,r′), r,r′ ∈ Vs

0, else
(5)

where k = ω
c
, ε is the frequency-dependent scalar dielectric

function, I(r,r′) is the identity operator, and Vs is the volume of
the sphere. The scattering operator of the sphere [the quantity
appearing in Eqs. (1) and (2)] is defined as (see Appendix A)

Ts = Vs

1

I − G0Vs

. (6)

Substituting Eq. (5) into (6), we have more explicitly

Ts(r,r′) =
{
k2(ε − 1)[I − G0Vs]−1(r,r′), r,r′ ∈ Vs

0, else.
(7)

Evaluating the inverse operator [I − G0Vs]−1 is in general
challenging, and Eqs. (1) and (2) are typically evaluated using
partial waves [30,31].

Great simplification, however, can be made if the sphere
is sufficiently small, so that the EM wave does not feel the
internal structure of the sphere, i.e., the electric field within
the sphere is uniform in space and time. This is the case if,
for a frequency ω and the corresponding wavelength λ, one
has [12]

R � λ, R � λ

2π |√ε(ω)| . (8)

This limit is the electrostatic dipole limit for the scattering
of the field by a sphere [12]. When using this limit in the
integration over frequency [e.g., in Eqs. (1) and (2)], the
condition in Eq. (8) should be fulfilled by frequencies which
contribute dominantly, which are usually around ωT = 2πkBT

h̄

(with the corresponding thermal wavelength λT = h̄c
kBT

).
In the limit of Eq. (8), the field inside the sphere takes a

simple form [12,52]. Using the Lippmann-Schwinger equation
[30,53] as well as the relation between incident field and the
field inside the sphere, the operator in Eq. (7) can be found
(here, r,r′ are inside the sphere):

[I − G0Vs]ss(r,r′) = I(r,r′) + 1

3k2
Vs(r,r′)

= ε + 2

3
I(r,r′). (9)

Because the identity is its own inverse, we have from Eq. (7)
a closed form for the scattering operator of a small sphere

Tss(r,r′) =
{

3k2 ε−1
ε+2I(r,r′), r,r′ ∈ Vss

0, else.
(10)

We have used indices ss to label the small sphere.
The scattering operator of a small sphere is proportional

to the identity operator, i.e., it is diagonal and local, which

FIG. 2. System where object 1 is a PP. One can use formula (14)
to compute the HR of this PP in this system.

will simplify the expressions for HR and HT. The prefactor is
identified with the electrical dipole polarizability

α = ε − 1

ε + 2
R3 (11)

of a homogeneous isotropic sphere with radius R. To check
formula (10), we show in Appendix C that the operator
Tss(r,r′) yields the correct scattering matrix elements in the
small sphere limit.

B. Simplifying Eqs. (1) and (2) for point particles

Additionally to the condition (8), let the spheres be small
compared to their distance to any other object. In other words,
starting from the setup of Fig. 1, we let objects 1 and 2 become
small (pointlike) particles as in Figs. 2 and 3. Note that object 2
in Fig. 1 is not present in Fig. 2 because it has no special role
for the heat radiation of object 1 in Eq. (12) below. One may
imagine that it was removed, or that it became part of the gray
objects.

In this point-particle limit we can neglect multiple scat-
terings and use a one-reflection approximation between the
PPs and the residual objects [30], i.e., the inverse operators in
Eqs. (1) and (2) are set to unity. Furthermore, we only keep
the terms linear in the scattering operator of the PPs (because
the quadratic terms are negligible in this limit).

C. Heat radiation of a point particle

Evaluation of Eq. (1) in the point-particle limit reads as [we
set T2 = 0 in Eq. (1), see Fig. 2]

H
(1pp)
1pp = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Tr{Im[G] Im[T1ss]}, (12)

FIG. 3. System where objects 1 and 2 are PPs. One can use
formula (17) to compute HT from PP 1 to PP 2 in this system.
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where G = G0 + G0TG0 (see Appendix A) is, as in Eq. (1),
the GF of the system in the absence of PP 1 (the gray objects
in Fig. 2), and T1ss is the scattering operator of the particle
given in Eq. (10). Using Eq. (10), we have

H
(1pp)
1pp = 6h̄

πc2

∫ ∞

0
dω

ω3

e
h̄ω

kB T1 − 1
Im

[
ε1 − 1

ε1 + 2

]
×

∫
V1

d3r
∑

i

Im Gii(r,r), (13)

where V1 is the volume of the particle. Note that both ε1

and Gii(r,r) are frequency-dependent quantities. Because the
particle PP 1 is small compared to its distance to other objects,
the value of Gii(r,r) hardly varies between different points
inside PP 1. In this limit, the integral in Eq. (13) thus yields a
factor of the particle’s volume, and the argument r is replaced
by r1, the position of the PP. We finally obtain,

H
(1pp)
1pp = 8h̄

c2

∫ ∞

0
dω

ω3

e
h̄ω

kB T1 − 1
Im(α1)

∑
i

Im Gii(r1,r1),

(14)

where we introduced the electrical dipole polarizability α1

defined in Eq. (11). Equation (14) is our first main result.
The term

∑
i Im Gii(r1,r1) in Eq. (14) is identified with the

electric part of the local EM density of states [54,55]. Note
that the HR is proportional to the volume of the particle, a
feature that is inherent to small objects [13,30]. We also note
that the quantity H

(1pp)
1pp is non-negative as is the more general

expression H
(1)
1 in Eq. (1) [31].

D. Heat transfer between two point particles

Let us turn to the heat transfer between PP 1 and PP 2 in
Fig. 3. Equation (2) evaluated in the point-particle limit reads

H
(2pp)
1pp = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1

× Tr{Im[T2ss]G Im[T1ss]G
∗}, (15)

where, again, G = G0 + G0TG0 (see Appendix A) is the
Green’s function of the system in the absence of the two point
particles (the system composed of gray objects in Fig. 3).
T1ss (T2ss) is the scattering operator of PP 1 (PP 2). Using
expression (10) for the scattering operator of a small sphere,
the trace can be readily performed,

Tr{Im[T2ss]G Im[T1ss]G
∗}

= 9k4 Im

[
ε1 − 1

ε1 + 2

]
Im

[
ε2 − 1

ε2 + 2

]
×

∫
V2

d3r

∫
V1

d3r ′ ∑
ij

|Gij (r,r′)|2, (16)

where V1 and V2 are volumes of the particles. In the above
equation we used reciprocity Gij (r,r′) = Gji(r′,r) [10]. Also,
here, we can assume that the value of Gij (r,r′) hardly varies
for different points inside the two PPs, and we finally obtain

for the HT

H
(2pp)
1pp = 32πh̄

c4

∫ ∞

0
dω

ω5

e
h̄ω

kB T1 − 1
Im(α1)

× Im(α2)
∑
ij

|Gij (r2,r1)|2, (17)

where r1 and r2 are the coordinates of the particles. Note that
the HT given by Eq. (17) is positive and symmetric, and it is
proportional to the particles’ volumes.

