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We investigate the quasiparticle and condensate dynamics in response to the terahertz optical pulses in the
weak spin-orbit-coupled s-wave superconducting semiconductor quantum wells by using the gauge-invariant
optical Bloch equations in the quasiparticle approximation. Specifically, in the Bloch equations, not only can the
microscopic description for the quasiparticle dynamics be realized, but also the dynamics of the condensate is
included, with the superfluid velocity and the effective chemical potential naturally incorporated. We reveal that
the superfluid velocity itself can contribute to the pump of quasiparticles (pump effect), with its rate of change
acting as the drive field to drive the quasiparticles (drive effect). We find that the oscillations of the Higgs mode
with twice the frequency of the optical field are contributed dominantly by the drive effect but not the pump
effect as long as the driven superconducting momentum is less than the Fermi momentum. This is in contrast to
the conclusion from the Liouville or Bloch equations in the literature, in which the drive effect on the anomalous
correlation is overlooked with only the pump effect considered. Furthermore, in the gauge-invariant optical
Bloch equations, the charge neutrality condition is consistently considered based on the two-component model
for the charge, in which the charge imbalance of quasiparticles can cause the fluctuation of the effective chemical
potential for the condensate. It is predicted that during the optical process, the quasiparticle charge imbalance can
be induced by both the pump and drive effects, leading to the fluctuation of the chemical potential. This fluctuation
of the chemical potential is further demonstrated to directly lead to a relaxation channel for the charge imbalance
even with the elastic scattering due to impurities. This is very different from the previous understanding that in
the isotropic s-wave superconductivity, the impurity scattering cannot cause any charge-imbalance relaxation.
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I. INTRODUCTION

In recent decades, the nonequilibrium property of super-
conductors has attracted much attention for providing new
understandings in superconductivity [1–8] and/or exploring
novel phases or regimes [9–14]. Among them, the optical
response plays an important role in both linear [15–19]
and nonlinear regimes [20–29]. The former has been well
established from the understanding of the optical conductivity
in the linear response of the superconducting state, which
sheds light on the determination of the pairing symmetry of
the superconducting order parameter [15–18]. The latter is
inspired by the recently developed terahertz (THz) technique,
whose frequency lies around the superconducting gap [20–29].
With an intense THz optical field, the superconductor can
be even excited to the states far away from the equilibrium,
opening a window to reveal the dynamical properties of both
the Bogoliubov quasiparticles and the condensate [20–31].

In the linear regime, in the dirty limit at zero temperature,
Mattis and Bardeen [15] revealed that the optical absorption
is realized by breaking the Cooper pairs into the quasielectron
and quasihole when the photon energy is larger than twice the
magnitude of the superconducting gap [16,17]. Nevertheless,
in the early-stage work [15], a physical optical conductivity
is established only for a specific gauge with transverse
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vector potential and zero scalar potential [15–17]. A gauge-
invariant description with charge conservation for the optical
conductivity tensor is later established by Nambu based on the
generalized Ward’s identity [32,33], in which the collective
excitation is revealed to cancel the unphysical longitudinal
current [16,17,19]. Furthermore, Ambegaokar and Kadanoff
[34] showed that in the long-wave limit, the collective mode
can be actually described as a state in which the supercon-
ducting phase of the order parameter varies periodically in
time and space [16,19,34–38]. Actually, without considering
the response of the order parameter to the optical field, the
absence of the charge conservation naturally arises because the
particle number is not a conserved quantity in the mean-field
description of the superconductor with a global U(1) symmetry
spontaneously broken [16,19,32,35,36].

When the photon energy is far below the superconducting
gap, a simple physical picture for the optical response can be
captured based on the two-fluid model, in which the optical
conductivity at finite frequency ω reads as [18,20–22,24]
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Here, ρn and ρs denote the normal-fluid and superfluid
densities in the equilibrium state, respectively; m∗ is the
effective mass of the electron; and τ represents the momentum
relaxation time. Based on Eq. (1), the optical absorption can
be well understood from the electric current driven by the
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optical field [15–18]. In the clean limit, the optical conductivity
is purely imaginary with the phase difference between the
induced current and the optical field being exactly π/2, and
hence no optical absorption is expected. Nevertheless, in the
dirty sample, the real part of the optical conductivity arises
due to the existence of the normal fluid, which contributes to
the electric current in phase to the optical field and, hence,
the optical absorption. Thus, in the pump-probe measurement,
after strongly excited by the pump field, the nonequilibrium
normal-fluid and superfluid densities can be estimated from
the optical response to the probe field with photon energy far
below the superconducting gap [20–22,24]. However, to the
best of our knowledge, a microscopic theoretical description
for the evolution of the normal fluid and superfluids from the
equilibrium state to the nonequilibrium ones is still lacking.

In the nonlinear regime, in which the superconducting
state can be markedly influenced by the optical field, the
experimental [25–29] and theoretical [13,14,39–50] studies
are still in progress. Very recently, it was reported in several
experiments in the film of the conventional superconducting
metal that the oscillations of the Higgs mode, i.e., the
fluctuation of the order-parameter magnitude, can be excited
by the intense THz field [25–29]. It is revealed that the
oscillation frequency of the Higgs mode is twice the frequency
of the THz field, no matter the photon energy is larger or
smaller than twice the magnitude of the superconducting gap
[28,29]. Moreover, a large THz third-harmonic generation was
reported when the photon energy is tuned to be resonant with
the superconducting gap [28,29]. Finally, it was discovered that
there exists a plateau for the Higgs mode after the THz pulse
in most situations, whose value increases with the increase
of the field intensity [26,27]. These observations indicate that
there exists strong optical absorption with the quasiparticles
considerably excited by the strong optical field [26–29].

These experimental findings have been theoretically clar-
ified based on the Liouville equation [39,40,43] or the
Bloch equation [28,29,42,44–47,49] derived in the Anderson
pseudospin representation [51] in the clean limit. Specifically,
the optical absorption in the clean limit is naturally understood
by the nonlinear term proportional to A2, with A standing
for the vector potential of the optical field. It is shown that
this nonlinear term contributes to the precessions between
the quasielectron and quasihole states [39,40], which directly
contribute to the excitation of the quasiparticles (pump effect)
[13,14,39,40,42–49]. Thus, the optical absorption is realized
in the clean limit due to this pump effect, from which the
Cooper pairs are broken into the quasielectrons and quasiholes
[20–29]. Furthermore, because the frequency of A2 is 2ω, the
pump effect contributes to the oscillation of the Higgs mode
with twice the frequency of the optical field [39,40,42–47,49].
Moreover, it is revealed that the Higgs mode can be resonant
with the optical field when the photon energy equals to the
superconducting gap, which is further shown to contribute to
the large third-harmonic generation [28,29,48].

However, there still exist several difficulties inherited in the
Liouville [39,40,43] or Bloch [42,44–47,49] equations used
in the literature. First, the anomalous correlation is calculated
between the two electrons with momenta k and −k, no matter
the optical field is slowly or rapidly varied. This means that
it is preconceived that no center-of-mass momentum q of the

Cooper pairs can be excited [39,40,42–47,49]. Nevertheless,
in the nonlinear regime, with a strong electric field applied,
a large supercurrent is expected to be induced, which should
arise from the center-of-mass momentum of the Cooper pairs.
It has been well understood that in the static situation, a large
q contributes to the Doppler shift in the energy spectra of
the elementary excitation, which can lead to the formation
of the blocking region with the anomalous correlation of the
Cooper pairs significantly suppressed [52–59]. Nevertheless,
the induction of the center-of-mass momentum for the Cooper
pairs and its further influence on the superconducting state
are absent in the description of the Liouville equation or the
Bloch equation in the Anderson pseudospin representation
[39,40,42–47,49]. In fact, in the Liouville equation, the
generalized coordinate, i.e., the momentum k, is treated to
be time independent or fixed, whereas the velocity field
v(k) = k − (e/c)A located at the generalized coordinate varies
with time. This is similar to the Euler description in the
fluid mechanics, in contrast to the Lagrangian description
with time-dependent generalized coordinate [60]. Thus, the
anomalous correlation is always described between k and
−k in the Liouville or Bloch equations used in the literature
[39,40,42–47,49].

Second, the scattering effect, which is inevitable in the dirty
superconducting metal [42,43], cannot be simply included in
the Liouville equation in the presence of the optical field [61].
Moreover, a simple inclusion of the elastic scattering with the
Boltzmann description [1,5] in the Liouville equation does
not influence the calculated results because the pump effect is
isotropic in the momentum space [39,40,42–49]. However, this
is unphysical because the normal fluid can still be scattered.
Finally, the gauge invariance [16,32,35] in the Liouville or the
Bloch equations used in the literature is not clearly addressed
[39,40,42–47,49]. On one hand, two quantities in the vector
potential, scalar potential, and superconducting phase are
simultaneously taken to be zero [16,32,35]. Specifically, with
the vector potential chosen, the resulted physical current is
shown to be proportional to A, which is not a gauge-invariant
physical quantity unless a transverse gauge for A is further
restricted [15,16]. On the other hand, from different choices
of gauge, different forms of the equation can be expected.
Specifically, with only the scalar potential, the A2 term
vanishes and the electric field contributes to the drive field,
whereas with only the superconducting phase q · r, its rate of
change can also contribute to a drive field [16,32,35,62].

In fact, as pointed out by Nambu [32], the absence of the
gauge invariance in the theoretical description is equivalent
to the breaking of the charge conservation [16,19,35,36].
By restoring the gauge invariance, in the linear regime,
Nambu revealed a collective excitation stimulated in the
optical process [32], which was further shown by Ambegaokar
and Kadanoff [34] to be described by a state with the
period variations in time and space for the superconducting
phase in the long-wave limit [16,19,34–38]. The temporal
and spatial variations of the superconducting phase can
further contribute to the effective chemical potential and
superconducting velocity [16,19,34–38]. Then, it is inspired
by this scheme [16,19,32,35,36] that with the gauge invariance
retained in the kinetic equation, the collective excitation can
also arise naturally [48]. Specifically, by noting that in the

155311-2



GAUGE-INVARIANT . . . . I. s-WAVE . . . PHYSICAL REVIEW B 96, 155311 (2017)

mean-field description based on the Bogoliubov–de Gennes
(BdG) Hamiltonian, only the dynamics of the quasiparticle
is considered. It has been suggested that the “condensate”
can respond to the dynamics of the quasiparticles from the
consideration of the gauge structure in superconductor [32],
with the charge conservation restored by the fluctuation of the
chemical potential [31,63–73].

