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Optical emission of graphene and electron-hole pair production induced by a strong terahertz field
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We report on experimental observation of optical emission of graphene induced by an intense terahertz (THz)
pulse. P-doped chemical-vapor-deposition graphene with an initial Fermi energy of about 200 meV was used;
optical photons were detected in the 2.0–3.5 eV range. Emission started when the THz field amplitude exceeded
100 kV/cm. For the THz fields from 200 to 300 kV/cm, the temperature of optical radiation was constant, while
the number of emitted photons increased by several dozen times. This fact clearly indicates multiplication of
electron-hole pairs induced by an external field and not electron heating. The experimental data are in good
agreement with the theory of Landau-Zener interband transitions. It is shown theoretically that Landau-Zener
transitions are possible even in the case of heavily doped graphene because the strong THz field removes
quasiparticles from the region of interband transitions for several femtoseconds, which cancels the Pauli blocking
effect.
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I. INTRODUCTION

The nonlinear optical properties of graphene are currently
being actively investigated in view of their prospective use in
plasmonics, optoelectronics, and photonics [1]. The specific
features of gapless dispersion of Dirac fermions, including the
so-called Dirac cones, make graphene a unique material. In
the neighborhood of the Dirac point, fermions have a massless
dispersion law up to energies of the order of 1.5 eV and the
high Fermi velocity υF ≈ 108cm/s, thus providing ultrahigh
nonlinear susceptibility (both quadratic and cubic) of graphene
in the infrared and terahertz (THz) wave ranges [2–10]. The
interaction of graphene with terahertz radiation is presently
arousing particular interest from the viewpoint of various
applications [11,12]. Monocycle terahertz pulses are also used
for studying relaxation processes in graphene [13,14].

An interesting effect of the THz-pulse-initiated carrier
multiplication (CM) was studied experimentally in [13]. This
effect was attributed in [13] to impact ionization (II), i.e., to
interband reverse Auger recombination. At the same time,
according to the theoretical results obtained in [15] within the
framework of the two-dimensional (2D) Fermi-liquid model,
the Auger processes have low efficiency in the region of the
linear dispersion law;1 consequently, in the simulation made
in [13] the Auger resonances were broadened “artificially”
within the framework of the numerical scheme.2 The CM
effect was also observed in the case of optical pumping [14,16–
22], when the contribution of the impact ionization to the
formation of the electron population in the conducting band
did not exceed 5%–10% [17].

It is worth noting that the ballistic (directly initiated by
the field) interband transitions were neglected in [13] in
view of the small photon energy, as compared to the typical
kinetic energy of fermions in doped graphene. This approach,

*oladyshkin@gmail.com
1The situation is different for graphene in a magnetic field (see,

e.g., [12]).
2The authors of [13] assumed that dislocations could be a possible

physical mechanism of such broadening.

however, is justified only within the applicability of the
perturbation method, when the energy of the quasiparticle
interaction with an high frequency field is small compared
to the energy of the resonance transition: eυF A/c � h̄ω

(here, A is the vector potential amplitude). The typical field
intensity E ≈ 100 kV/cm for a frequency of 2 THz reported
in [13] by no means corresponds to the given parameter region
eυF A/ch̄ω ≈ 30. Note that nonlinear interaction of a strong
THz field with graphene was studied experimentally in [23,24];
it was demonstrated that scattering processes do not have a
significant influence on the formation of both interband and
intraband currents.3

In our work, the ballistic CM mechanism under the action
of intense THz pulses is studied experimentally and theo-
retically. We address the mechanism of Schwinger electron-
hole pair production considered earlier in connection with
transport processes in graphene [27–29]. This effect may
also be adequately described within the framework of the
Landau-Zener theory [30–32]. In dc fields, this effect usually
makes a relatively small contribution to the current-voltage
characteristic of a graphene sample that is observed at only
weak doping [30,31]. We have derived a conclusion that, in
the field of intense THz pulses, the ballistic mechanism of
electron-hole pair generation, in contrast, plays a principal
role in the formation of fermion distribution, even in the case
of strong initial doping in chemical-vapor deposition (CVD)
graphene, when the initial Fermi energy is of the order of
hundreds of meV.

The structure of the paper is as follows. Section II is devoted
to the Landau-Zener mechanism of ballistic electron-hole pair
generation. In Sec. III the model of nonequilibrium electron
distribution in graphene is presented. The experiment on the
excitation of spontaneous optical emission of graphene by
high-power THz radiation is described in Sec. IV.4 In Sec. V,

3The currents were obtained from the Schrödinger equation for
fermions in graphene [25,26].