Equations (14) and (17) are the main results of this paper.
They give HR of a PP and HT between two PPs in the presence
of an arbitrary system of objects (see Figs. 2 and 3). We
emphasize that the formulas imply no simplifications for the
objects surrounding the two particles. Note that the GF in
formulas (14) and (17) does not include the two PPs. Thus, in
order to study HR of a PP and HT between two PPs, one has
to know the GF of the surrounding objects. The evaluation of
the derived formulas for different example geometries is given
in the subsequent sections.

Studying the case of a collection of small spherical particles,
a formula similar to Eq. (17) was found in Ref. [34] (however,
in terms of the GF including the radiating and absorbing
particles).

E. Radiation and transfer for small particles of arbitrary shape

While Eqs. (14) and (17) are valid for spherical point
particles, the more general formulas (12) and (15) are valid
for particles of arbitrary shape. The heat emission of a particle
of arbitrary shape with scattering operator T1 is thus

H
(1pp)
1pp = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Tr{Im[G] Im[T1]}. (18)

The heat transfer between particles 1 and 2, both of arbitrary
shapes, with scattering operators T1 and T2 is

H
(2pp)
1pp = 2h̄

π

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1
Tr{Im[T2]G Im[T1]G∗}.

(19)

Equations (18) and (19) have the same regime of validity as
Eqs. (12) and (15) regarding the size of the particles, their
material properties, and distances to other objects.

IV. REDERIVATION OF HEAT RADIATION AND HEAT
TRANSFER IN VACUUM

The results for HR of a small sphere and HT between PPs
without additional objects present are well known in literature
[30,56,57], and serve as a first test of Eqs. (14) and (17)
obtained in the previous section. In this case, the GF appearing
in Eqs. (14) and (17) is the free GF given in Eq. (B1). It is
straightforward to show that∑

i

Im G0ii(r1,r1) = k

2π
, (20)

∑
ij

|G0ij (r2,r1)|2 = 1

8π2d2

[
1 + 1

k2d2
+ 3

k4d4

]
, (21)
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FIG. 4. Configuration studied in Fig. 5. HT between PPs in the
presence of a sphere.

where d = |r2 − r1| is the distance between the particles [kept
finite in Eq. (21)]. Substituting expression (20) into formula
(14) we find for the HR of a PP in vacuum

H
(1pp)
1pp,vac = 4h̄

πc3

∫ ∞

0
dω

ω4

e
h̄ω

kB T1 − 1
Im(α1), (22)

which reproduces Eq. (129) in Ref. [30]. Note that in vacuum
a PP and a small sphere are conceptually identical, and the
above expression is thus valid if the conditions (8) are fulfilled.
Substitution of expression (21) into formula (17) gives the HT
between PPs in vacuum

H
(2pp)
1pp,vac = 4h̄

πc4

∫ ∞

0
dω

ω5

e
h̄ω

kB T1 − 1
Im(α1) Im(α2)

×
[

1

d2
+ c2

ω2d4
+ 3c4

ω4d6

]
, (23)

which is in agreement with Eq. (137) in Ref. [30], Eq. (62) in
Ref. [56], and Eq. (9) in Ref. [57].

V. HEAT TRANSFER IN THE PRESENCE OF A SPHERE
OF ARBITRARY SIZE

In this section, we study the HT between two PPs in the
presence of a homogeneous isotropic nonmagnetic (μ = 1)
sphere of radius R (see Appendix B for the GF of a sphere,
which is given as a sum over multipoles). We do not make
any approximations regarding the size of the sphere and use
as many multipoles as needed for the convergence of the sum
in the GF.

In particular, we consider the configuration depicted in
Fig. 4: the PPs are placed symmetrically at fixed distance
h = 10−7 m at opposite sides of the sphere’s surface, so
that their mutual distance is d = 2(R + h). The radius R

is varied from 10−9 m up to 3 × 10−5 m. We evaluate
expression (17) with temperature T1 = 300 K, and let the
PPs be made of SiC, using the following dielectric function
[58]:

εSiC(ω) = ε∞
ω2 − ω2

LO + iωγ

ω2 − ω2
TO + iωγ

, (24)

where ε∞ = 6.7, ωLO = 1.82 × 1014 rad s−1, ωTO = 1.48 ×
1014 rad s−1, γ = 8.93 × 1011 rad s−1. As regards the sphere,
we consider three different materials: SiC, perfect mirror, and
gold, for which the Drude model was used,

εAu(ω) = 1 − ω2
p

ω(ω + iωτ )
, (25)

with ωp = 1.37 × 1016 rad s−1 and ωτ = 4.06 × 1013 rad s−1.
Note that, in addition to conditions (8), the size of the particles
must be much smaller than h for the PP limit to be valid.
Because we normalize the HT by the volumes of the PPs, we
do not give their sizes explicitly.

Figure 5 shows the resulting HT, where in general a
significant enhancement of the HT due to the presence of
the sphere for a large range of R is visible. When the radius is
small compared to h, the HT approaches the vacuum result
because the presence of the sphere becomes less and less
relevant; similar behavior was observed in Refs. [34,36]. Once
the radius becomes comparable to the distance h, the HT starts
to deviate from the vacuum result.

The effect is strongest for SiC, for which the curve has a
local maximum at R ≈ 10−7 m, i.e., when R ≈ h. For larger
R the HT decreases, and shows oscillations in the range R ≈
δSiC. Overall, the SiC sphere gives an enhancement of around
four orders of magnitude for almost the whole range of radii
shown.

A very different physical setup is given by the other two
materials. (Because gold and the perfect mirror show almost
identical results, we will not distinguish between them in
our discussion). Here, the waves cannot penetrate the sphere,
and a naive estimate of HT from a view factor [59] would
yield exactly zero. Nevertheless, due to diffraction effects,
the HT is finite, and is even significantly larger compared
to the absence of the sphere for R � λT1 . The diffraction
seems to have a lensing effect. For R � λT1 , diffraction is
absent, and the HT goes to zero faster than the vacuum
result. Between these limits, there is an intersection with the
vacuum HT, a “cloaking point”. Here, the big sphere does
not affect the HT and is hence “invisible” from the viewpoint
of HT.