One way to understand the interplay between the particle
charge and chemical potential is based on the two-component
model for the charge [1–4,63–66]. In the two-component
model, the electron charge is treated to be carried by the
quasiparticle and condensate, respectively. This can be easily
seen in the electrical injection process. In that process, the
injection of one electron with charge e into the conventional
superconductor can add a quasiparticle with charge e(u2

k −
v2

k) and one Cooper pair with charge 2ev2
k, respectively.

Here, uk and vk come from the Bogoliubov transformation
with u2

k + v2
k = 1, indicating the charge conservation in the

electrical injection process [63–65]. Thus, the fluctuation of
the quasiparticle charge is associated with the fluctuation of
the condensate density [1–4,63–66]. This is consistent with
the conjugacy relationship between the particle number and
superconducting phase [32,36].

Furthermore, in the dynamical process, the charges for the
quasiparticle and condensate can both be deviated from their
equilibrium values. This is referred to as the charge imbalance
[1–4,31,63–65,74,75], which has been measured for both the
quasiparticle [2,63,64,74,75] and condensate [23]. For the
quasiparticle, due to the momentum dependence of the charge,
its nonequilibrium distribution can lead to the charge imbal-
ance, whose creation and relaxation are intensively studied
in the electrical experiment [1,31,63–65,74,75]. It is so far
widely believed that for the isotropic s-wave superconductor,
the elastic scattering due to the impurity cannot cause the
relaxation of the charge imbalance [1,2,31,63,64]. This is
because there exists the coherence factor (ukuk′ − vkvk′) in
the scattering potential, where k and k′ are the initial and final
momenta during the scattering, due to which the elastic scat-
tering cannot exchange the electronlike and holelike quasipar-
ticles [1,2,31,63,64]. However, in that relaxation process, the
condensate is assumed to be in its equilibrium state, meaning
that the charge conservation or neutrality is not explicitly con-
sidered in the literature. Moreover, the correlation between the
quasielectron and quasihole is often neglected [1–4,31,64,65].
Thus, it is essential to check the influence of the condensate
on the charge-imbalance relaxation in the framework of
charge neutrality. Furthermore, although the charge imbalance
including its creation and relaxation is intensively studied in
the electrical experiment [1–4,31,63–65,74,75], it has yet been
well investigated in the optical process [23].

Recently, the proximity-induced superconductivity has
been realized in InAs [57,76,77] and GaAs [78–80] het-
erostructures. Thus, based on the well-developed techniques
in semiconductor optics [81–83], the superconducting semi-
conductor quantum wells (QWs) can provide an ideal platform
to study the optical response of superconductivity. Compared
to the film of the superconducting metal, the QWs can be
synthesized to be extremely clean. Furthermore, the mate-
rial parameters in the QWs, e.g., the electron density, the
strength of the spin-orbit coupling (SOC), and the interaction

strengths including the Coulomb, electron-phonon, and
electron-impurity interactions, can be easily tuned. Moreover,
in the QWs, the simple Fermi surface and exactly known
interaction forms can significantly reduce the difficulties in
the comparison between the theory and experiment. Finally,
the predictions revealed in the superconducting QWs can still
shed light on the optical response in the superconducting metal
even with complex Fermi surfaces.

In this work, we investigate the quasiparticle and conden-
sate dynamics in response to the THz optical pulses in the weak
spin-orbit-coupled s-wave superconducting semiconductor
QWs. The gauge-invariant optical Bloch equations in the
quasiparticle approximation are set up via the gauge-invariant
nonequilibrium Green function approach [58,81,84–88], in
which the gauge-invariant Green function with the Wilson
line [81,86,87,89] is constructed by using the gauge structure
revealed by Nambu [32]. In the optical Bloch equations, the
structure can be easily captured by a special gauge, in which
the superconducting phase is chosen to be zero among the
vector potential, scalar potential, and superconducting phase.
This gauge is referred to as the ps gauge here, with ps being the
superfluid momentum driven by the optical field. It is noted that
this superfluid momentum directly contributes to the center-
of-mass momentum of Cooper pairs. Furthermore, in the ps

gauge, not only can the microscopic description for the quasi-
particle dynamics be realized, but also the dynamics of the
condensate is included, with the superconducting velocity and
the effective chemical potential naturally incorporated. Then,
in the derived gauge-invariant optical Bloch equations, this
superconducting velocity ∝p2

s is shown to directly contribute
to the pump of the quasiparticles (pump effect), whose rate
of change ∂tps induces a drive field to drive the quasiparticle
(drive effect). We find that both the pump and drive effects
contribute to the oscillation of the Higgs mode with twice the
frequency of the optical field. However, it is shown that the
contribution from the drive effect to the excitation of Higgs
mode is dominant as long as the superconducting momentum
ps is smaller than the Fermi momentum kF , thanks to the
efficient suppression of the pump effect by the Pauli blocking.
This is in sharp contrast to the results from the Liouville
[39,40,43] or Bloch [42,44–47,49] equations in the literature,
where only the pump effect is considered and the effects of the
center-of-mass momentum on the superconducting state are
overlooked. The influence of the electron-impurity scattering is
also addressed, which is shown to further suppress the Cooper
pairing on the basis of the drive effect.

The physical picture for the suppression of the anomalous
correlation of Cooper pairs by the optical field can be
understood as follows. Thanks to the drive of the optical
field, the electron states are drifted, obtaining exactly the
center-of-mass momentum ps in the impurity-free situation.
The drift states of electrons are schematically presented in
Fig. 1 with the Fermi surface labeled by the red chain curve.
In Fig. 1, without loss of generality, the superconducting
momentum is taken to be along the x̂ direction, i.e., ps = ps x̂,
with ps < 0. It can be seen that with the drift of the electron
states, a blue region labeled by “B” arises, in which the
electrons deviate from their equilibrium states. Actually, these
electrons are directly excited to be the quasiparticles, whose
population can be close to one [52–55,58,59]. By using
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FIG. 1. Schematic of the electron drift states in response to
the optical field, with the Fermi surface labeled by the red chain
curve. Here, the superconducting momentum ps = ps x̂ with ps < 0.
With the drift of the electron states, a blue region labeled by “B”
arises, in which the electrons deviate from their equilibrium states.
Actually, these electrons are directly excited to be the quasiparticles,
whose population can be close to one [52–55,58,59]. By using the
terminology in the FFLO state [52–54], this blue region populated by
the quasiparticles is referred to as the blocking region. Furthermore,
due to the induction of the center-of-mass momentum for the Cooper
pairs by the applied optical field, the two electrons with momenta
k + ps and −k + ps are paired together. Nevertheless, once the
electrons are excited in the blocking region, they no longer participate
in the Cooper pairing [52–55,58,59]. For instance, the electron labeled
by “N” cannot pair with its corresponding one labeled by “M” in
the blocking region, which has been excited to be the quasiparticle.
Accordingly, the anomalous correlation is directly suppressed due to
the drift of the electron states.

the terminology in the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) state [52–54], this blue region populated by the
quasiparticles is referred to as the blocking region.

Furthermore, it is noted that the applied optical field breaks
the time-reversal symmetry. Thus, the paired electrons do
not necessarily come from two time-reversal partners with
momenta k and −k. On the contrary, due to the induction
of the center-of-mass momentum for the Cooper pairs by
the applied optical field, the two electrons with momenta
k + ps and −k + ps are paired together. Nevertheless, once
the electrons are excited in the blocking region, they no
longer participate in the Cooper pairing [52–55,58,59]. One
typical example is shown in Fig. 1, in which the electron
labeled by “N” cannot pair with its old partner labeled by
“M” in the blocking region, which has been excited to be the
quasiparticle. Consequently, the anomalous correlation in the
blocking region is significantly suppressed, directly leading
to the suppression of the magnitude of the order parameter
[54,58,59]. This is responsible for the oscillation of the Higgs
mode. Nevertheless, at high frequency, this oscillation is
suppressed due to the suppression of the drift effect and hence
the range of the blocking region. This picture is consistent
with the static case when the center-of-mass momentum of the
Cooper pairs emerges due to either the spontaneous symmetry
breaking [52–54] or the supercurrent [55,58,59].

In the derived optical Bloch equations, the charge-neutrality
condition is consistently considered based on the two-

component model for the charge, in which the induction of the
charge imbalance of quasiparticles can cause the fluctuation of
the condensate chemical potential [1–4,31,63–65]. We predict
that during the optical process, the charge imbalance can be
created by both the pump and drive effects, with the former
arising from the ac Stark effect and the latter coming from the
breaking of Cooper pairs by the electrical field. The induction
of the charge imbalance directly leads to the fluctuation of
the chemical potential. This fluctuation is further found to
directly provide a relaxation channel for the charge imbalance
even with the elastic scattering due to impurities. This is in
contrast to the previous understanding that in the isotropic
s-wave superconductivity, the impurity scattering cannot cause
any charge-imbalance relaxation [2,31,63,64]. Specifically, we
reveal that when the momentum scattering is weak (strong),
the charge-imbalance relaxation is enhanced (suppressed) by
the momentum scattering.

We demonstrate that the fluctuation of the condensate chem-
ical potential can first induce the quasiparticle correlation be-
tween the quasielectron and quasihole, which then provides the
charge-imbalance relaxation channel for the quasiparticle pop-
ulations in the presence of the elastic momentum scattering. In
the previous works, it was revealed that in the presence of the
impurities, the charge-imbalance relaxation is induced by the
direct scattering of quasiparticles between the electronlike and
holelike branches [2,31,63,64], during which the quasiparticle
number is conserved. Nevertheless, this is demonstrated
to be forbidden in the isotropic s-wave superconductors
[2,31,63,64]. Differing from this charge-imbalance relaxation
channel [2,31,63,64], in this work, the charge-imbalance
relaxation is actually caused by the direct annihilation of the
quasiparticles in the quasielectron and quasihole bands, in
which the quasiparticle-number conservation is broken. These
two charge-imbalance relaxation channels are schematically
shown in Fig. 2, labeled by “©1 ” and “©2 ,” respectively.
Specifically, process ©1 represents the direct scattering of
quasiparticles between the electronlike and holelike branches.
Whereas in process ©2 , the quasielectron and quasihole, la-
beled by “M” and “N,” become correlated due to the fluctuation
of the effective chemical potential, which then annihilate into
one Cooper pair due to the momentum scattering.