4The excitation of graphene optical emission by direct current at
much smaller fields was studied in [33,34]; optical emission after
femtosecond laser excitation was studied in [35].
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FIG. 1. The interband transition under the action of a THz field.
The thick line shows the dependence of the Dirac fermion energy
W on quasimomentum kx for ky = const. The intersecting thin lines
correspond to ky = 0. (a) Initial distribution with the Fermi energy
WF = const. (b) Electron distribution after the modification of initial
population near the Dirac point by THz field. The wavy arrow depicts
schematically the interband transitions under the action of the THz
field.

the dependence of the intensity of the optical emission on the
field amplitude of the THz pulse obtained in the experiment
is explained within the Landau-Zener theory based on the
hypothesis of the decisive role of ballistic interband transitions.

II. THEORETICAL MODEL OF BALLISTIC IONIZATION

The fermion energy spectrum in the neighborhood of the
Dirac point has the form [1]

Wc,υ = ±h̄υF

√
k2
x+k2

y, (1)

where h̄kx,y are the components of the quasimomentum in
the single-layer plane and thec and υ subscripts define the
conducting and valence bands, respectively. Let us consider
the W (kx) dependence at a given value of ky (Fig. 1).

For ky = 0, the energy diagram is formed by two inter-
secting straight lines W± = ±h̄υF kx , with the energy sign
changing at the point kx = 0 of each line. For ky �= 0, an energy
gap with the width �Wmin = 2h̄υF |ky | is formed between the
conduction and valence bands.

Let the electric field E = x0E(t) be imposed on the system.
Changes in the quasimomentum will be described by the
classical equations of motion:

h̄k̇x = −eE, ky = const. (2)

If the quantity ky is regarded as a perturbation defining
the splitting of the energy branches (Fig. 1) and kx(t) is
a parameter specifying the difference between the energies
of states at each moment of time, then we will obtain a
standard Landau-Zener problem [36]. According to the general
theory of Landau-Zener transitions, the probability of the
interband transition is defined as PLZ = exp(−2π�), � =
h̄−1(�Wmin/2)2|∂(W+ − W−)/∂t |−1, where the derivative
∂(W+ − W−)/∂t is calculated for the unperturbed (intersect-

ing) branches of the spectrum. In our case, ∂(W+ − W−)/∂t =
2υF |eE| and the probability of the transition is

PLZ = exp
(−πh̄υF k2

y

/ |eE|). (3)

In a general case, within the framework of the Landau-Zener
theory the probability of the transition is found by the Wentzel-
Kramers-Brillouin (WKB) method as an asymptotic estimate.
At the same time, in [28] the probability of transition (3)
was found by reducing the Dirac equation to the equation for a
parabolic cylinder, for which the WKB estimate coincides with
the result of the exact solution. We will assess the characteristic
time of the transition and the characteristic size of the region
in the momentum space, where the Landau-Zener transitions
are significant. It is natural to define the characteristic size
of the transition region along the ky axis by the relation

δky = ∫ +∞
−∞ PLZdky =

√
eh̄−1υ−1

F E. The corresponding size
of δkx along the kx axis will be assessed by doubling the
minimal width of the energy gap �Wmin corresponding
to k2

x ≈ 3k2
y . Making use of |ky | ≈ δky/2, we obtain δkx ≈

δky

√
3/2 ≈ √

3eE/2h̄υF . With allowance for Eq. (2), the time
of the quasiparticle flight through the region of electron-hole
pair production in the phase space may be estimated to be
δtLZ ≈ h̄δkx/eE ≈ √

h̄/eEυF .5 For the E ≈ 100–300 kV/cm
fields, this time is δtLZ ≈ 5 − 8 fs. Thus, for a typical THz
pulse duration of not less than 100 fs, the transitions may be
regarded as almost instantaneous.