Partly related setups were studied in Refs. [34,36], where,
however, different limits were investigated, namely, the case
where all particles are much smaller than the thermal
wavelength, in contrast to Fig. 5. Also, the variation of
parameters is different. While the radius of the particles
in Refs. [34,36] was fixed and the distance between them
was varied, we change the radius of the intermediate sphere
keeping the distance from the particles to the sphere’s surface
constant. Therefore, our results differ from those presented in
Refs. [34,36].

We would like to mention that the numerical convergence
of the shown results, as regards summation over multipoles, is
nontrivial, as shown in Fig. 6. The figure shows the result for
gold and R = 10−6 m of Fig. 5, truncated at multipole order
lmax normalized by the exact value (lmax → ∞). It is visible,
that the curve oscillates, and approaches the final result for
lmax ≈ 60 only. In comparison, the heat radiation of the same
sphere in isolation converges much faster (also shown, using
Eq. (124) in Ref. [30]). The difference is due to the small length
h present in the three-body configuration. For the points with
the largest R shown in Fig. 5, lmax was of the order of several
thousand.

Lastly, extracting from Fig. 5, the sphere can be modeled
by a PP if R is small compared to h and the skin depth δ.
For SiC, this approximation appears valid up to even slightly
larger values of R.
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FIG. 5. Normalized (by the PPs volumes) heat transfer from SiC PP 1 at T1 = 300 K to SiC PP 2 in the presence of a sphere, as a function
of distance (lower axis) between the particles (see Fig. 4). Upper x axis shows the corresponding sphere’s radius. The solid black curve is the
result without the sphere present [Eq. (23)]. The solid curves with points correspond to the HT in the presence of the sphere, with material as
labeled. Labels “PP approximation” give the HT where the sphere is approximated by the GF of a PP given in formula (B14). For the mirror
sphere, we show the approximation, where the sum in the GF [Eq. (B12)] was restricted to l = 1. On the lower axis, we give the thermal
wavelength λT1 , while on the upper axis, we also give h, and the skin depths δ of gold and SiC.

VI. HEAT RADIATION IN THE PRESENCE
OF A MIRROR PLATE

In this section, we study the HR of a PP in the presence
of a mirror plate at distance d (see Fig. 7). In electrostatics,
this problem is addressed with the method of images [60,61].
The GF of a plate is well known and given in Appendix B.
The following derivation [arriving at Eq. (28) below] is valid if

FIG. 6. Convergence of the HT between SiC PPs in the presence
of a gold sphere of radius R = 10−6 m as a function of the maximum
multipole order used in the sum, normalized by the exact value (other
parameters as in Fig. 5). For comparison, also the corresponding curve
for the heat radiation of an isolated gold sphere of radius R = 10−6 m
is shown. Connecting lines are included as a guide to the eye.

conditions (8) are fulfilled and the distance d is large compared
to the particle’s radius. We thus use formula (14) to evaluate
the HR. We need only the trace of the imaginary part of the GF,
where both arguments are equal to the position r1 of the PP.
Substituting plane waves (B15), (B16) and Fresnel coefficients
(B19), (B20) into GF (B21), one finds

∑
i

Im Gii(r1,r1) =
∑

i

Im G0ii(r1,r1) − Im

{
i

4π2

∫
d2k⊥

× 1

k2

√
k2 − k2

⊥e2id
√

k2−k2
⊥

}
. (26)

FIG. 7. PP 1 in front of a plate with the dielectric function ε

occupying the space z � 0. While Appendix B gives the case of a
general ε, in the main text, we focus on |ε| → ∞ (perfect reflector).
It is thus the HR of the particle that sees itself in the mirror.
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FIG. 8. HR of a SiC PP 1 at temperature T1 = 300 K in front of
a mirror plate as a function of distance from the plate, normalized by
the result of an isolated particle, from Eq. (28). Red dashed lines give
the asymptotes for large and small d .

The first term in the above expression, the vacuum term,
is given in Eq. (20). The integral in the second term can be
performed, and we obtain∑

i

Im Gii(r1,r1) = k

2π
− 1

8πk2d3
[− sin (2kd) + 2kd

× cos (2kd) + 2k2d2 sin (2kd)]. (27)

The first term gives the HR of the particle in isolation.
Substituting the above expression into formula (14), we finally
have for the radiation of a PP in front of a mirror plate

H
(1pp)
1pp = H

(1pp)
1pp,vac − h̄

πd3

∫ ∞

0
dω

ω

e
h̄ω

kB T1 − 1

× Im(α1)

[
− sin

(
2
ω

c
d
)

+ 2
ω

c
d cos

(
2
ω

c
d
)

+ 2
ω2

c2
d2 sin

(
2
ω

c
d
)]

, (28)

where H
(1pp)
1pp,vac is the HR of the PP in vacuum given by formula

(22).
Figure 8 shows the normalized (by the HR in isolation)

HR of a SiC PP 1 at temperature T1 = 300 K as a function
of distance from the mirror. For small distance d, the HR
approaches a finite result because the mirror does not allow
for near-field heat transfer modes. Expanding Eq. (28) for
small d yields

lim
d�λT1

H
(1pp)
1pp = 2

3
H

(1pp)
1pp,vac, (29)

in agreement with the numerical data. This means that 1
3 of

the HR in vacuum is suppressed by the plate. The limit in
Eq. (29) can be understood by considering a PP as a dipole
averaged over three independent orientations with respect to
the plate, two parallel and one perpendicular. In vacuum, each
orientation contributes one third of the total result. In the
presence of a mirror plate, the radiation of a dipole parallel
to the plate is canceled by its mirror image, while the radiation
of a perpendicular dipole is doubled [61]. Therefore, we have

a doubled contribution of perpendicular orientation which
gives two thirds of the radiation of a PP in vacuum. With
increase of the distance, the HR increases and reaches the
global maximum at d ≈ 3.3 × 10−6 m followed by oscillations
around the vacuum HR. These may be attributed to the
interference effect between the initially radiated waves and the
waves reflected from the mirror. The local maxima and minima
correspond to the points where emitted and reflected fields are
in phase and out of phase, respectively. Since the reflected field
reaching the particle decreases with separation d, oscillations
decrease with d as well. In the far-field limit (d � λT1 ) the
HR becomes that in vacuum because the reflected field is very
weak to significantly affect the power dissipated within the
particle, i.e.,

lim
d�λT1

H
(1pp)
1pp = H

(1pp)
1pp,vac. (30)

The partly related process of emission of excited atoms
near interfaces was reviewed in Ref. [61], and a detailed
microscopic description can be found in Ref. [62]. The results
of these references are in qualitative agreement with our
findings.