Actually, it is overlooked in the previous studies
[2,31,63,64] that the nonequilibrium effective chemical poten-
tial itself can induce the precession between the quasielectron
and quasihole states and hence the quasiparticle correlation
[2,31,63,64]. The quasiparticle correlation is crucial to induce
the quasiparticle-number fluctuation. As addressed in our
previous work [58], the induction of the quasiparticle cor-
relation is related to the process of the condensation with two
quasiparticles binding into one Cooper pair in the condensate,
or vice versa [64,90,91]. These processes can directly cause
the annihilation of the extra quasiparticles in the quasielectron
or quasihole bands, inducing the charge-imbalance relaxation
for the quasiparticles. Meanwhile, with the condensation
or breaking of the Cooper pairs in the condensate, the
fluctuation of the effective chemical potential is also induced.
If only the induction of the quasiparticle correlation was not
influenced by the momentum scattering, the charge-imbalance
relaxation rate would be proportional to the electron-impurity
scattering strength. Nevertheless, it is further revealed that the
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FIG. 2. Schematic of the charge-imbalance relaxation channels.
The upper and lower bands, plotted by the black solid and dashed
curves, represent the quasielectron and quasihole bands, respectively.
In the quasielectron (quasihole) band, the green (gray) and yellow
(orange) regions denote the electronlike (holelike) and holelike
(electronlike) quasielectrons (quasiholes), respectively. One sees that
the quasielectron number in the electronlike branch is larger than the
one in the holelike branch. In this situation, the charge imbalance
is created with net negative charges. The two charge-imbalance
relaxation channels labeled by “©1 ” and “©2 ” can be understood
as follows. Process ©1 has been addressed in the previous works,
representing the direct scattering of quasiparticles between the
electronlike and holelike branches, which is actually forbidden in
the elastic scattering process in the isotropic s-wave superconductor
[2,31,63,64]. In process ©2 , the quasielectron and quasihole, labeled
by “M” and “N,” become correlated due to the fluctuation of the
effective chemical potential, which then annihilate into one Cooper
pair due to the momentum scattering. Here, one notes that the
momenta of the correlated quasielectron (“M”) and quasihole (“N”)
are the same, in consistent with the Bogoliubov transformation
[refer to Eq. (28) in the main text]. Thus, the annihilation of extra
quasiparticles directly leads to the charge-imbalance relaxation.

induction of the quasiparticle correlation can be suppressed
by the impurity scattering. Thus, the competition between
the relaxation channels due to the quasiparticle correlation
and population leads to the nonmonotonic dependence on the
momentum scattering for the charge-imbalance relaxation.

This paper is organized as follows. We first present the
framework in the s-wave superconducting semiconductor
QWs in Sec. II. Specifically, we present the Hamiltonian in
Sec. II A; then in Sec. II B, the optical Bloch equations are
derived via the gauge-invariant nonequilibrium Green function
approach. The numerical results are presented in Sec. III. We
conclude and discuss in Sec. IV.

II. MODEL AND OPTICAL BLOCH EQUATIONS

In this section, we investigate the optical response to the
THz pulses in the s-wave superconducting QWs, which can
be realized in the GaAs QWs in proximity to an s-wave
superconductor. In this work, we focus on the weak SOC
limit, i.e., the SOC energy is much smaller than the kinetic
energy of the electron, whose influence on the quasiparticle and
condensate dynamics is marginal and hence can be neglected.

The situation in the strong SOC limit is studied in another
work in this series, in which the role of the SOC on the
quasiparticle and condensate dynamics is studied in detail
[92]. We first present the Hamiltonian, in which the gauge
structure is emphasized (Sec. II A). Then, the optical Bloch
equations via the nonequilibrium Green function method with
the generalized Kadanoff-Baym (GKB) ansatz are set up, in
which the gauge invariance is retained explicitly by using the
gauge-invariant Green function (Sec. II B) [58,81,85,86,88].

A. Hamiltonian and gauge structure

In the s-wave superconducting QWs with negligible SOC,
the Hamiltonian is composed by the free BdG Hamiltonian
H0 and the interaction Hamiltonian including the electron-
electron Coulomb, electron-phonon, and electron-impurity
interactions Hee, Hep, and Hei. Specifically, H0 is written as
(h̄ ≡ 1 throughout this paper)

H0 =
∫

dr
2

�†
(

ζ−
k (x) + eφ(x) |�|eiζ (x)

|�|e−iζ (x) −ζ+
k (x) − eφ(x)

)
�, (2)

in which ζ±
k (x) = [k ± e

c
A(x)]2

/(2m∗) − μ with x ≡ (t,r)
being the time-space point, A(x) denoting the vector potential,
and μ representing the chemical potential of the system;
�(x) = (ψ↑(x),ψ†

↓(x))T is the particle field operator in the
Nambu space; φ(x) denotes the scalar potential; � and ζ (x)
stand for the s-wave order parameter and the superconducting
phase. The electron-electron, electron-phonon, and electron-
impurity interactions are written as

Hee =
∫

dr dr′

2
U (r − r′)[�†(r)τ3�(r)][�†(r′)τ3�(r′)], (3)

Hep = 1

2

∫
dr dr′gλ(r − r′)�†(r)τ3�(r)χ (r′), (4)

Hei = 1

2

∫
dr �†(r)V (r)τ3�(r), (5)

respectively. Here, τ ≡ (τ1,τ2,τ3) represent the Pauli matrices
in the Nambu space; U (r) and V (r) denote the screened
Coulomb potentials whose expressions have been derived
in Ref. [93]; χ (r) is the phonon field operator; and gλ(r −
r′) stand for the electron-phonon interactions due to the
deformation potential in the LA branch and piezoelectric
coupling including LA and TA branches, with λ denoting
the corresponding phonon branch [94,95]. Their Fourier
components gλ(p) are explicitly given in Refs. [94,95].

The gauge structure in the s-wave superconductivity was
first revealed by Nambu [32,35,62]. By performing the gauge
transformation, i.e.,

�(x) → eiτ3�(x)/2�(x), (6)

the gauge invariance of the BdG Hamiltonian [Eq. (2)] requires
the vector potential, scalar potential, and superconducting
phase transforming as [32,35,62]

A(x) → A(x) + (c/2e)∇�(x), (7)

φ(x) → φ(x) − (1/2e)∂t�(x), (8)

ζ (x) → ζ (x) + �(x). (9)
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From Eqs. (7)–(9), one can construct the gauge-invariant
physical quantities [32,35,62]

ps(x) = (1/2)∇ζ (x) − (e/c)A(x), (10)

μeff(x) = (1/2)∂t ζ (x) + eφ(x), (11)

which represent the superconducting momentum and effective
chemical potential. It is noted that the above two gauge-
invariant quantities are related by the acceleration relation
[32,35,62]

∂tps = ∇μeff + eE, (12)

which is valid under any circumstances. Thus, with an optical
field applied to the superconducting system, Eq. (12) shows
that in the homogeneous limit, a time-dependent superconduct-
ing momentum can be induced, which is always a transverse
physical quantity in the presence of the optical field [15,32].

B. Optical Bloch equations

In this section, we derive the optical Bloch equations in the
s-wave superconducting QWs via the nonequilibrium Green
function method with the GKB ansatz [58,81,85,96]. From
Sec. II A, one notices that there exists a nontrivial gauge
structure in the BdG Hamiltonian. To account for this gauge
structure, the gauge-invariant Green function is used to obtain
the gauge-invariant kinetic equations [81,86,88].

1. Gauge-invariant Green function

The optical Bloch equations can be constructed from the
“lesser” Green function G<

12 ≡ i〈�†
2�1〉, in which 1 ≡ x1 =

(t1,r1) represents the time-space point and 〈. . . 〉 denotes the
ensemble average [58,81,96]. With the gauge transforma-
tion in Eq. (6), the “lesser” Green function transforms as
G<

12 → eiτ3�(x1)/2G<
12e

−iτ3�(x2)/2. As in the kinetic equations
in the quasiparticle approximation [81], only the center-of-
mass coordinates are retained, the gauge structure cannot be
easily realized in the kinetic equations constructed from G<

12
[81,86]. Nevertheless, the gauge invariance can be retained by
introducing the Wilson line to construct the gauge-invariant
Green function [81,84,86,87,89], which is constructed as

G̃<
12 = Pe

−ie
∫ R

x1
Aj dxj τ3G<

12e
−ie

∫ x2
R Aj dxj τ3 . (13)

In Eq. (13), Ajdxj ≡ φ dt − (1/c)A · dr, R ≡ (R,T ) =
((r1 + r2)/2,(t1 + t2)/2) are the center-of-mass coordinates,
and “P ” indicates that the line integral is path depen-
dent. Then, by the gauge transformation in Eq. (6), the
gauge-invariant Green function is transformed as G̃<

12 →
eiτ3�(R)/2G̃<

12e
−iτ3�(R)/2, in which the transformed phase only

depends on the center-of-mass coordinates.
Finally, by choosing the path to be the straight line

connecting x1 and x2 [81,86], the gauge-invariant Green
function reads as

G̃<
12 = exp

[
ie

∫ 1
2

0
dλ Aj (T + λτ,R + λr)xj τ3

]
G<

12

× exp

[
ie

∫ 0

− 1
2

dλ Aj (T + λτ,R + λr)xj τ3

]
, (14)

in which x = (τ,r) = (t1 − t2,r1 − r2) are the relative coordi-
nates.

2. Derivation on the optical Bloch equations

In this part, we derive the optical Bloch equations in the
s-wave superconducting QWs, with special attention paid
to the gauge structure. Accordingly, we do not specify any
gauge in the beginning of the derivation, and finally choose
a special gauge for the convenience of physical analysis
and numerical calculation. Thus, in the derived equations,
there exist A(r,t), φ(r,t), and ζ (r,t), which are not physical
quantities.

We begin from the two Dyson equations [58,81,96]

i∂t1G
<
12 − Hk1G

<
12 =

∫
d3

(
�R

13G
<
32 + �<

13G
A
32

)
, (15)

−i∂t2G
<
12 − G<

12

←
H k2= −

∫
d3

(
GR

13�
<
32 + G<

13�
A
32

)
, (16)

in which “R” and “A” label the retarded and advanced
Green functions, and � are the self-energies contributed by
the electron-electron, electron-phonon, and electron-impurity
interactions [58,81,96]. In Eqs. (15) and (16),

Hk1 =

⎛
⎜⎝

(k1− e
c

A1)2

2m∗ − μ + eφ1 |�|eiζ1

|�|e−iζ1 − (k1+ e
c

A1)2

2m∗ + μ − eφ1

⎞
⎟⎠
(17)

and

Hk2 =

⎛
⎜⎝

(k2+ e
c

A2)2

2m∗ − μ + eφ2 |�|eiζ2

|�|e−iζ2 − (k2− e
c

A2)2

2m∗ + μ − eφ2

⎞
⎟⎠.