Changes in the surface density of conduction electrons Nc

as a result of interband transitions are defined as

Ṅc =
∫ +∞

−∞
PLZ(	x;υ − 	x;c)dky, (4)

where 	x;c,υ = ηg|k̇x |nc,υ are the field-initiated particle fluxes
in the k space along the kx axis in the conduction and valence
bands, respectively. In the expressions for 	x;c,υ fluxes, nc,υ (k)
are the populations that should be specified at the boundary
determined above the region of the Landau-Zener transitions.
Two terms in the integrand in Eq. (4) correspond to the electron
transition from the valence to the conduction band and back;6

η = 1/4π2 is the 2D density of the states over the unit area, and
g = 4 is the degeneracy factor for graphene. By substituting
Eqs. (2) and (3) into (4), we obtain

Ṅc = π−2υ
−1/ 2
F |h̄−1eE|3/ 2(〈nυ〉 − 〈nc〉). (5)

In Eq. (5) the populations 〈nc,υ〉 correspond to the average
values for the quasiparticles pulled by the electric field to
the boundary of the Landau-Zener transitions in the k space
in accordance with the equation of motion (2). For 〈nυ〉 = 1
and 〈nc〉 = 0 (undoped system), Eq. (5) corresponds to the
Schwinger expression for the pair production rate [27,29].
Given that 〈nυ〉 = 〈nc〉, complete compensation of interband

5In the theory of transport processes the quantity
√

h̄/vF eE

determines the characteristic threshold time above which the process
of Schwinger pair production starts to affect the current-voltage
characteristic of a graphene sample [29,32].

6Strictly speaking, the 	x;c,v fluxes in Eq. (4) should be multiplied
by the Pauli blockade factor (1 − nv,c); however, all the ncnv products
decrease in this case.
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exchange processes follows from Eq. (5). At the initial moment
of time, this regime corresponds to the quasiparticle energies
being less than the Fermi energy; it is the reason why the
effect of pair production does not influence the current-voltage
characteristic of strongly doped graphene [30,31]. At the
same time, it follows from Eq. (2) that for the Fermi energy
|WF | = h̄υF kF the region of equal populations is eroded by
the field from the neighborhood of the Dirac cone in the
momentum space during the time δtF ≈ kF /|k̇x | = h̄kF /eE.
For the field amplitudes mentioned above and the typical
magnitude |WF | ≈ 0.2 eV, the time δtF does not exceed
several femtoseconds. This time is much shorter than the
indicated characteristic duration of the THz pulse; hence, for
such intense fields, we can set in Eq. (5) 〈nυ〉 − 〈nc〉 ≈ 1, even
for relatively heavy initial doping, and obtain

Nc ≈ π−2υ
−1/ 2
F |h̄−1eE|3/ 2�teff, (6)

where �teff is the effective duration of a pulse having the
amplitude E. The process of the initial population leaving the
Dirac point area is schematically shown in Fig. 1.

Let us take, for instance, the data for the THz-induced
carrier multiplication reported in [13]. Surface carrier density
in the experiments described in [13] was Np0 ≈ 6 × 1012 cm−2

at initial p-type doping and under the action of a THz pulse
having a duration �teff ≈ 100 fs increased up to Nmax1 ≈
15 × 1012 cm−2 for the amplitude E1 ≈ 170 kV/cm and up to
Nmax2 ≈ 30 × 1012 cm−2 for E2 ≈ 300 kV/cm. Making use
of the relationship between the density of the newly born
electrons in the conduction band Nc and the total carrier
density Nc = (Nmax − Np0)/2 and substituting the values of
Nc defined by (6), we will obtain Nmax1 ≈ 15.4 × 1012 cm−2

and Nmax2 ≈ 28 × 1012 cm−2. Thus, the estimate (6) gives a
fairly good description of the results presented in [13] even
when neglecting the decisive role of impact ionization.

III. NONEQUILIBRIUM ELECTRON DISTRIBUTION
INDUCED BY THZ PULSE

For applicability of relation (6), the characteristic times
δtLZ and δtF found above should be much less than the
typical relaxation times. According to [13,14,16–22], typical
scattering times of Dirac fermions in graphene τee may be tens
of femtoseconds, thermalization may range from a hundred
to several hundreds of femtoseconds, and cooling may be
fractions of picoseconds.7 The recombination time may exceed
the thermalization and cooling times severalfold. Anyhow,
even the “fastest” recombination occurs at least not faster than
thermalization and cooling (see [20]). These data about the
hierarchy of characteristic times of different processes allow
us to describe qualitatively the optical emission using a simple
model of “bi-Fermi” distribution [30] in the area of the k space
where |k| 	 δkx,y . In this model we set independent chemical
potentials for the conduction and valence bands:8

nc,υ = {exp[(±h̄υF k − μc,υ)/T ] + 1}−1. (7)

7When δtF ,δtLZ � τee, the following estimation seems to be
reasonable:〈nυ〉 − 〈nc〉 ≈ 1 − δtLZ/τee.