VII. HEAT RADIATION INSIDE A SPHERICAL
MIRROR CAVITY

Consider a PP placed inside a spherical cavity of radius
R with perfectly reflecting walls as depicted in Fig. 9. The
position r1 is given in spherical coordinates, with radial,
azimuthal, and polar coordinates r1, θ1, and φ1 (i.e., r1 < R).
It is intuitively clear that the particle, regardless of its material
and temperature, does not radiate energy in stationary state. All
the waves initially emitted by the particle are totally reflected
from the walls making the net energy flow zero. To our
knowledge, however, there is no mathematical proof of this
expectation in literature, which we provide here.

The GF of a spherical cavity with both arguments inside
the cavity reads as (see Appendix B),

G(r,r′) = G0(r,r′) + i

∞∑
l=1

l∑
m=−l

∑
P=M,N

Ereg
P lm(r)

⊗ Ereg
P l−m(r′)T P

l , (31)

FIG. 9. A PP inside a spherical cavity. We aim to compute the
HR of the particle in the case, where the walls of the cavity perfectly
reflect, i.e., |ε| → ∞.
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where the matrix elements T P
l , describing inside scattering,

can be found in Ref. [63]. Using symmetry relations, one may
show that, at equal arguments,

Im
l∑

m=−l

Ereg
P lm(r1) ⊗ Ereg

P l−m(r1) = 0. (32)

From it, the imaginary part of the GF, evaluated at equal points
inside the cavity, reads as

ImG(r1,r1) = ImG0(r1,r1) +
∑

P=M,N

∞∑
l=1

Re
(
T P

l

)

×
l∑

m=−l

Ereg
P lm(r1) ⊗ Ereg

P l−m(r1). (33)

While this expression is valid for any material of the
cavity walls, the perfect mirror limit is obtained by using
lim|ε|→∞ Re T P

l = −1 according to Eq. (B26), and hence

ImG(r1,r1) = ImG0(r1,r1) −
∞∑
l=1

l∑
m=−l

∑
P=M,N

Ereg
P lm(r1)

⊗ Ereg
P l−m(r1). (34)

Last, recalling that the imaginary part of the free GF can be
expanded in regular spherical waves as [30]

ImG0(r,r′) =
∞∑
l=1

l∑
m=−l

∑
P=M,N

Ereg
P lm(r) ⊗ Ereg

P l−m(r′), (35)

we note that the two terms in Eq. (34) cancel, and we finally
have for the imaginary part of the GF inside a spherical cavity
with mirror walls

ImG(r1,r1) = 0. (36)

This result allows us to make a fundamental statement: the
local EM density of states at any point inside a spherical
cavity with perfectly conducting walls is zero.4 According
to Eqs. (36) and (14),

H
(1pp)
1pp = 0, (37)

i.e., a PP placed inside a spherical mirror cavity does not radiate
energy, in accordance with conservation of energy.

Formally, we derived the result (37) for a PP (of any
material and temperature). It means that the shortest distance
from the particle’s center to the cavity walls has to be much
larger than the radius of the particle. Remember that this
condition allowed us to neglect multiple reflections from
the particle to derive expression (14) for the HR. In such a
closed system, however, the validity for this neglect is under
question. Even though the particle is far away from the cavity

4Initially, the result (36) implies that the electric part of the total
local EM density of states is zero. It is enough, however, for the
magnetic part of the local EM density of states to be zero as well.
Therefore, the total local EM density of states is zero inside a spherical
mirror cavity.

walls, the reflections from the particle can contribute signifi-
cantly because the initially radiated field always comes back
to it.

VIII. CONCLUSION

In this paper, we studied heat radiation of a point particle
and heat transfer between two point particles in the presence of
an arbitrary system of objects. We applied the PP limit for the
radiating and absorbing particles to derive general formulas
for HR and HT. These formulas, whose main element is the
Green’s function of the objects surrounding the PPs, are much
simpler than the general expressions for HR and HT. They
open up a powerful route for (numerical) studies of HR and
HT for PPs in various systems, where the surrounding objects
can be of arbitrary shape, size, and material.

The HT can be dramatically enhanced by a sphere placed
between the two PPs, where the strongest effect was seen if all
materials are SiC. For a well-conducting sphere, we also found
a significant enhancement, which is a pure diffraction effect:
the view factor for the given configuration is exactly zero. The
self-emission of a PP in front of a semi-infinite mirror plate
is finite at all distances. It approaches 2

3 of the vacuum result
for small d, and shows oscillations in the region where the
separation distance is comparable to the thermal wavelength.
The HR of a PP placed inside a spherical cavity with perfectly
conducting walls is exactly zero.

While there are already a lot of studies of HR and HT in
many-body systems (where all objects are small particles), the
research in the field of many-body HR and HT still provides
many open and interesting questions. The formalism presented
in this paper could be used to study the HT between two
PPs in the presence of a multilayered sphere. The problem
of the self-emission of a PP in front of a mirror plate can be
straightforwardly extended to the HR of a PP or HT between
two PPs in the presence of a plate made of various materials,
or inside a cavity made by two parallel plates. Future work
may also study the HT between two PPs in the presence of a
cylinder, where interesting phenomena due to surface waves
may be expected.
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APPENDIX A: ELECTROMAGNETIC OPERATORS

For an abstract frequency-dependent operator A(ω), its
position space representation is defined as

A(ω,r,r′) ≡ Aij (ω,r,r′) = 〈r|A(ω) |r′〉 , (A1)

where |r〉 is an eigenstate of the position operator. In general,
A(ω,r,r′) is a 3 × 3 position-dependent matrix containing
arbitrary operations, e.g., derivatives. The dependence on ω
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is not made explicitly in frequency-dependent operators. In
this paper, operators are assumed to be initially in position
space representation. Operator products involve matrix mul-
tiplication, as well as integration over the common spatial
argument:

AB ≡ (AB)ik(r,r′) =
∫

d3r ′′Aij (r,r′′)Bjk(r′′,r′), (A2)

where the summation over repeated indices is understood. The
trace of an operator is both over the matrix indices and the
spatial arguments.

Important operators for our considerations are potential
V introduced by the objects, Green’s function (GF) G of
the system, and the scattering operator T. The potential is
defined as

V = ω2

c2
(› − I) + ∇ ×

(
I − 1

—

)
∇× (A3)

and GF obeys the Helmholtz equation[
H0 − V − ω2

c2
I

]
G(r,r′) = Iδ(3)(r − r′), (A4)

where H0 = ∇ × ∇× and I is the 3 × 3 identity matrix.5

The free GF [see Eq. (B1)] is the solution of Eq. (A4)
with V = 0. The scattering operator can be defined in the
context of Lippmann-Schwinger equation [53] and reads
as

T = V
1

I − G0V
. (A5)

Using Eqs. (A4) and (A5), one can find the following relation
between G and T:

G = G0 + G0TG0. (A6)

APPENDIX B: GREEN’S FUNCTIONS

The GF of an object is usually found using Eq. (A6). One
typically applies expansion of the free GF in partial waves of
an appropriate basis to have the result in terms of the waves
and the scattering matrix of an object [13,30,52,64].