(18)

We first present the derivation of the free terms in the kinetic
equations including the coherent, pump, drive, and diffusion
terms, in which the gauge-invariant scheme is used. Specifi-
cally, from the left-hand side of Eqs. (15) and (16), one obtains
the equations for the gauge-invariant Green function G̃<

12.
Then, by using the gradient expansion, the kinetic equations
are derived from the Fourier component of the gauge-invariant
Green function G̃(k,ω; R,T ) = ∫

dr dτ eiωτ−ik·rG̃<
12. Finally,

after the integration over the frequency, one obtains the optical
Bloch equations for the 2 × 2 density matrix in the Nambu
space

ρ̃k(R,T ) =
∫

dω

2π
G̃(k,ω; R,T ), (19)

whose diagonal terms represent the distributions of electron
and hole, and off-diagonal terms denote the anomalous
correlations. Finally, the optical kinetic equations are written
as (a more detailed derivation for the kinetic equations can be
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found in our previous work [58])

∂ρ̃k

∂T
+ i

[(
k2

2m∗ − μ + eφ

)
τ3,ρ̃k

]
+ i

[(
0 |�|eiζ (R)

|�|e−iζ (R) 0

)
,ρ̃k

]
+ i

[
1

2m∗

(
e

c
A

)2

τ3,ρ̃k

]
+ 1

2

{
eEτ3,

∂ρ̃k

∂k

}

− i

[
1

8m∗ τ3,
∂2ρ̃k

∂R2

]
+ 1

2

{
k
m∗ τ3,

∂ρ̃k

∂R

}
+

[
eA

2m∗c
τ3,

∂ρ̃k

∂R
τ3

]
+

[
e

4m∗c
∇ · Aτ3,ρ̃kτ3

]
= ∂ρ̃k

∂t

∣∣∣∣
HF

+ ∂ρ̃k

∂t

∣∣∣∣
scat

, (20)

with E = −∇Rφ − (1/c)∂T A. Here, [A,B] = AB − BA and
{A,B} = AB + BA represent the commutator and anticom-
mutator, respectively. It is noted that in the equation, the
gradient expansion has been performed to the second order
in R, i.e., the sixth term on the left-hand side in Eq. (20),
to retain the gauge-invariance structure in the optical kinetic
equations.

In Eq. (20), on the left-hand side, the second and third
terms represent the coherent terms contributed by the kinetic
energy and the order parameter, respectively. The fourth
term describes the pump term, as addressed in the Liouville
equation in the literature [13,14,39,40,42–49]. One finds that
the presence of the anomalous correlation makes it possible
for the nonlinear term of the vector potential to induce the
precession between the electron and hole in the Nambu
space [13,14,39,40,42–49]. The fifth term is the drive term,
which can directly induce the center-of-mass momentum of
the Cooper pairs [Eq. (12)] [16,32,35]. The existence of the
drive term is natural because the electron and hole in the
Nambu space can experience opposite electrical field due
to the opposite charges carried by them [58]. The diffusion
terms are contributed by the sixth to the ninth terms. On the
right-hand side of the equation, ∂t ρ̃k|HF and ∂t ρ̃k|scat represent
the Hartree-Fock (HF) term contributed by the Coulomb
interaction and scattering term due to the electron-impurity and
electron-phonon interactions, which are derived from the right-
hand sides of Eqs. (15) and (16). The gauge-invariant versions
of the scattering terms are complex [81,86,88]. Nevertheless,
these terms can be approximated by the ones without gauge-
invariant treatments as long as the applied field is not very
strong with the driven center-of-mass momentum of the system
being much smaller than the Fermi momentum kF [62,81,88].
In this situation, the energy spectra are not significantly
disturbed. The gauge structure of Eq. (20) is then checked
by the gauge transformation ρ̃k → eiτ3�(R)/2ρ̃ke

−iτ3�(R)/2.
The same gauge structures as Eqs. (7)–(9) are obtained for
the vector potential, scalar potential, and superconducting
phase.

For the convenience of the physical analysis and numerical
calculation, a specific gauge is chosen. It is noted that generally
one cannot choose two quantities in the vector potential, scalar
potential, and superconducting phase to be zero. Nevertheless,
in the Liouville and Bloch equations used in the literature, both
the scalar potential and superconducting phase are taken to be
zero [13,14,39,40,42–49]. Here, we choose a special gauge
referred to as the ps gauge, in which the superconducting
phase ζ is zero [35,97]. This can be realized by the gauge
transformation ρ̃k → e−iτ3ζ (R)/2ρ̃ke

iτ3ζ (R)/2 ≡ ρk in Eq. (20).
Then, by using the definition of the superconducting momen-
tum [Eq. (10)] and effective chemical potential [Eq. (11)], the

optical Bloch equations become

∂ρk

∂T
+ i

[(
k2

2m∗ − �

)
τ3,ρk

]
+ i

[(
0 |�|

|�| 0

)
,ρk

]

+ i

[
p2

s

2m∗ τ3,ρk

]
+ 1

2

{(
∂ps

∂T
− ∇Rμeff

)
τ3,

∂ρk

∂k

}

+ 1

2

{
k
m∗ τ3,

∂ρk

∂R

}
− i

[
τ3

8m∗ ,
∂2ρk

∂R2

]
−

[
ps

2m∗ τ3,
∂ρk

∂R
τ3

]

−
[

1

4m∗ ∇R · psτ3,ρkτ3

]
= ∂ρk

∂t

∣∣∣∣
HF

+ ∂ρk

∂t

∣∣∣∣
scat

, (21)

where � = μ − μeff is the total chemical potential in the
system including the contribution from the rate of change of
the superconducting phase.

It is noted that in Eq. (21), the electric force eE is replaced
by ∂T ps − ∇Rμeff according to the acceleration relation
[Eq. (12)]. Accordingly, in Eq. (21), only the gauge-invariant
physical quantities ps and μeff appear. In fact, in the gauge-
invariant framework, from any specific gauge at the beginning
of the derivation, one can obtain Eq. (21) with the existence of
both the pump and drive terms [81]. Moreover, in Eq. (21), with
ps and μeff describing the kinetics of the condensate, Eq. (21)
not only describes the dynamics of the quasiparticle, but also
includes the influence of the condensate. This is consistent
with the two-component description for the charge, in which
there exists interplay between the quasiparticle and condensate
[1–4,31,63–65].

When considering the optical excitation by the THz
pulses in the superconductor, Eq. (21) can be significantly
simplified. Often the spatial dependence in the optical field
can be neglected, and hence Eq. (21) can be solved in the
homogeneous limit. Specifically, with �, ps , and ρk being
independent on R, the optical Bloch equations [Eq. (21)] are
reduced to

∂ρk

∂T
+ i

[(
k2

2m∗ − �

)
τ3,ρk

]
+ i

[(
0 |�|

|�| 0

)
,ρk

]

+ i

[
p2

s

2m∗ τ3,ρk

]
+ 1

2

{
∂ps

∂T
τ3,

∂ρk

∂k

}
= ∂ρk

∂t

∣∣∣∣
HF

+ ∂ρk

∂t

∣∣∣∣
scat

.

(22)

It is addressed that Eq. (22) is different from the Liouville
[39,40,43] or Bloch [28,29,42,44–47,49] equations used in
the literature in several aspects. First, there exists not only
the pump term but also the drive term in our derived
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optical Bloch equations. This is in contrast to the conclusion
from the Liouville [39,40,43] or Bloch [28,29,42,44–47,49]
equations in the literature, in which the drive effect on the
anomalous correlation is overlooked with only the pump effect
considered. Actually, here, the momenta of the two electrons
participating in the anomalous correlation are no longer k
and −k during the evolution. This is because in the optical
kinetic equation here, similar to the Boltzmann equation
[5,71–73,81,98], the Lagrangian description is used, in which
the generalized coordinate evolves with time [60]. Thus,
with the anomalous correlation represented by 〈ck(T )ck′(T )〉
in which ck is the annihilation operator of the electron,
the center-of-mass momentum of the Cooper pairs ps =
[k(T ) + k′(T )]/2. Then, with ∂T k(T ) = ∂T k′(T ) = eE, the
acceleration relation in the homogeneous limit [Eq. (12)]
can be directly recovered. One sees that it is natural to
include the contribution of the center-of-mass momentum
in the anomalous correlation in our description. Second, in
the homogeneous limit, with ps and ∂T ps being transverse
in the presence of the optical field [Eq. (12)], the obtained
electrical current is perpendicular to the propagation direction
of the optical field. Moreover, the obtained physical quantities
are naturally gauge invariant due to the gauge invariance in
ps and ∂T ps . Furthermore, the effective chemical potential
naturally arises from the gauge-invariant treatment in the
derivation, which corresponds to the collective excitation,
evolving with time in the homogeneous limit [32,34,37,38].
Finally, the scattering term can be simply included in our
description which is similar to its setup in the Boltzmann
equation [5,71–73,81,98]. However, a simple inclusion of the
elastic scattering with the Boltzmann description [1,5] in the
Liouville equation does not influence the calculated results
because the pump effect is isotropic in the momentum space
[39,40,42–49]. The details of the scattering term are addressed
as follows.

In Eq. (22), ∂tρk|HF and ∂tρk|scat are derived in the GKB
ansatz [58,93]. For the HF term, it is written as

∂tρk|HF = i
∑

k′

[
Uk−k′τ3

(
ρk′ − ρ0

k′
)
τ3,ρk

]
. (23)

In Eq. (23), it is assumed that the renormalization energy
due to the Coulomb interaction has been included in the
free BdG Hamiltonian [Eq. (2)], and hence the density
matrix in the equilibrium state ρ0

k appears in the HF self-
energy. Accordingly, the fluctuation of the order parameter is
represented by

δ�(k) =
∑

k′
Uk−k′

(
ρk′,12 − ρ0

k,12

)
, (24)

which can be treated as the Higgs mode when the phase
fluctuation can be neglected [13,14,39,40,42–49].