8In this model we suppose a population inversion in the region
h̄υF k < |μυ |. However, as shown in [20], such an inversion at times

It is worth noticing that Refs. [22,37] pointed to the
possibility of anisotropic relaxation when angular scattering
of hot carriers in the conduction band occurs slower than
energy thermalization.9 We will take this into consideration in
the optical emission calculation by introducing the anisotropy
parameter � � 1 for the distribution in the region 2υF k ∼ ω.
This parameter is the ratio of the characteristic angular
distribution width to 2π [see the Appendix, Eq. (A21)],
and � = 1 corresponds to the isotropic case. Within the
framework of the model of bi-Fermi distribution, the spectral
photon flux is given by Eq. (A21), which may be represented
in the spectral range h̄ω/2 	 T , μc, |μυ | in the form

Pω = �P0(ω,T ) exp

(
−μc − μυ

T

)
, (8)

where P0(ω,T ) ∝ ω2 exp(− h̄ω
T

) corresponds to the thermal
spectrum in its Wien’s part.

Let us find the relationship between the chemical potential
μc and the surface density Nc of the electrons that have passed
to the conduction band from the valence band under the action
of a THz pulse. For a degeneracy factor g = 4 and density of
states η = 1/4π2 we obtain∫ ∞

0

2xdx

exp
(
x − μc

T

) + 1
= π

(
h̄υF

T

)2

Nc. (9)

The chemical potential in the valence band is determined by
the surface density of vacancies Nh:∫ ∞

0

2xdx

exp
(
x + μυ

T

) + 1
= π

(
h̄υF

T

)2

Nh, (10)

where

Nh ≈ μ2
υ(0)

πh̄2υ2
F

+ Nc, (11)

And μυ(0) < 0 is the initial value of the chemical potential
for the р-doped degenerate system. Equations (9) and (10) are
valid when most of the fermions belong to the isotropic part
of the distribution function. Using expression (6) for Nc, we
obtain the final equations defining the chemical potentials:

− 2Li2
(−e

μc
T

) = bε3/ 2

−2Li2
(−e

μυ
T

) = bε3/ 2 + μ2
υ(0)

T 2
(12)

where Li2(−eζ ) = − ∫ ∞
0

xdx
exp(x−ζ )+1 is the second-order

polylogarithmic function (Fermi-Dirac integral) [38], b =√
h̄

πT 2 �teff(eυF ETHz;max)
3
2 , ε = ETHz/ETHz;max is the relative

magnitude of the field, ETHz;max = 300 kV/cm, and μυ(0) < 0
is the initial value of the chemical potential for a р-doped
degenerate system. For the degenerate system and for ε ≈ 1,
�teff ≈ 300 fs, μυ(0) ≈ −0.2 eV, we obtain μc ≈ 0.6 eV,
μυ ≈ −0.7 eV. In this case, only photons with energies above
1.5 eV correspond to the exponential dependence (8).

of the order of cooling time (fractions of picoseconds) is possible
even with the most pessimistic assessment of recombination time.

9In any case we are concerned with times significantly greater than
δtLZ and δtF .
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FIG. 2. Experimental setup: L1, L2, L3, lenses; λ/2, λ/2 plate;
LN, LiNbO3 crystal; PM1, PM2, PM3, parabolic mirrors; P1, P2,
THz polarizers; F, optical filters; PMT, photomultiplier. Inset: time
profile of the THz pulse.

IV. EXPERIMENTAL RESULTS

We measured the number of optical photons (for a wave-
length of 340–600 nm) emitted from the graphene sample un-
der the action of a THz pulse. A LiNbO3 crystal irradiated by
the Ti:sapphire femtosecond laser (Spitfire, Spectra-Physics)
was used as a source of THz radiation. The duration of the
optical pulses was 50 fs, its energy was 0.7 mJ, the central
wavelength was 795 nm, and the repetition rate was 700 Hz.
The technique of a tilted intensity front in a nonlinear LiNbO3

crystal was used to generate THz pulses [39]. The experimental
setup is shown in Fig. 2.

The generated THz radiation was collected and transported
by means of a telescope consisting of off-axis parabolic mirrors
PM1 and PM2 with effective focal lengths (EFLs) of 2.5
and 19 cm, respectively, and was focused on the sample by
the parabolic mirror PM3 (EFL = 5 cm). The diameter of
the THz spot on the sample was ≈500 μm (field amplitude
FWHM). The maximum electric field of the THz radiation was
300 kV/cm for a THz pulse energy of 0.4 μJ. The characteristic
time profile of THz pulses is presented in the inset in Fig. 2.
The THz polarizers P1 and P2 were used for THz attenuation.