1. Free space

The GF of free space can be written in closed form
[52,65–67]:

G0(r,r′) = − 1

3k2
Iδ(3)(r − r′)

+ eikd

4πk2d5
[d2(−1 + ikd + k2d2)I

+ (3 − 3ikd − k2d2)(r − r′) ⊗ (r − r′)], (B1)

where d = |r − r′| is the distance between the points and
the symbol ⊗ denotes the dyadic product. Note the delta
function term, which contributes to the field at the source

5We use symbolI for the 3 × 3 identity matrix and I = Iδ(3)(r − r′)
for the identity operator.

region [52,65–68]. As expected from translational invariance
of the observation points, the free GF is a function of r − r′.

2. Sphere

First, we introduce spherical waves and scattering matrix of
a sphere according to Ref. [30]. We consider that the center of
the sphere is located at the origin of the coordinate system. The
spherical waves are solutions of the wave equation in spherical
coordinates (r, θ, φ):

Ereg
Mlm =

√
(−1)mk

1√
l(l + 1)

jl(kr)∇ × rYm
l (θ,φ), (B2)

Eout
Mlm =

√
(−1)mk

1√
l(l + 1)

hl(kr)∇ × rYm
l (θ,φ), (B3)

Ereg
Nlm = 1

k
∇ × Ereg

Mlm, (B4)

Eout
Nlm = 1

k
∇ × Eout

Mlm. (B5)

Here, l = 1,2, . . . ; m = −l,−(l − 1), . . . , 0, . . . , (l − 1), l;
indices M and N denote magnetic and electric polarizations,
respectively; the superscript “reg” means that the wave is
regular at the origin, while the superscript “out” means that
the wave is singular at the origin, i.e., it is the outgoing
wave;

Ym
l (θ,φ) =

√
(2l + 1)

4π

(l − m)!

(l + m)!
P m

l (cos θ )eimφ (B6)

are spherical harmonics, where P m
l (cos θ ) is the Legendre

function; jl(kr) is the spherical Bessel function of order l

and hl(kr) is the spherical Hankel function of the first kind
of order l. The scattering matrix of a sphere can be defined
in the context of Lippmann-Schwinger equation [30,64]. For
the case where the matrix relates the incident and the scattered
fields outside a sphere, it reads as

Tμμ′ = i

∫
d3r

∫
d3r ′Ereg

σ (μ)(r)T(r,r′)Ereg
μ′ (r′), (B7)

where T(r,r′) is the scattering operator of a sphere, μ =
{P,l,m} (P denotes polarization, magnetic M , or electric N )
and σ (μ) = {P,l, − m}.

The matrix elements can be obtained by solving the bound-
ary conditions problem [12,52]. For a sphere with isotropic
and local ε and μ, the matrix is diagonal and independent on
m, Tμμ′ ≡ T PP ′

ll′mm′ = T P
l δPP ′δll′δmm′ . The matrix elements T P

l

for a homogeneous sphere of radius R (see Fig. 4) are given
by [12,30,52]

T M
l = − μjl(R̃∗) d

dR∗ [R∗jl(R∗)] − jl(R∗) d

dR̃∗ [R̃∗jl(R̃∗)]

μjl(R̃∗) d
dR∗ [R∗hl(R∗)] − hl(R∗) d

dR̃∗ [R̃∗jl(R̃∗)]
,

(B8)

T N
l = − εjl(R̃∗) d

dR∗ [R∗jl(R∗)] − jl(R∗) d

dR̃∗ [R̃∗jl(R̃∗)]

εjl(R̃∗) d
dR∗ [R∗hl(R∗)] − hl(R∗) d

dR̃∗ [R̃∗jl(R̃∗)]
,

(B9)
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where R∗ = kR and R̃∗ = √
εμkR. In the limit of perfect

conductivity (or reflectivity), the scattering matrix simplifies
to

lim
|ε|→∞

T M
l = − jl(R∗)

hl(R∗)
, (B10)

lim
|ε|→∞

T N
l = −

d
dR∗ [R∗jl(R∗)]
d

dR∗ [R∗hl(R∗)]
. (B11)

The GF of a sphere can be evaluated using Eq. (A6) and
expansion of the free GF in spherical waves [30,52,64]. For
its both position arguments lying outside the sphere, the GF
reads as

G(r,r′) = G0(r,r′)

+ i

∞∑
l=1

l∑
m=−l

∑
P=M,N

Eout
P lm(r) ⊗ Eout

P l−m(r′)T P
l ,

(B12)

where matrix elements T P
l are given by Eqs. (B8) and (B9).

For the free GF in formula (B12), it is reasonable to use closed-
form expression (B1) in spherical coordinates. We note again
that GF (B12), as well as matrix elements (B7), are valid
for only outside-outside scattering, such that both observation
points lie outside the sphere.

3. Small sphere and point particle

The GF of a small homogeneous isotropic nonmagnetic
sphere can be readily obtained using Eq. (A6) and the
scattering operator (10). We have

G(r,r′) = G0(r,r′)

+ 3k2 ε − 1

ε + 2

∫
Vss

d3r ′′G0(r,r′′)G0(r′′,r′), (B13)

where the integration runs over the volume Vss of the sphere.
This GF has no restriction on its arguments.

If a small sphere reduces to a PP, such that the observation
points are far away from the sphere, formula (B13) can be
further simplified. The integration variable inside free GFs in
the integral of expression (B13) can be replaced by the fixed
coordinate r0 corresponding to the center of the PP with radius
R, and we obtain

G(r,r′) = G0(r,r′) + 4πk2αG0(r,r0)G0(r0,r′), (B14)

where α is electrical dipole polarizability of the particle given
in Eq. (11). An expression for the GF of a point dipole similar
to Eq. (B14) can be found in Ref. [69].