For the scattering terms, both the electron-impurity
and electron-phonon interactions are considered, which are
written as

∂tρk|ei = −πni

∑
k′

∑
η1η2=±

|Vk−k′ |2δ(Ek′η1 − Ekη2

)
× [

τ3�k′η1τ3�kη2ρk − τ3ρk′�k′η1τ3�kη2 + H.c.
]
,

(25)

∂tρk|ep = −π
∑
k′kz

∑
η1η2=±

∣∣gλ
k−k′,kz

∣∣2
δ
(
Ek′η1 − Ekη2 + ωλ

k−k′
)

× (1 + nk−k′)
[
τ3ρ

>
k′ �k′η1τ3�kη2ρ

<
k

− τ3ρ
<
k′ �k′η1τ3�kη2ρ

>
k + H.c.

]
+ [

ωλ
k−k′ → −ωλ

k−k′ ; (1 + nk−k′) → nk−k′
]
. (26)

In Eq. (25), ni is the impurity density; Ek± = ±Ek in which

Ek =
√

ζ 2
k + |�|2 with ζk ≡ εk − μ = k2/(2m∗) − μ; �k± =

1/2 ± (1/2)U †
k τ3Uk represent the projection operators. Here,

Uk =
(

uk vk

−vk uk

)
(27)

is the unitary transformation matrix from the particle space
to the quasiparticle one with uk = √

1/2 + ζk/(2Ek) and
vk = √

1/2 − ζk/(2Ek). In Eq. (26), ωλ
k is the λ-branch–

phonon energy with momentum k; nk represents the phonon

distribution function; ρ
>
<
k ≡ ρk + 1/2 ± 1/2.

Finally, we point out that the structures of the pump, drive,
and scattering terms in Eq. (22) can be analyzed more clearly
in the quasiparticle space, in which the optical Bloch equations
are set up by the Bogoliubov transformation ρh

k = UkρkU
†

k .
These detailed analyses are presented in Appendix A.

3. Charge-neutrality condition

Equation (20) provides the microscopic description for the
quasiparticle dynamics. Moreover, in the ps gauge, both the
superfluid momentum ps and the effective chemical potential
μeff which are associated with the dynamics of the condensate
appear in Eq. (20), although ps and μeff still need to be
determined. Thus, the two-component picture naturally arises
in our description, in which there exists the interplay between
the quasiparticle and condensate [1–4,31,63–65]. Actually,
this can be directly seen from the modified Bogoliubov
transformation in which the creation and annihilation of the
Cooper-pair operators Ŝ and Ŝ† are added [64,90,91]:(

ck↑
Ŝc

†
−k↓

)
= Uk

(
αk↑
β
†
k↓

)
. (28)

Here, α
†
k↑ (β†

k↓) is the creation operator for the quasielectron

(quasihole). From Eq. (28), one has α
†
k↑ = ukc

†
k↑ − vkŜ

†c−k↓
and β

†
k↓ = vkck↑ + ukŜc

†
−k↓. By noting that Ŝ annihilates

one Cooper pair with charge 2e, one obtains that α
†
k↑ (β†

k↓)
corresponds to create a quasielectron (quasihole) with charge
e (−e). Furthermore, one observes that the creation of one
quasielectron and one quasihole is associated with the creation
and annihilation of the Cooper pair with probability v2

k
and u2

k, respectively. Thus, the net creation of the Cooper
pair is v2

k − u2
k, which is positive (negative) when |k| < kF

(|k| > kF ). Accordingly, when |k| < kF , both quasiparticles
and Cooper pairs are created, whereas when |k| > kF , the
quasiparticles are created by breaking Cooper pairs.

The above physical picture suggests that in the dynam-
ical process, to maintain the charge neutrality or charge
conservation, the Cooper pair condensate has to respond to
the dynamics of the quasiparticles [65,67–73]. That is to
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say, in the dynamical process, once the charge imbalance
for the quasiparticle is created, the chemical potential of
the condensate reacts to screen the extra charge due to the
charge imbalance. Hence, it is suggested that in Eq. (22),
the effective chemical potential μeff is determined from the
charge-neutrality condition, which actually has been used
in the dynamical problem in superconductivity [65,67–73].
Specifically, in the quasiparticle space, the particle number
with momentum k is expressed as

nk = 2v2
k + ζk

Ek

[
ρh

11(k) + ρh
11(−k)

] − �

Ek

[
ρh

12(k) + ρh
21(k)

]
,

(29)

with v2
k treated as the distribution function of the condensate

[65,67–73]. When the system is near zero temperature and
the equilibrium state, to keep charge neutrality, the chemical
potential for the condensate is suggested to be varied μ → �

[66,71–73]. Then, the time evolution of the effective chemical
potential can be obtained by solving the self-consistent
equation with the quasiparticle density matrix obtained from
Eq. (20) [66,71–73]:

∑
k

nk ≡ n0 =
∑

k

{
1 − εk − �√

(εk − �)2 + �2
+ ζk

Ek

[
ρh

11(k)

+ρh
11(−k)

] − �

Ek

[
ρh

12(k) + ρh
21(k)

]}
. (30)

Here, n0 is the total electron density. From Eq. (30), it
can be seen that not only the nonequilibrium quasielectron
and quasihole distributions, but also the correlation between
quasielectron and quasihole states contribute to the charge
imbalance.

The superfluid momentum ps can be obtained from Eq. (12)
in the homogeneous limit with the electrical field in the optical
pulse known. With the propagation direction of the optical field
assumed to be perpendicular to the QWs, i.e., the ẑ direction,
the direction of the electrical field is taken to be along the x̂
direction without loss of generality. Thus,

ps = (e/ω)E0x̂ sin(ωt) exp
[−t2

/(
2σ 2

t

)]
, (31)

∂tps ≈ eE0x̂ cos(ωt) exp
[−t2

/(
2σ 2

t

)]
. (32)

Here, E0 is the strength of the effective electrical field in the
superconductor [34] and σt represents the duration time of the
optical pulse. In the numerical calculation, −2.5σt � t � 5σt .

Finally, we address that Eqs. (22) and (30)–(32) provide
the consistent equations to solve the optical response to the
THz pulses. Here, the condensate is assumed to react to
the quasiparticles simultaneously due to the charge neutrality
[64,90,91]. In our previous work in the study of the quasipar-
ticle spin dynamics with small spin imbalances, it is assumed
that the condensation rate is slower than the spin relaxation
one and hence the framework with the quasiparticle-number
conservation is used [58]. Therefore, different assumptions
for the condensate dynamics can lead to different schemes.
Nevertheless, for the problem near the equilibrium, the induced
charge imbalance is expected to be small and these two
schemes can even give similar physical results.

III. NUMERICAL RESULTS

In this section, we present the numerical results by solving
the optical Bloch equations [Eqs. (22) and (30)–(32)] in
a specific material GaAs QW in proximity to an s-wave
superconductor. We numerically calculate the optical response
of the quasiparticle and condensate including the THz-field–
induced oscillations of the Higgs mode (Sec. III A) and
THz-field–induced charge imbalance (Sec. III B 1), in which
a charge-imbalance relaxation channel due to the elastic
momentum scattering is revealed (Sec. III B 2). All parameters
used in our computation are listed in Table I [99].

In Table I, for the material parameters, κ0 stands for the
relative dielectric constant; a denotes the well width; and
d is the mass density of the crystal. For the parameters
associated with the electron-phonon interaction, � denotes
the deformation potential; e14 represents the piezoelectric
constant; vsl and vst are the velocities of LA and TA
phonons, respectively [94,95]. Finally, Te is the environment
temperature.

With these parameters, we directly estimate the contribution
of the electron–ac-phonon interaction in the scattering term
at Te = 2 K, compared to the one of the electron-impurity
interaction with the typical impurity density ñi = 0.1n0. In
Eq. (26), at low temperature, nk ≈ 0. Thus, the electron–
ac-phonon interaction is approximately determined by its
strength

∑
kz

|gλ
k−k′,kz

|2. We explicitly calculate the electron–
ac-phonon interaction strength

∑
kz

|gλ
k−k′,kz

|2 due to the
deformation potential in the LA branch and piezoelectric
coupling including LA and TA branches, which are found
to be about three orders of magnitude smaller than ñi |Vk−k′ |2.
Thus, the electron–ac-phonon interaction is negligible in our
computation.

A. Excitations of Higgs mode

Recently, it was reported in several experiments in the
conventional superconducting metals that the Higgs mode
can be excited by the intense THz field, which oscillates
with twice the frequency of the THz field [25–29]. These
experiments also show that there exists plateau for the Higgs
mode after the THz pulse in most situations, whose value
increases with the increase of the field intensity [26,27].
Previously, the oscillation of the Higgs mode has been
explained by the pump effect from the Anderson pseudospin
picture, in which the drive effect on the superconducting state
is absent [13,14,39,40,42–47,49]. Here, we aim to distinguish
the contribution of the pump and drive effects to the evolution

TABLE I. Parameters used in the computation for GaAs QWs in
proximity to an s-wave superconductor [99].

m∗/m0 0.067 a(nm) 8
κ0 12.9 n0 (cm−2) 5 × 1011

σt (ps) 4 Te(K) 2
d(g/cm3) 5.31 vsl(m/s) 5290
�(eV) 8.5 vst (m/s) 2480
e14(109V/m) 1.41
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of the Higgs mode in GaAs QW in proximity to an s-wave
superconductor.

1. Different pump regimes

Before we present the numerical results, we first analyze
the behavior of the pump effect from a simplified model, from
which different regimes are divided according to the pump

strength. In the pump term in Eq. (22), p2
s

2m∗ = 1
4m∗ ( e

ωL
Ẽ0)

2
(1 −

cos 2ωt) with Ẽ0 ≡ E0 exp[−t2/(2σ 2
t )] slowly varying with

time. The analytical calculation is simplified for high optical
frequency ω, with which the rotation-wave approximation [81]

can be applied with p2
s

2m∗ ≈ 1
4m∗ ( e

ωL
Ẽ0)

2 ≡ η. In this situation,
in the free situation without the drive and HF terms, the optical
Bloch equations in the quasiparticle space read as [refer to
Eq. (A1)]

∂ρh
k

∂T
+ i

[(
Ek + ζk

Ek
η − �

Ek
η

− �
Ek

η −Ek − ζk
Ek

η

)
,ρh

k

]
= 0. (33)

With the initial state being the equilibrium distribution, the
population for the quasielectron is

ρh
k,11 = f 0

k +
[

1

2
− f 0

k

](
�η

EkEk

)2

(1 − cos 2EkT ). (34)

Here, f 0
k = {exp[Ek/(kBTe)] + 1}−1 represents the equilib-

rium distribution for the quasielectron with kB being the
Boltzmann constant; Ek =

√
(εk − μ + η)2 + �2, from which

it can be seen that η directly contributes to the ac Stark effect
in the energy spectrum [61,100].