In our experiments, we used a monolayer CVD graphene
on a borosilicate glass substrate [40]. As the graphene is
deposited on glass, substrate-induced inhomogeneity at the
graphene-oxide interface gives rise to p-type doping with
Fermi energy over 200 meV [13]. Optical emission from the
graphene was collected from the solid angle �o = 0.3 sr to
the photomultiplier (PMT, Hamamatsu R4220P) connected to
the photon counting system. A BG39 color filter was placed
in front of the PMT to eliminate the leakage 800-nm light.
A set of color filters placed before the PMT was used in
the experiment when the spectra of optical emission from
graphene were investigated.

For the THz field values over 100 kV/cm, optical emission
from graphene was detected in the 340–600-nm range. The
dependence of the number of graphene-emitted photons
accumulated during 6 × 104 laser pulses on the terahertz
field magnitude is plotted in Fig. 3. The rise in the optical
emission by nearly 3 orders of magnitude was observed with
an increase in ETHz by a factor of 2. The solid curves in Fig. 3
correspond to the ballistic ionization model (see Sec. III). No

FIG. 3. Number of photons emitted by the graphene sample as
a function of the incident terahertz field. The solid line is a fit
based on Eqs. (12) and (13) (ETHz = 300 kV/cm corresponds to
the dimensionless variable ε = 1). Inset: the same dependence on
a logarithmic scale.

optical emission was observed from the glass substrate without
graphene.

The spectrum of optical emission from graphene was
retrieved using a set of color filters, taking into consideration
the spectral response of our detection system and the spectral
characteristics of the color filters. The emission spectra for
values of the THz field of 300, 250, and 206 kV/cm are shown
in Fig. 4 (it is problematic to reliably retrieve the spectrum for

FIG. 4. Measured spectrum of THz-field-excited optical emis-
sion. Black rhombs indicate ETHz = 300 kV/cm, T = 0.25 eV; red
circles indicate ETHz = 250 kV/cm, T = 0.28 eV; and blue triangles
indicate ETHz = 206 kV/cm, T = 0.25 eV. The solid curves corre-
spond to the thermal spectrum in its Wien’s part, h̄ω 	 T .
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fields with smaller amplitudes because of the small number of
emitted photons).

The lowest photon energy in Fig. 4 corresponds approxi-
mately to the value from which exponential dependence (7)
should start, as determined in the previous section. The
solid curves presented in Fig. 4 were plotted assuming that
the spectral photon flux is P0(ω,T ) ∝ ω2 exp(−h̄ω/T ). The
temperature retrieved for the data given in Fig. 4 remains
almost unchanged (T = 0.25 − 0.28 eV) from the measure-
ment accuracy, while the optical emission increases several
tens of times. The effect of saturation of the dependence of
the temperature on the field magnitude may be connected to
the sharp decrease in the relaxation time of optical phonons
with increasing electron energy starting at about 0.2–0.25 eV
reported in [35,41].

V. INTERPRETATION OF EXPERIMENTAL
DATA AND DISCUSSION

As follows from the data presented in the previous section,
with the growth of the THz field amplitude from 200 to
300 kV/cm, the optical emission increases by several tens
of times, although the temperature remains unchanged. Such
a fast growth of emission intensity despite a nearly constant
temperature suggests that not only electron heating but also
the electron transition to the conduction band under the
action of a THz pulse are significant in this case. Indeed,
the spectral intensity of the gray-body radiation depends
only on its temperature and the absorption coefficient, in
accordance with Kirchhoff’s law [for the case of graphene,
see the Appendix, Eq. (A19)]. In the discussed range of the
photon energies (much greater than the Fermi energy) light
absorption in graphene is constant (≈2.3%). So the optical
radiation observed in our experiments cannot be, in principle,
interpreted as a radiation of some equilibrium system.