4. Plate

We consider a semi-infinite homogeneous isotropic plate
occupying the space z � 0 (see Fig. 7) and aim to find the GF
with both arguments lying outside the plate. First, we introduce
the plane waves similar to those defined in Refs. [30,52,64]:

Mk⊥(x⊥,z) = 1

|k⊥| (x̂ky − ŷkx)eik·r, (B15)

N±
k⊥ (x⊥,z) = 1

k|k⊥| (±x̂kxkz ± ŷkykz + ẑk2
⊥)eik·r, (B16)

where r is the radius vector, k = (k⊥,kz)T , and kz =√
k2 − k2

⊥ . The scattering matrix of a plate can be written
in terms of Fresnel reflection coefficients [30,31,60]

rM =
μ

√
ω2

c2 − k2
⊥ −

√
εμω2

c2 − k2
⊥

μ

√
ω2

c2 − k2
⊥ +

√
εμω2

c2 − k2
⊥

, (B17)

rN =
ε

√
ω2

c2 − k2
⊥ −

√
εμω2

c2 − k2
⊥

ε

√
ω2

c2 − k2
⊥ +

√
εμω2

c2 − k2
⊥

, (B18)

which in the case of a perfect mirror plate simplify to

lim
|ε|→∞

rM = −1, (B19)

lim
|ε|→∞

rN = 1. (B20)

Similar to the case of a sphere, the GF of a plate can be
obtained using the expansion of the free GF in the plane waves
[30,52,64] and formula (A6). We have

G(r,r′) = G0(r,r′) + i

8π2

∫
d2k⊥

1

kz

× [Mk⊥(x⊥,z) ⊗ Mk⊥(−x′
⊥,z′)rM

+ N−
k⊥(x⊥,z) ⊗ N+

k⊥ (−x′
⊥,z′)rN ]. (B21)

5. Spherical cavity

We consider an object occupying the whole space except
centered at the origin spherical cavity of radius R (see
Fig. 9). We aim to find the GF inside the cavity. Due to
spherical symmetry of the system, one uses the spherical
waves introduced above to find the GF. In contrast to
the case of a sphere, the scattering matrix of the cavity
walls with scattering operator T(r,r′) contains outgoing
waves

Tμμ′ = i

∫
d3r

∫
d3r ′Eout

σ (μ)(r)T(r,r′)Eout
μ′ (r′), (B22)

and one has to use different pieces of expansion of the
free GF [30,52,64] in formula (A6). We consider that ε

and μ of the cavity walls are isotropic and homogeneous,
such that Tμμ′ ≡ T PP ′

ll′mm′ = T P
l δPP ′δll′δmm′ [63]. The GF

reads as

G(r,r′) = G0(r,r′)

+ i

∞∑
l=1

l∑
m=−l

∑
P=M,N

Ereg
P lm(r) ⊗ Ereg

P l−m(r′)T P
l .

(B23)

The matrix elements T P
l can be found in Ref. [63]. In the

case of perfectly conducting walls, they are inverse of those
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for perfectly conducting sphere:

lim
|ε|→∞

T M
l = −hl(R∗)

jl(R∗)
, (B24)

lim
|ε|→∞

T N
l = −

d
dR∗ [R∗hl(R∗)]

d
dR∗ [R∗jl(R∗)]

. (B25)

Since R∗ = kR is real, jl(R∗) is real and Re hl(R∗) = jl(R∗).
Therefore, the above matrix elements have the following
remarkable property:

Re lim
|ε|→∞

T M
l = Re lim

|ε|→∞
T N

l = −1. (B26)

APPENDIX C: CORRESPONDENCE BETWEEN THE
SCATTERING OPERATOR OF A SMALL SPHERE AND

THE SCATTERING MATRIX

In Sec. III, we derived the scattering operator of a small
sphere. In this Appendix, we check its expression. In contrast
to the scattering operator, the scattering matrix of a sphere
is well known [see Eqs. (B8) and (B9)], and one can hence
obtain its form in the small sphere limit. Using the definition of
the scattering matrix in Eq. (B7), we show that the scattering
operator for a small sphere given by Eq. (10) indeed gives the
corresponding scattering matrix.

In Ref. [30], it was found that in the small sphere limit only
the T N

1 element is relevant and it reads as

T N
1 = i

2(ε − 1)

3(ε + 2)
k3R3, (C1)

where R is the sphere’s radius. On the other hand, the scattering
operator (10) gives the following scattering matrix according
to Eq. (B7)

T̃μμ′ = 3ik2 ε − 1

ε + 2

∫
Vss

d3r Ereg
σ (μ)(r) · Ereg

μ′ (r), (C2)

where the integration runs over the volume Vss of the sphere.
We have to show that all the elements T̃μμ′ except T̃ N

1 are zeros
and that T̃ N

1 = T N
1 given in Eq. (C1). Performing the curls in

Eqs. (B2) and (B4), we find [52]

Ereg
Mlm(kr,θ,φ)

=
√

(−1)mk√
l(l + 1)

jl(kr)

[
θ̂

im

sin θ
Ym

l (θ,φ) − φ̂
d

dθ
Ym

l (θ,φ)

]
,

(C3)

Ereg
Nlm(kr,θ,φ) =

√
(−1)mk√
l(l + 1)

{
r̂
l(l + 1)jl(kr)

kr
Ym

l (θ,φ)

+ 1

kr

d

d(kr)
[krjl(kr)]

×
[
θ̂

d

dθ
Ym

l (θ,φ) + φ̂
im

sin θ
Ym

l (θ,φ)

]}
.

(C4)

We consider k � kT = ωT

c
, because larger wave vectors are

not relevant for HR or HT. Since the spatial arguments of the
waves in Eq. (C2) lie within the volume of a small sphere, we
have kr � 1, which allows us to use the small argument limit
of spherical Bessel functions [52]:

lim
kr�1

jl(kr) ≈ 1

1 × 3 × 5 . . . (2l + 1)
(kr)l . (C5)

Applying this limit in Eqs. (C3) and (C4), it is easy to see that
only the waves Ereg

N1m are relevant. Therefore, all the matrix
elements (except T̃ N

1 ) are negligible compared to T̃ N
1 and

hence can be considered zero. It remains to show that T̃ N
1 =

T N
1 . We write Ereg

N1m explicitly in the limit kr � 1:

Ereg
N1m(kr,θ,φ) ≈

√
(−1)mk

√
2

3

{
r̂Y m

1 (θ,φ)

+ θ̂
d

dθ
Ym

1 (θ,φ) + φ̂
im

sin θ
Ym

1 (θ,φ)

}
. (C6)

Substituting expression (C6) into Eq. (C2), it is straightforward
to show that T̃ N

1 = T N
1 . Therefore, the scattering operator of

a small sphere (10) gives the correct scattering matrix (C1).
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Joannopoulos, M. Soljačić, and S. G. Johnson, Phys. Rev. Lett.
107, 114302 (2011).