According to the behavior of (EkEk)2, which is further
expressed as

(EkEk)2 ≡ F (k) = [(ζk + η/2)2 − (η2/4 − �2)]2 + �2η2,

(35)

one can separate different pump regimes. When η < 2�,
the minimum value of F (k) lies at ζk = 0, indicating that
the quasielectron distribution evolves around |k| = kF . This
regime with η < 2� is referred to as the weak-pump regime.
Whereas when η > 2�, the minimum values of F (k) are

FIG. 3. Temporal evolutions of the Higgs mode |δ�| with different pump frequencies of the THz pulse ω = � (a), 2� (b), and 4� (c),
respectively. Here, � = 0.8 meV and the electric-field strength E0 = 0.2 kV/cm. With this electric field, the superconducting momentum ps

is presented in (d) when ω = � and 2�. It can be seen that |ps | < 0.15kF when ω > �. In (a) and (b), it can be seen that without the pump
effect, the Higgs modes, plotted by the yellow dotted curves, coincide with the ones with both the pump and drive effects, represented by the
blue solid curves. Moreover, in (a), (b), and (c), it is found that there always exist plateaus after the THz pulse, which are suppressed with the
increase of the optical-field frequency. Finally, it is shown in (a) [or (b) and (c)] by the blue solid, red chain, and green dashed curves that with
the increase of the impurity density, the oscillation amplitude of the Higgs mode is suppressed and the amplitude of the plateau of the Higgs
mode increases.
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realized when ζk = −η/2 ±
√

η2/4 − �2, which is smaller
than zero. This indicates that during the pump process,
the quasielectron population mainly arises at |k| < kF and
hence the holelike quasielectrons are mainly pumped. This
regime with η > 2� is referred to as the strong-pump regime.
Actually, in the experiments, with � = 2.6 meV for the metal
NbN and ω = 2�, η ∼ 17.6 meV when the peak electric
field is 50 kV/cm, indicating that the experiments lie in the
strong-pump regime [26–29].

2. Weak-pump regime

We first focus on the weak-pump regime. In Figs. 3(a)–3(c),
the temporal evolutions of the Higgs mode |δ�| are plotted
in the clean (blue solid curves) and dirty (red chain and
green dashed curves) samples with different pump frequen-
cies of the optical field ω = �, 2�, and 4�, respectively
(� = 0.8 meV ≈ 1.15 THz). The electric-field strength E0 =
0.2 kV/cm. Thus, for ω = �, η = 0.18 meV is much smaller
than 2�, indicating that the system lies in the weak-pump
regime. With this electric-field strength, the temporal evolu-
tions of the superconducting momentum ps , which are driven
by the optical field [Eq. (31)], are presented in Fig. 3(d) with
ω = � (the red chain curve) and 2� (the blue solid curve),
respectively. It can be seen in Fig. 3(d) that when ω > �,
the induced supercurrents by the THz pulse are small in
magnitude with |ps | < 0.15kF . By comparing the oscillation
frequencies of the Higgs mode [Figs. 3(a)–3(c)] with the ones
of the supercurrent [Fig. 3(d)], one finds that the Higgs mode
oscillates with twice the frequency of the THz field when both
the pump and drive effects exist. Then, the contributions of

the pump and drive effects to the Higgs mode are compared
in Figs. 3(a) and 3(b) in the impurity-free situation. It can be
seen that without the pump effect, the Higgs modes, plotted by
the yellow dotted curves, coincide with the one with both the
pump and drive effects, represented by the blue solid curves.
This shows that the pump effect is marginal for the excitation
of Higgs mode in the weak-pump regime. Moreover, it is
found that there always exist plateaus for the Higgs mode after
the THz pulse, which are suppressed with the increase of the
optical-field frequency, as shown in Figs. 3(a)–3(c). Finally,
the role of the electron-impurity scattering is addressed. It
is shown in Fig. 3(a) [or 3(b) and 3(c)] by the blue solid,
red chain, and green dashed curves that with the increase of
the impurity density, the oscillation amplitude of the Higgs
mode is suppressed and the plateau value of the Higgs mode
increases. These rich features can be understood as follows.

We first address the role of the drive effect on the
anomalous correlation. It has been well investigated that in
the static case when the center-of-mass momentum q of
the Cooper pairs emerges, which can originate from the
spontaneous symmetry breaking, e.g., in the FFLO state
[52–54,101] or with a supercurrent [55,58,59], a blocking
region occupied by the quasiparticles can appear, in which the
anomalous correlation for the Cooper pair can be significantly
suppressed [52–55,58,59]. Then, it is expected that when the
time-dependent supercurrent emerges with the excitation of
the center-of-mass momentum of Cooper pairs, the blocking
region can be dynamically excited, in which the Cooper-pair
anomalous correlation is also suppressed. Specifically, in
Fig. 1, a comprehensive physical picture has been presented,
in which one finds that the driven blocking region, shown

FIG. 4. Quasielectron distributions ρh
k,11 in the momentum space at τ = −0.6, 0, and 0.6 ps in the clean [(a1), (a2), and (a3) with ni = 0]

and dirty [(b1), (b2), and (b3) with ni = 0.2n0] samples. ω = 2� with � = 0.8 meV. The electric-field strength E0 = 0.2 kV/cm, with which
ps ≈ 0.13kF , 0 and −0.13kF at τ = −0.6, 0, and 0.6 ps, respectively.
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by the blue region in crescent form, directly suppresses the
anomalous correlation between two electrons (labeled by “M”
and “N”). In our calculation, with the drive of the electron
and hole (particle space) in the opposite directions [refer to
τ3 in the drive term in Eq. (22)], the blocking region for the
quasiparticles surely appears, with typical examples presented
in Fig. 4 with E0 = 0.2 kV/cm at different times τ = −0.6,
0, and 0.6 ps, respectively.

In Figs. 4(a1), 4(a2), and 4(a3) when ni = 0, one sees that
when τ = −0.6 ps [Fig. 4(a1)] and 0.6 ps [Fig. 4(a3)] with
finite ps ≈ 0.13kF x̂ and −0.13kF x̂ [refer to Fig. 3(d)], the
blocking regions in the crescent shape appear, whose positions
are consistent with the sign of the center-of-mass momentum
ps of the Cooper pairs, whereas when τ = 0 ps [Fig. 4(a2)],
with zero center-of-mass momentum, the blocking region
tends to disappear, but there still exists significant quasiparticle
population. Furthermore, it is observed in Figs. 4(b1) and 4(a3)
that inside the blocking region, the quasielectron population is
close to one. In the blocking region, the anomalous correlation

C(k) = ukvk
(
ρh

k,11 − ρh
k,22

) + u2
kρ

h
k,12 − v2

kρ
h
k,21

≈ ukvk
(
ρh

k,11 − ρh
k,22

)
(36)

is significantly suppressed with ρh
k,11 � 1 and ρh

k,22 = 1 −
ρh

−k,11 � 1 [54,58]. Then, due to the suppression of the
anomalous correlation, from Eq. (24), the Higgs mode is signif-
icantly excited. Furthermore, the suppression of the anomalous
correlation does not depend on the sign of the center-of-
mass momentum of Cooper pairs. Accordingly, although the
center-of-mass momentum of Cooper pairs oscillates with the
frequency of the optical field, the Higgs mode originating from
the suppression of the anomalous correlation oscillates with
twice the frequency of the optical field. It is noted that in
the weak-pump regime, the quasielectrons are mainly pumped
around the Fermi surface in the absence of the drive effect,
whereas the blocking region also arises around the Fermi
surface but due to the drive effect. Thus, thanks to the Pauli
blocking effect, the emergence of the blocking region can
efficiently suppress the pump effect. Consequently, in the
weak-pump regime, the pump effect plays a marginal role and
the drive effect is dominant in the excitation of the Higgs mode
[refer to the blue solid and yellow dotted curves in Figs. 3(a)
and 3(b)].

We then focus on the influence of the electron-impurity
scattering on the Higgs mode dynamics. In Figs. 4(b1), 4(b2),
and 4(b3) with ni = 0.2n0, by comparing with the impurity-
free situation in Figs. 4(a1), 4(a2), and 4(a3), it is observed
that the electron-impurity scattering has significant influence
on the formation of the blocking region [102]. Specifically,
on one hand, the electron-impurity scattering can suppress
the range of the blocking region and hence its oscillation.
This is because the drift effect of the electron and hole,
which contributes to the formation of the blocking region, can
be suppressed by the electron-impurity scattering [103–105].
Thus, the suppression of the oscillation of the blocking region
tends to suppress the oscillation amplitude of the Higgs mode.
On the other hand, the electron-impurity scattering tends to
destroy the blocking region by averaging the quasielectron
distribution. Accordingly, from Eq. (36), the emergence of the
significant quasiparticle population in the unblocking region

FIG. 5. Anomalous correlations in the momentum space before
[τ = −10 ps, (a)] and after [τ = 10 ps, (b), (c), and (d)] the THz
pulses with E0 = 0.2 kV/cm and ω = 2� ≈ 2.3 THz. In (b), (c),
and (d), the impurity densities ni = 0, 0.2n0, and 0.5n0.

further suppresses the anomalous correlation. This tends to
enhance the magnitude of the Higgs mode.

To make the above physical picture clearer, in Fig. 5,
we further plot the anomalous correlations before [(a), τ =
−10 ps] and after [(b), (c), and (d), τ = 10 ps] the THz
pulses with E0 = 0.2 kV/cm and ω = 2� ≈ 2.3 THz. In
Figs. 5(b)–5(d), the impurity densities are set to be ni = 0,
0.2n0, and 0.5n0, respectively. In these figures, it can be seen
that the anomalous correlation is significant only around the
Fermi surface [54,58,101]. We first address the influence of the
THz pulse on the anomalous correlation in the impurity-free
situation. By comparing the anomalous correlation in Figs. 5(a)
and 5(b), it can be seen that in the impurity-free situation, the
anomalous correlation is suppressed by the THz pulse only in
the blocking region and the anomalous correlation becomes
anisotropic in the momentum space. This is consistent with
the previous works in the static situation, in which the
anomalous correlation is suppressed only in the blocking
region [52,54,58]. Then, the influence of the impurity can be
seen by comparing Fig. 5(c) [or 5(d)] with 5(b). It is shown
in Fig. 5(c) [5(d)] that the anomalous correlation becomes
isotropic due to the momentum scattering with ni = 0.2n0

(0.5n0). This confirms the conclusion from Eq. (36) that the
existence of the impurity tends to average the quasiparticle
population and hence the anomalous correlation around the
Fermi surface. Furthermore, one observes that in Fig. 5(c)
[or 5(d)], the anomalous correlation is further suppressed
compared to the free situation in Fig. 5(b), which shows
that the electron-impurity scattering can further suppress the
superconductivity after the THz pulse. Thus, with the increase
of the impurity density, the plateau of the Higgs mode increases
[refer to the red and blue solid curves in Figs. 3(a) and 3(c)].