From Eq. (8), we obtain the total number of detected
photons:

Ndet(ε) = N0 exp

(
μc − μυ

T

)
. (13)

Under the condition of bε3/2 	 1, μ2
υ(0)/T 2, Eqs. (12) yield a

simple asymptotic dependence (μc − μυ)/T ≈ 2ε3/4
√

2b. To
calculate the constant N0 in Eq. (13) we take the expression
that follows from Eq. (A21):

N0 = (πα)ϒ�

(
�o

4π

)
�temAT �2

π2c2h̄
,

�2 =
∫

X(ω)ω2 exp

(
− h̄ω

T

)
h̄dω

T
. (14)

Expressions (14) correspond to the sum of photons of both
polarizations emitted into a relatively small solid angle �o in
the direction normal to the single layer of graphene during time
�tem (this time should, evidently, be chosen to be of the order
of the cooling time of quasiparticles). Here, πα = πe2/ch̄ ≈
0.023 is a standard coefficient of interband absorption in
graphene, ϒ = 60 × 103 is the total number of THz shots,
and A is the effective area of the emitting single layer. The
function X(ω) is the spectral efficiency of our detection system

accounting for PMT and color filter spectral sensitivity and
the influence of the dielectric substrate.10 Taking T = 0.2 eV
and numerically calculating �2 in Eqs. (14), we obtain �2 ≈
3 × 1024s−2. Note that for Ndet(r) ∝ exp{[ε(r)]3/4

√
2b} and

the characteristic spatial scale of field localization LTHz, the
effective area of the emission region is A ≈ L2

THz/2b.
Expressions (12) and (13) describe the relative dependence

of emission on the THz field amplitude quite well. Only in the
region of sufficiently weak fields ETHz/ETHz;max < 0.5 does
the difference of the theoretical curve from the experimental
data, evidently, indicate the appearance of the dependence of
the temperature T on the field (in this region the emission is
attenuated by about 2 orders of magnitude, as compared to the
emission at ETHz ≈ ETHz;max).

Agreement for absolute values (see Fig. 3) is attained
for the parameter values b = 16, μυ(0)/T ≈ 1, and N0 =
0.4. These parameters correspond, e.g., to the following
reasonable magnitudes: ETHz;max = 300 kV/cm, �o = 0.3 sr,
�teff ≈ �tem ≈ 400 fs, T = 0.2 eV, � = 0.2.

In our experiment, the maximal energy of the THz pulse
was approximately 0.4 μJ, and the radiated optical energy (in
the considered frequency range) corresponded to an efficiency
of about 10−9. It is interesting to compare our results with
the data from [35], where optical luminescence of graphene
irradiated by a 30-fs laser pulse (Ti:sapphire) was studied. The
energy efficiency, reported in [35], was also about 10−9 , but
relative to the absorbed (rather than incident) energy. Since
even the unsaturated absorption in a graphene monolayer is
lower than 2.3%, our experiment demonstrated much higher
efficiency than that in [35]. The probable reason is that THz-
induced interband transitions near the Dirac point appeared
to be more intense than resonant transitions in the optical
field. The characteristic dipole moment in the first case can
be estimated as eυF δtLZ, but in the second case it equals the
significantly smaller value eυF /ω.

A more detailed comparison of theory and experiment
demands kinetic calculations taking into account a complex
form of the THz pulse (see the inset in Fig. 2) and the
difference of the fermion distribution from the simple model
used above.11 We intend to carry out such calculations in the
near future. Nevertheless, we believe that the conclusion about
the determining impact of the Landau-Zener transitions on the
process of optical emission excitation is justified already on the
basis of the measurements and their interpretation presented
in this work.
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APPENDIX: SPONTANEOUS EMISSION
OF A GRAPHENE MONOLAYER

1. Basic equations

Consider massless Dirac fermions in the emission field
using the Hamiltonian of the system

Ĥ =
∑
ν,q

h̄ωq

(
ĉ†νq ĉνq + 1

2

)
+

∑
sk

Ws(k)â†
skâsk

+
∑
ss ′kk′

V̂ss ′kk′ â
†
skâs ′k′ . (A1)

Here, ĉ†νq and ĉνq are the operators of creation and annihilation
of Fock photon states |nνq〉 corresponding to wave vector q,
the subscript ν stands for photon polarization, and ω2

q = c2q2.
The fermions are described by the creation and annihilation
operators âsk and âsk corresponding to massless Dirac states
|k,s〉 [42]:

|k,s〉 = eikr

√
2A

(
s

eiθ(k)

)
, Ws(k) = sh̄υF k, (A2)

where A is the area of a monolayer lying in the xy

plane, k is the 2D wave vector of a quasiparticle, the

indices s = ±1 correspond to the eigenfunctions for the
conduction and valence bands, respectively, and θ (k) is the
angle between the quasimomentum and the x axis. Summation
over k in Eq. (A1) formally implies summation over spin states
and valleys.