155402-11

https://doi.org/10.1002/andp.19013090310
https://doi.org/10.1002/andp.19013090310
https://doi.org/10.1002/andp.19013090310
https://doi.org/10.1002/andp.19013090310
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.83.34
https://doi.org/10.1103/PhysRev.101.1620
https://doi.org/10.1103/PhysRev.101.1620
https://doi.org/10.1103/PhysRev.101.1620
https://doi.org/10.1103/PhysRev.101.1620
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1103/PhysRevA.29.1991
https://doi.org/10.1364/AO.9.002685
https://doi.org/10.1364/AO.9.002685
https://doi.org/10.1364/AO.9.002685
https://doi.org/10.1364/AO.9.002685
https://doi.org/10.1103/PhysRevE.85.046603
https://doi.org/10.1103/PhysRevE.85.046603
https://doi.org/10.1103/PhysRevE.85.046603
https://doi.org/10.1103/PhysRevE.85.046603
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevB.4.3303
https://doi.org/10.1103/PhysRevA.80.042102
https://doi.org/10.1103/PhysRevA.80.042102
https://doi.org/10.1103/PhysRevA.80.042102
https://doi.org/10.1103/PhysRevA.80.042102
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1103/PhysRevB.85.180301
https://doi.org/10.1103/PhysRevB.77.075125
https://doi.org/10.1103/PhysRevB.77.075125
https://doi.org/10.1103/PhysRevB.77.075125
https://doi.org/10.1103/PhysRevB.77.075125
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevLett.106.210404
https://doi.org/10.1103/PhysRevB.84.245431
https://doi.org/10.1103/PhysRevB.84.245431
https://doi.org/10.1103/PhysRevB.84.245431
https://doi.org/10.1103/PhysRevB.84.245431
https://doi.org/10.1209/0295-5075/101/34002
https://doi.org/10.1209/0295-5075/101/34002
https://doi.org/10.1209/0295-5075/101/34002
https://doi.org/10.1209/0295-5075/101/34002
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302
https://doi.org/10.1103/PhysRevLett.107.114302


ASHEICHYK, MÜLLER, AND KRÜGER PHYSICAL REVIEW B 96, 155402 (2017)

[22] A. P. McCauley, M. T. Homer Reid, M. Krüger, and S. G.
Johnson, Phys. Rev. B 85, 165104 (2012).

[23] A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson, Phys. Rev.
B 88, 054305 (2013).

[24] A. G. Polimeridis, M. T. H. Reid, W. Jin, S. G. Johnson, J. K.
White, and A. W. Rodriguez, Phys. Rev. B 92, 134202 (2015).

[25] R. Messina and M. Antezza, Europhys. Lett. 95, 61002 (2011).
[26] R. Messina and M. Antezza, Phys. Rev. A 84, 042102 (2011).
[27] R. Messina and M. Antezza, Phys. Rev. A 89, 052104 (2014).
[28] R. Messina, M. Antezza, and P. Ben-Abdallah, Phys. Rev. Lett.

109, 244302 (2012).
[29] R. Messina, P. Ben-Abdallah, B. Guizal, M. Antezza, and S.-A.

Biehs, Phys. Rev. B 94, 104301 (2016).
[30] M. Krüger, G. Bimonte, T. Emig, and M. Kardar, Phys. Rev. B

86, 115423 (2012).
[31] B. Müller, R. Incardone, M. Antezza, T. Emig, and M. Krüger,

Phys. Rev. B 95, 085413 (2017).
[32] G. Bimonte, T. Emig, M. Kardar, and M. Krüger, Annu. Rev.

Condens. Matter Phys. 8, 119 (2017).
[33] R. Incardone, T. Emig, and M. Krüger, Europhys. Lett. 106,

41001 (2014).
[34] P. Ben-Abdallah, S.-A. Biehs, and K. Joulain, Phys. Rev. Lett.

107, 114301 (2011).
[35] M. Nikbakht, J. Appl. Phys. 116, 094307 (2014).
[36] J. Dong, J. Zhao, and L. Liu, Phys. Rev. B 95, 125411 (2017).
[37] Y. Wang and J. Wu, AIP Adv. 6, 025104 (2016).
[38] O. R. Choubdar and M. Nikbakht, J. Appl. Phys. 120, 144303

(2016).
[39] A. D. Phan, T.-L. Phan, and L. M. Woods, J. Appl. Phys. 114,

214306 (2013).
[40] C. M. Hargreaves, Phys. Lett. A 30, 491 (1969).
[41] S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909

(2009).
[42] A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig,

and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).
[43] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin, J. Chevrier,

and J.-J. Greffet, Nat. Photonics 3, 514 (2009).
[44] R. S. Ottens, V. Quetschke, S. Wise, A. A. Alemi, R. Lundock,

G. Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting,
Phys. Rev. Lett. 107, 014301 (2011).

[45] Y. Kajihara, K. Kosaka, and S. Komiyama, Opt. Express 19,
7695 (2011).

[46] K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L.
Cui, D. Thompson, J. Feist, M. T. H. Reid, F. J. García-Vidal
et al., Nature (London) 528, 387 (2015).

[47] X. Liu, L. Wang, and Z. M. Zhang, Nanosc. Microsc. Therm.
19, 98 (2015).

[48] A. Narayanaswamy and G. Chen, Appl. Phys. Lett. 82, 3544
(2003).

[49] M. Laroche, R. Carminati, and J.-J. Greffet, J. Appl. Phys. 100,
063704 (2006).

[50] R. M. Swanson, Science 324, 891 (2009).
[51] P. Ben-Abdallah and S.-A. Biehs, Phys. Rev. Lett. 112, 044301

(2014).
[52] L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electro-

magnetic Waves (Wiley, New York, 2000).
[53] B. A. Lippmann and J. Schwinger, Phys. Rev. 79, 469 (1950).
[54] K. Joulain, R. Carminati, J-P. Mulet, and J.-J. Greffet, Phys. Rev.

B 68, 245405 (2003).
[55] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J.

Greffet, Surf. Sci. Rep. 57, 59 (2005).
[56] A. I. Volokitin and B. N. J. Persson, Phys. Rev. B 63, 205404

(2001).
[57] P. O. Chapuis, M. Laroche, S. Volz, and J.-J. Greffet, Appl. Phys.

Lett. 92, 201906 (2008).
[58] W. G. Spitzer, D. Kleinmann, and D. Walsh, Phys. Rev. 113,

127 (1959).
[59] M. Modest, Radiative Heat Transfer (Academic, San Diego,

2013).
[60] J. D. Jackson, Classical Electrodynamics (Wiley, New York,

1999).
[61] W. L. Barnes, J. Mod. Opt. 45, 661 (1998).
[62] M. S. Yeung and T. K. Gustafson, Phys. Rev. A 54, 5227 (1996).
[63] S. Zaheer, S. J. Rahi, T. Emig, and R. L. Jaffe, Phys. Rev. A 82,

052507 (2010).
[64] S. J. Rahi, T. Emig, N. Graham, R. L. Jaffe, and M. Kardar,

Phys. Rev. D 80, 085021 (2009).
[65] J. Van Bladel, IRE Trans. Antennas Propag. 9, 563 (1961).
[66] A. D. Yaghjian, Proc. IEEE 68, 248 (1980).
[67] W. Weiglhofer, Am. J. Phys. 57, 455 (1989).
[68] R. Nevels and J. Jeong, IEEE Trans. Antennas Propag. 52, 3012

(2004).
[69] R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux,

Opt. Commun. 261, 368 (2006).