The further suppression of the superconductivity due to
the impurity after the THz pulse can be understood from
another point of view. We find that with the increase of the
impurity density, the quasiparticle density increases during the
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temporal evolutions, shown in Fig. 9 in Appendix B. This can
be understood from the fact that in the presence of impurities,
the optical absorption is significantly enhanced because the
driven electrical current is no longer in phase to the driven
field [103–105]. The enhancement of the optical absorption
by the impurities further suppresses the anomalous correlation
[refer to Eq. (36)]. With the increase of the quasiparticle
density, the normal-fluid and superfluid densities are expected
to deviate from their equilibrium values. Thus, to further
understand the nonequilibrium superconducting state after
the pulse, the normal-fluid and superfluid densities are also
estimated in Appendix B, which are often estimated in the
pump-probe experiments [20–22,24]. It is emphasized that
this estimation is performed by assuming that the system is
in the Fermi distribution with an effective temperature, and
hence the two-fluid description is expected to be effective
[1,18,20–22,24].

3. Strong-pump regime

We then extend our calculation to the strong-pump regime.
It is noted that a strong electrical field in the intense THz pulse
can destroy the superconductivity (refer to Fig. 10). Here, we
take E0 = 0.5 kV/cm and � = 0.4 meV. Then, with ω = 2�,
it is obtained that η ≈ 1.1 meV, which is larger than 2�. With
these parameters, we show that in the superconducting GaAs
QWs, even in the strong-pump regime, the pump effect still
plays a marginal role in the excitation of the Higgs mode.
This can be seen in Fig. 6 that in the clean (dirty) sample,
the Higgs mode calculated with both the pump and drive
effects, represented by the blue dashed (red solid) curve, almost
coincides with the one calculated without the pump effect,
denoted by the yellow dashed (green chain) curve.

Above, we have shown that in both the weak- and strong-
pump regimes, with relatively small superconducting momenta
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FIG. 6. Temporal evolutions of the Higgs mode in the strong-
pump regime. With E0 = 0.5 kV/cm and ω = 2� = 0.8 meV, one
obtains that η ≈ 1.1 meV, which is larger than 2�. It can be seen that
in the clean (dirty) sample, the Higgs mode calculated with both the
pump and drive effects, represented by the blue dashed (red solid)
curve, almost coincides with the one calculated without the pump
effect, denoted by the yellow dashed (green chain) curve.

|ps | � kF , the pump effect always plays a marginal role
in the excitation of the quasiparticle due to the effect of
Pauli blocking. Actually, it can be estimated that as long as
|ps | � kF , the pump effect cannot be efficient (shown below).
This is exactly the situation in the conventional supercon-
ducting metals with large Fermi surfaces, although intense
THz fields are applied [26–29]. Previously, the explanation
of the Higgs-mode oscillation is based on the pump effect
[25–29,39,40,42,48]. Our results suggest that it is the drive
effect that is really responsible.

Finally, we remark that only when |ps | � kF , the pump
effect can contribute to the excitation of the Higgs mode,
estimated as follows. In the strong-pump regime (η � 2�),
the holelike quasiparticle is dominantly pumped around some
special momenta labeled by k0 [refer to Eqs. (34) and (35)],
which are determined by

k2
0

/
(2m∗) − μ ≈ −η. (37)

Actually, Eq. (37) is established only when |ps | �
√

2kF with
k2

0/(2m∗) ≈ μ − η > 0 satisfied. When |ps | �
√

2kF , k0 is
away from the Fermi surface by �k ≡ kF − |k0|. It is noted
that the boundary of the blocking region in the clean limit is
away from the Fermi surface by about |ps |. Thus, when 2�k �
|ps |, the pumped holelike quasiparticles lie out of the blocking
region, which cannot be efficiently blocked. This requires that
|ps | � kF . Whereas when |ps | �

√
2kF , Eq. (37) is no longer

established. In this situation, p2
s /(4m∗) � μ, i.e., the effective

chemical potential contributed by the ac Stark effect can be
even larger than the one of the system. In this situation, the
pump effect becomes extremely strong and the quasiparticles
can be efficiently pumped in the whole momentum space.
From the above analysis, it is estimated that when |ps | � kF ,
the pump effect can have contribution to the excitation of the
Higgs mode. Moreover, one sees that one way to realize the
significant pump effect is to efficiently suppress the drive effect
and hence the range of the blocking region.

B. Charge imbalance: Creation and relaxation

The charge imbalance created by the electrical method and
its relaxation has been intensively studied [1–4,31,63–66].
It is believed that for the isotropic s-wave superconductor,
the elastic scattering due to the impurity cannot cause the
relaxation of the charge imbalance [1–4,31,63–65]. This is
because the elastic scattering cannot exchange the electronlike
and holelike quasiparticles due to coherence factor (ukuk′ −
vkvk′) in the electron-impurity scattering potential [refer
to Eq. (A2)] [1–4,31,63–65]. Nevertheless, in the previous
studies [1–4,31,63–65], the charge-neutrality condition is not
explicitly considered in the relaxation process of the charge
imbalance. In other words, the studies [1–4,31,63–65] are
actually performed in the framework of quasiparticle-number
conservation [58]. Actually, to maintain the charge neutrality,
the Cooper pair condensate has to respond to the dynamics
of the quasiparticles [65,67–73]. In this part, we investigate
the creation of the charge imbalance by the optical pulse and
its relaxation via the optical Bloch equations [Eqs. (22) and
(30)–(32)] in the framework of charge neutrality. The physical
picture for the charge-neutrality condition has been addressed
explicitly in Sec. II B 3.
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1. Optical creation of charge imbalance

Although in the excitation of the Higgs mode, the pump
effect is shown to play a marginal role (Sec. III A), it is
found that both the pump and drive effects can be important in
the creation of the charge imbalance. Their contributions can
be even distinguished in the time domain. This is presented
in Fig. 7, in which the temporal evolution of the effective
chemical potential μeff is plotted by the red solid curve with
the typical impurity density ni = 0.2n0 when E0 = 0.2 kV/cm
and ω = 2� = 1.6 meV. It can be seen that during the
evolution, the effective chemical potential, represented by the
red solid curve, is first negative when τ < 3 ps, then becomes
positive when τ > 3 ps and finally decays to zero after the
pulse. From Eq. (30) with � = μ − μeff , one observes that the
negative effective chemical potential means the increase of the
total chemical potential and hence the condensate density; at
the same time, the holelike quasiparticle charge becomes larger
than the electronlike one. It is noted that the total density of
quasiparticles increases during the pulse (refer to Fig. 9). Thus,
with the induction of the negative effective chemical potential,
both the condensate and quasiparticle densities are increased
to maintain the charge neutrality. This is in contrast to the
common belief that the quasiparticle densities increase through
the breaking of the Cooper pairs. Whereas with the positive
effective chemical potential, the electronlike quasiparticle
charge becomes larger than the holelike one in accompany
with the decrease of the condensate density.
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FIG. 7. Temporal evolution of the effective chemical potential in
the condensate in the presence of the optical pulse with the typical
impurity density ni = 0.2n0. E0 = 0.2 kV/cm and ω = 2� with
� = 0.8 meV. The red solid curve shows that during the evolution,
the effective chemical potential is first negative when τ < 3 ps,
then becomes positive when τ > 3 ps, and finally decays to zero
after the pulse. The blue solid (yellow dotted) curve represents the
calculated effective chemical potential when only the drive (pump)
effect exists. The cyan double-dotted–dashed (purple dashed) curve is
calculated with only the diagonal elements in the quasiparticle density
matrix retained when only the pump (drive) effect exists. Finally, the
chemical potential induced by the ac Stark effect, i.e., η, is presented
by the green chain curve, which depicts the envelope of the yellow
dotted curve.

Furthermore, in Fig. 7, when only the drive (pump) effect
exists, as shown by the blue solid (yellow dotted) curve, the
effective chemical potential is positive (negative). Moreover,
one observes that the red solid curve can be treated as the
simple summation of the blue solid and yellow dotted ones.
This indicates that the positive and negative parts of the
effective chemical potential mainly come from the drive and
pump effects, respectively. It is noticed that in the physical
situation with both the pump and drive effects, for the pump
effect, the excitation of quasiparticle population is efficiently
suppressed by the drive effect (Sec. III A). Nevertheless, as
addressed in Eq. (30), both the quasiparticle population and
the correlation between the quasielectron and quasihole can
contribute to the charge imbalance. Then, it is speculated that
the charge imbalance due to the pump effect mainly comes
from the induction of the correlation between the quasielectron
and quasihole, which cannot be suppressed by the Pauli
blocking. Moreover, the fact that the charge imbalance is
the simple superposition of the ones due to the pump and
drive effects indicates that the charge imbalance due to
the drive effect is contributed by a different channel from
the pump effect. Thus, it is further speculated that the charge
imbalance contributed by the drive effect comes from the
induction of the quasiparticle population. Both speculations
are directly confirmed by the numerical calculation. This can
be seen in Fig. 7 by the cyan double-dotted–dashed (purple
dashed) curve that when only the pump (drive) effect exists,
the quasiparticle populations have no (dominant) contribution
to the charge imbalance. Thus, the optical excitation of the
charge imbalance can be understood by separately studying
the charge imbalance due to the pump and drive effects. It is
emphasized that the obtained picture can be applied to both the
weak- and strong-pump regimes because in both situations,
the induction of the quasiparticle due to the pump effect is
suppressed (this is confirmed by the numerical calculations
directly).