In Eq. (A1) V̂ss ′kk′ is the matrix element of the interaction
operator [42], which in the case of a quantum field must depend
on the ĉ

†
νq and ĉνq operators:

V̂ = −1

c
ĵ Â, (A3)

where ĵ = −e υF σ̂ is the operator of the current, σ̂ = x0σ̂x +
y0σ̂y , σ̂x and σ̂y are the Pauli matrices, Â is the vector potential
operator

Â =
∑
ν,q

√
2πc2h̄

Vωq
· (eν ĉνqe

−iωq t+iqr + e∗
ν ĉ†νqe

iωq t−iqr ),

(A4)
and V is quantization volume. Let ν = S,P correspond to
standard S and P polarizations of photons; that is, the unit
vector eS lies in the monolayer plane, and the unit vector eP

lies in the plane formed by vector q and the normal to the
monolayer. The direction of vector q is specified by the angle
�q relative to the normal of the monolayer and by the angle
�q relative to the x axis in the xy plane. For such polarization
vectors, the case �q = 0 is degenerate: we can consider for
this case photons polarized along the x and y axes; that is, we
can take ν = x,y.

Expressions for the matrix elements V̂ss ′kk′ are obtained
taking into consideration the reasonable condition q � k. For
this approximation we will have

V̂+1+1kk′ ≈ e υF

∑
q

√
2πh̄

V ωq
[sin(�q − θ )( δk(k′+q⊥)ĉSqe

−iωq t + δk(k′−q⊥)ĉ
†
Sqe

iωq t )

+ cos�qcos(�q − θ )(δk(k′+q⊥)ĉP qe
−iωq t + δk(k′−q⊥)ĉ

†
P qe

iωq t )], (A5)

V̂+1−1kk′ ≈ i e υF

∑
q

√
2πh̄

V ωq
[cos(�q − θ)(δk(k′+q⊥)ĉSqe

−iωq t + δk(k′−q⊥)ĉ
†
Sqe

iωq t )

− cos�qsin(�q − θ)(δk(k′+q⊥)ĉP qe
−iωq t + δk(k′−q⊥)ĉ

†
P qe

iωq t )], (A6)

V̂−1−1kk′ = −V̂+1+1kk′ , V̂−1+1kk′ = −V̂+1−1kk′ , (A7)

where q⊥ is the vector component q in the plane of the
graphene monolayer: q⊥ = q|sin�q |.

2. Probability of interband spontaneous transition

Consider a spontaneous transition between the states
|k′, + 1〉 → |k, − 1〉 accompanied by photon emission with
ν-type polarization. For the probability of such a transition per
unit time wν we can right away use Fermi’s golden rule [43]:

wν = 2π

h̄

∫
d	f |Vν,fi|2δ(Wi − Wf − h̄ω). (A8)

The integration
∫

d	f in (A8) is done over all final states of
the system, i is the initial state, and h̄ω is the photon energy.
In this case we have Wi = h̄υF k′,Wf = −h̄υF k; the matrix
element Vν,fi is Vν,fi = 〈1νq |V̂−1+1kk′ |0νq〉, where |nνq〉 is the
corresponding Fock state, and we obtain

|VS,fi|2 = e2υ2
F cos2[�q − θ (k)]

2πh̄

V ωq
δk(k′−q⊥), (A9a)

|VP,fi|2 = e2υ2
F cos2�qsin2[�q − θ (k)]

2πh̄

V ωq
δk(k′−q⊥).

(A9b)
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The emitted photon frequency is determined by the condition
Wi − Wf = h̄ω. Taking into consideration the relations ω =
2υF (|k| + |k + q⊥|) and q = c/ω and the inequality q � k,
we obtain

ω ≈ 2υF k

1 + υF

c
sin�qcos[�q − θ (k)]

. (A10)

Further, with the expression for the density of states
of photons with given polarization in Eq. (A8) taken into
account, we have d	f = (2πc)−3V ω2dωd�, where d� =
sin�qd�qd�q is the element of the solid angle in the
direction of the photon wave vector q. The substitution of
Eqs. (A9a) and (A9b) into Eq. (A8) yields the expression for
the probability of spontaneous emission into a unit solid angle:

w�;S = e2υ2
F ω

2πh̄c3
cos2[�q − θ (k)], (A11a)

w�;P = e2υ2
F ω

2πh̄c3
cos2�qsin2[�q − θ (k)], (A11b)

where the emitted photon frequency is specified by rela-
tion (A10).