155402-12

https://doi.org/10.1103/PhysRevB.85.165104
https://doi.org/10.1103/PhysRevB.85.165104
https://doi.org/10.1103/PhysRevB.85.165104
https://doi.org/10.1103/PhysRevB.85.165104
https://doi.org/10.1103/PhysRevB.88.054305
https://doi.org/10.1103/PhysRevB.88.054305
https://doi.org/10.1103/PhysRevB.88.054305
https://doi.org/10.1103/PhysRevB.88.054305
https://doi.org/10.1103/PhysRevB.92.134202
https://doi.org/10.1103/PhysRevB.92.134202
https://doi.org/10.1103/PhysRevB.92.134202
https://doi.org/10.1103/PhysRevB.92.134202
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1209/0295-5075/95/61002
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.84.042102
https://doi.org/10.1103/PhysRevA.89.052104
https://doi.org/10.1103/PhysRevA.89.052104
https://doi.org/10.1103/PhysRevA.89.052104
https://doi.org/10.1103/PhysRevA.89.052104
https://doi.org/10.1103/PhysRevLett.109.244302
https://doi.org/10.1103/PhysRevLett.109.244302
https://doi.org/10.1103/PhysRevLett.109.244302
https://doi.org/10.1103/PhysRevLett.109.244302
https://doi.org/10.1103/PhysRevB.94.104301
https://doi.org/10.1103/PhysRevB.94.104301
https://doi.org/10.1103/PhysRevB.94.104301
https://doi.org/10.1103/PhysRevB.94.104301
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.86.115423
https://doi.org/10.1103/PhysRevB.95.085413
https://doi.org/10.1103/PhysRevB.95.085413
https://doi.org/10.1103/PhysRevB.95.085413
https://doi.org/10.1103/PhysRevB.95.085413
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1146/annurev-conmatphys-031016-025203
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1209/0295-5075/106/41001
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1103/PhysRevLett.107.114301
https://doi.org/10.1063/1.4894622
https://doi.org/10.1063/1.4894622
https://doi.org/10.1063/1.4894622
https://doi.org/10.1063/1.4894622
https://doi.org/10.1103/PhysRevB.95.125411
https://doi.org/10.1103/PhysRevB.95.125411
https://doi.org/10.1103/PhysRevB.95.125411
https://doi.org/10.1103/PhysRevB.95.125411
https://doi.org/10.1063/1.4941751
https://doi.org/10.1063/1.4941751
https://doi.org/10.1063/1.4941751
https://doi.org/10.1063/1.4941751
https://doi.org/10.1063/1.4964698
https://doi.org/10.1063/1.4964698
https://doi.org/10.1063/1.4964698
https://doi.org/10.1063/1.4964698
https://doi.org/10.1063/1.4838875
https://doi.org/10.1063/1.4838875
https://doi.org/10.1063/1.4838875
https://doi.org/10.1063/1.4838875
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1021/nl901208v
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1038/nphoton.2009.144
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1364/OE.19.007695
https://doi.org/10.1364/OE.19.007695
https://doi.org/10.1364/OE.19.007695
https://doi.org/10.1364/OE.19.007695
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nature16070
https://doi.org/10.1080/15567265.2015.1027836
https://doi.org/10.1080/15567265.2015.1027836
https://doi.org/10.1080/15567265.2015.1027836
https://doi.org/10.1080/15567265.2015.1027836
https://doi.org/10.1063/1.1575936
https://doi.org/10.1063/1.1575936
https://doi.org/10.1063/1.1575936
https://doi.org/10.1063/1.1575936
https://doi.org/10.1063/1.2234560
https://doi.org/10.1063/1.2234560
https://doi.org/10.1063/1.2234560
https://doi.org/10.1063/1.2234560
https://doi.org/10.1126/science.1169616
https://doi.org/10.1126/science.1169616
https://doi.org/10.1126/science.1169616
https://doi.org/10.1126/science.1169616
https://doi.org/10.1103/PhysRevLett.112.044301
https://doi.org/10.1103/PhysRevLett.112.044301
https://doi.org/10.1103/PhysRevLett.112.044301
https://doi.org/10.1103/PhysRevLett.112.044301
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRev.79.469
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1103/PhysRevB.68.245405
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1016/j.surfrep.2004.12.002
https://doi.org/10.1103/PhysRevB.63.205404
https://doi.org/10.1103/PhysRevB.63.205404
https://doi.org/10.1103/PhysRevB.63.205404
https://doi.org/10.1103/PhysRevB.63.205404
https://doi.org/10.1063/1.2931062
https://doi.org/10.1063/1.2931062
https://doi.org/10.1063/1.2931062
https://doi.org/10.1063/1.2931062
https://doi.org/10.1103/PhysRev.113.127
https://doi.org/10.1103/PhysRev.113.127
https://doi.org/10.1103/PhysRev.113.127
https://doi.org/10.1103/PhysRev.113.127
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1080/09500349808230614
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.54.5227
https://doi.org/10.1103/PhysRevA.82.052507
https://doi.org/10.1103/PhysRevA.82.052507
https://doi.org/10.1103/PhysRevA.82.052507
https://doi.org/10.1103/PhysRevA.82.052507
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1103/PhysRevD.80.085021
https://doi.org/10.1109/TAP.1961.1145064
https://doi.org/10.1109/TAP.1961.1145064
https://doi.org/10.1109/TAP.1961.1145064
https://doi.org/10.1109/TAP.1961.1145064
https://doi.org/10.1109/PROC.1980.11620
https://doi.org/10.1109/PROC.1980.11620
https://doi.org/10.1109/PROC.1980.11620
https://doi.org/10.1109/PROC.1980.11620
https://doi.org/10.1119/1.16001
https://doi.org/10.1119/1.16001
https://doi.org/10.1119/1.16001
https://doi.org/10.1119/1.16001
https://doi.org/10.1109/TAP.2004.835123
https://doi.org/10.1109/TAP.2004.835123
https://doi.org/10.1109/TAP.2004.835123
https://doi.org/10.1109/TAP.2004.835123
https://doi.org/10.1016/j.optcom.2005.12.009
https://doi.org/10.1016/j.optcom.2005.12.009
https://doi.org/10.1016/j.optcom.2005.12.009
https://doi.org/10.1016/j.optcom.2005.12.009