3. Summation over electron states

Let us sum expressions (A11a) and (A11b) over 2D electron
states: ∑

k

(· · · ) ⇒ gA

4π2

∫
∞

(· · · )d2k = gA

4π2

×
∫ 2π

0
dθ

∫ ∞

0
(· · · )kdk, (A12)

where g = 4 is the factor of degeneracy with respect to spin
states and valleys. Making use of the approximate relationω =
2υF k following from Eq. (A10), via Eqs. (A11a) and (A11b)
and Eq. (A12), we obtain an expression for spectral photon
fluxes Pω�;S,P :[

Pω�;S

Pω�;P

]
= Aω2

23π4c2
(πα)

∫ 2π

0

[
cos2(�q − θ )
cos2θqsin2(�q − θ)

]
×{nc(k,θ )[1 − nυ(k,θ )]}k=ω/ 2υF

dθ,

(A13)

where πα = πe2/ch̄ ≈ 0.023 is a standard coefficient of
interband absorption in graphene, nc,υ(k,θ ) = 〈â†

±1kâ±1k〉 are
average occupation numbers of photon states (populations),
and 1 − nυ is the Pauli blockade factor. For fermion distri-
butions isotropic with respect to angle θ , from Eq. (A13) it
follows that[

Pω�;S

Pω�;P

]
= Aω2

(2π )3c2

[
1

cos2θq

]
πα{nc(k)[1 − nυ(k)]}k=ω/ 2υF

.

(A14)

4. Emission of the equilibrium ensemble of quasiparticles

Consider the Fermi distribution

nc,υ =
[

exp

(±h̄kυF + μ

T

)
+ 1

]−1

. (A15)

The substitution of (A15) into (A14) yields[
Pω�;S(T )
Pω�;P (T )

]
=

[
1

cos2�q

]
Aω2

(2π )3c2

× πα[
exp

(
h̄ω/ 2+μ

T

) + 1
][

exp
(

h̄ω/ 2−μ

T

) + 1
] .

(A16)

To confirm the correctness of calculating luminescence we
will show that Eq. (A16) corresponds to the Kirchhoff law.
Indeed, following [42], we can readily obtain an expression
for monolayer optical thickness determined by interband
absorption for isotropic distributions nc,υ(k) at an arbitrary
value of �q :[

�S

�P

]
=

[
cos−1θq

cos θq

]
πα[nυ(k) − nc(k)]k=ω/ 2υF

(A17)

(for θq � 1 and nc = 0, nυ = 1 we obtain �S,P = πα). For
the equilibrium distribution (A15), from Eq. (A17) it follows
that[

�S(ω,T )
�P (ω,T )

]
=

[
cos−1�q

cos �q

]
πα

×
[
exp

(
h̄ω
T

) − 1
]

[
exp

(
h̄ω/ 2+μ

T

) + 1
][

exp
(

h̄ω/2−μ

T

) + 1
] .

(A18)

A comparison of Eqs. (A16) and (A18) gives

Pω�;S,P (T ) = �S,P (ω,T )A cos �qP0(ω,T ), (A19)

where P0(ω,T ) = ω2

(2π )3c2 [exp( h̄ω
T

) − 1]−1 is the spectral flux
of photons with fixed polarization through unit area in unit
solid angle [43]. The expression (A19) explicitly expresses
Kirchhoff’s law.

5. Spontaneous emission of bi-Fermi distribution

Let there occur in each band a distribution with its own
chemical potential

nc,υ =
[

exp

(±h̄kυF − μc,υ

T

)
+ 1

]−1

. (A20)

We will find the spectral photon flux into the lens placed above
the emitting area at an angle �q = 0 collecting photons of
both polarizations from a relatively small solid angle �o. We
consider Wien’s region of the spectrum (h̄ω/2 ∓ μc,υ 	 T )
and use expressions (A13) and (A20). We will qualitatively
allow for possible anisotropy of high-energy (2υFk ∼ ω)
carrier distribution assuming nc �= 0 in the sector −�θ/2 <

θ < �θ/2 to obtain

Pω ≈
(

�o

4π

)
�Aω2

π2c2
παexp

(
− h̄ω

T

)
exp

(
μc − μυ

T

)
, (A21)

where � � 1 is the anisotropy parameter. Within the frame-
work of the considered simple model � = �θ/2π .
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Instead of the above simplest model of anisotropic angular distribution, a standard method of Legendre polynomial expansion
may be used. Taking into account the first two terms of the Legendre series, under the condition nc � 1, we obtain the expression

nc =
[

exp

(
h̄kυF − μc

T

)
+ 1

]−1

[1 − λ(1 − cos θ )]. (A22)

It can be readily ascertained that the use of Eq. (A22) also leads to Eq. (A21), where 1 − λ = �.
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