We first analyze the charge imbalance due to the pump effect
by analytically calculating its contribution to the effective
chemical potential. From Eqs. (33) and (34), one obtains

ρh
k,12 + ρh

k,21 = E2
k + ζkη

�η

(
�η

EkEk

)2

×(
1 − 2f 0

k

)
(1 − cos 2EkT ). (38)

Then, the net charge contributed by the correlation between
the quasielectron and quasihole is

δQc = −
∑

k

�2η

EkE
2

k

(
1 − 2f 0

k

)
(1 − cos 2EkT ) ≈ −

∑
k

�2η

E3
k

.

(39)

By further noticing that 2δv2
k = −(�2/E3

k)δμeff in Eq. (29),
the charge-neutrality condition requires that δμeff ≈ −η. This
relation is directly confirmed by the green chain curve in
Fig 7, in which η depicts the envelope of the yellow dotted
curve. Actually, this simple relation provides a simple physical
picture for the pump-induced charge imbalance, in which the
ac Stark effect directly modifies the total chemical potential.

For the drive effect, the induced positive effective chemical
potential indicates that the charge carried by the electronlike
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quasiparticle is larger than the holelike one. The physics
picture is qualitatively analyzed based on the optical Bloch
equations in the quasiparticle space [Eq. (A1)] as follows. In
the free situation with only the drive term retained, Eq. (A1)
is written as

∂ρh
k

∂T
+ 1

2

{
eExτ̃3,

∂ρh
k

∂kx

}
+ 1

2

{
eExτ̃3,

[
ρh

k ,
∂Uk

∂kx

U †
k

]}
= 0,

(40)
in which τ̃3(k) ≡ Ukτ3U

†
k = (u2

k − v2
k)τ3 − 2ukvkτ1 with

both the diagonal and off-diagonal terms retained. In Eq. (40),
the second term is the conventional drive term for the
quasiparticle in the Boltzmann equation [1,3,5,58], whereas
the third term is contributed by the Berry phase [106–108]. By
defining q∗

k = e(ζk/Ek)(ρh
k,11 + 1 − ρh

−k,22), which is the net
charge for the quasiparticle with the momentum k [1,2,31], and
further neglecting the quasiparticle correlation, it is obtained
from Eq. (40) that

∂q∗
k

∂T
+ 2eEx

(
ζk

Ek

)2
∂q∗

k

∂kx

− 2eEx

ζk

Ek

kx

m∗
�2

E3
k

q∗
k

+ eEx

kx

m∗
�2

E3
k

q∗
k + q∗

−k

2
= e2Ex

kx

m∗
ζk

Ek

�2

E3
k

. (41)

Although Eq. (41) is complex, one important feature is
that there exists a source term for q∗

k on the right-hand side
of the equation. This source term, which originates from the
Berry-phase effect, is proportional to �2. This indicates that
the charge conservation of the quasiparticle is absent due to
the existence of the superconducting order parameter. This
is consistent with the conclusion in the Blonder-Tinkham-
Klapwijk model when studying the Andreev reflection, which
reveals that the order parameter itself directly breaks the
charge conservation of quasiparticles [109]. One notices that
in the situation with relatively small impurity density, only the
blocking region should be considered. Actually, this source
term directly contributes to the formation of the blocking
region. From the source term, it can be seen that with Ex > 0
(Ex < 0), the quasiparticle charges increase when kx < 0
(kx > 0). It is further noted that the source term is proportional
to kx , which is larger for the electronlike quasiparticle than the
holelike one. Then, in the blocking region, the electronlike
quasiparticle charge can be created faster than the holelike
one, which directly contributes to the charge imbalance with
more electronlike quasiparticles.

We emphasize that the optical excitation of the charge
imbalance is a unique feature for the superconductor with
nonzero order parameter, which cannot be realized in the
normal state. When the order parameter is close to zero, on
one hand, the pump term tends to zero and hence there cannot
exist significant correlation between the quasielectron and
quasihole states; on the other hand, the source term in Eq. (41)
becomes close to zero and, hence, no significant quasiparticles
can be created from the condensate. Experimentally, the
effective chemical potential induced by the optical field in the
charge imbalance can be directly measured either through the
voltage between the quasiparticle and condensate measured in
the setup of Clarke’s works [74,75], or through the effective
chemical potential measured in the Josephson effect [23].

2. Charge-imbalance relaxation due to the
electron-impurity scattering

In Fig. 7, it is anomalous to observe that after the pulse at
τ ≈ 8 ps, the induced effective chemical potential relaxes to
zero. This indicates that there exist relaxation channels for the
charge imbalance even in the presence of the elastic scattering
in the isotropic s-wave superconductivity, which is in contrast
to the previous studies [1,2,31,63,64]. To reveal the mechanism
for the charge-imbalance relaxation, a simplified model in the
s-wave superconducting QWs is set up with a small initially
given charge imbalance, in which ps is set to be zero and the HF
self-energy is neglected. Accordingly, Eq. (A1) is simplified
into

∂T ρh
k + i

[
Ekτ3,ρ

h
k

] + i
[
μeff τ̃3,ρ

h
k

] = ∂tρk
∣∣d
scat + ∂tρk

∣∣off
scat.

(42)

Specifically, in Eq. (42), the off-diagonal terms in μeff τ̃3

induce the precession between the quasielectron and quasihole
states and hence the quasiparticle correlation; ∂tρk|off

scat directly
breaks the conservation of the quasiparticle number [58] (more
discussions are referred to Appendix A). The initial state
in the quasiparticle space with a small quasiparticle charge
imbalance is set to be

ρ
h,c
k =

(
f0

(
Ec

k

)
0

0 1 − f0
(
Ec

k

)
)

. (43)

In Eq. (43), Ec
k =

√
(εk − μ − δμc)2 + |�|2 with δμc =

0.01μ and f0(Ec
k) = {exp[Ec

k/(kBTe)] + 1}−1. With |δμc| �
|μ|,

ρ
h,c
k ≈

(
f0(Ek) 0

0 1 − f0(Ek)

)
− ∂f0

∂Ek

ζk

Ek
δμcτ3. (44)

With this initial state, the effective chemical potential for
the condensate can be induced due to the charge-neutrality
condition [Eq. (30)]. Thus, Eqs. (42), (30), and (44) provide the
consistent equations to study the charge-imbalance relaxation,
which are solved first numerically and then analytically below.

In Fig. 8, the impurity-density dependencies of the charge-
imbalance relaxation time (CIRT) τC with � = 0.8 and
0.4 meV are plotted by the red solid curve with circles and
blue dashed curve with squares. It is shown that the CIRT is
finite with finite impurity density, indicating that the electron-
impurity scattering surely can cause the charge-imbalance
relaxation. Specifically, one sees in Fig. 8 that with the increase
of the impurity density, the CIRT first decreases and then
increases, showing similar features in the spin relaxation
time (SRT) in the D’yakanov-Perel’ (DP) [110] mechanism
[96,111–117]. Furthermore, in the inset of Fig. 8, the temporal
evolutions of the normalized effective chemical potential V/V0

are shown with different impurity densities ni = 0 (red solid
curve), 0.02n0 (green chain curve), n0 (blue dashed curve),
and 5n0 (yellow dashed curve). Specifically, when ni = 0, the
effective chemical potential does not relax to zero but to half of
its initial value, indicating infinite charge-imbalance lifetime.

Although there exist similarities in the momentum-
scattering dependence of the relaxation rates, the DP mecha-
nism [96,111–117] cannot simply explain the features revealed
in the charge-imbalance relaxation. In the DP mechanism, the
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FIG. 8. Impurity-density dependencies of the CIRT with � =
0.8 meV (red solid curve with circles) and 0.4 meV (blue dashed
curve with squares), respectively. The finite CIRT shows that the
electron-impurity scattering surely can cause the charge-imbalance
relaxation. In the inset, the temporal evolutions of the normalized
effective chemical potential V/V0 are shown with different impurity
densities ni = 0 (red solid curve), 0.02n0 (green chain curve), n0

(blue dashed curve), and 5n0 (yellow dashed curve). Especially when
ni = 0, the effective chemical potential does not relax to zero but to
half of its initial value, indicating infinite charge-imbalance lifetime.

SOC acts as a momentum-dependent effective magnetic field
�(k), around which the electron spins with different momenta
process with different frequencies, i.e., the inhomogeneous
broadening [96,118]. Without the momentum scattering, this
inhomogeneous broadening can cause a free-induction decay
due to the destructive interference, whereas when there exists
momentum scattering, the system can be divided into the weak-
and strong-scattering regimes. In the weak-scattering regime
with |�(k)|τk � 1, the momentum scattering opens a spin
relaxation channel and the electron SRT τs is proportional
to τk. Here, τk is the momentum relaxation time. In the
strong-scattering regime with |�(k)|τk � 1, the momentum
scattering suppresses the inhomogeneous broadening and
τs is inversely proportional to τk [96,111–117]. Neverthe-
less, when the SOC does not depend on the angle of
momentum, the elastic scattering cannot provide the spin
relaxation channel [96,119], as long as the SOC is so weak
that it can be neglected in the energy spectrum of the
electron [120].

It is interesting to see that although the effective chemical
potential and quasiparticle excitation energy in the coherent
term of Eq. (42) act as the effective SOC in the DP mechanism,
they actually cannot provide the inhomogeneous broadening
in the presence of the elastic scattering because of their
momentum-angle independence [96,118,119]. Hence, the DP
mechanism cannot explain the calculated charge-imbalance re-
laxation due to the electron-impurity scattering [96,119,120].
Moreover, one notes that even in the free situation, the CIRT
is infinite, which is in contrast to the finite SRT in the
DP mechanism [96,111–117]. Actually, a new mechanism is

expected to be responsible for the charge-imbalance relaxation
here. The concrete physical picture for the charge-imbalance
relaxation can be obtained from the analytical analysis, which
is presented as follows.

Due to the absence of the momentum angle in the coherent
terms of Eq. (42), the calculation of the charge-imbalance
relaxation can be markedly simplified. The density matrix
can be expanded by its Fourier components, i.e., ρh

k =
ρh

k + ∑∞
l=1 ρ

h,l
k eilθk . With the initial state (44), only the

homogeneous component ρh
k involves in the relaxation of the

charge imbalance, whose kinetic equations are written as

∂T ρh
k + i

[
Ẽkτ3,ρ

h
k

] + i
[
μ̃effτ1,ρ

h
k

] + (
ρh

k − τ3ρ
h
k τ3

)
/τ I

k

− (
τ1τ2ρ

h
k − τ1ρ

h
k τ3 + H.c.

)/
τ II

k = 0. (45)

In Eq. (45), Ẽk = Ek + μeffζk/Ek, μ̃eff = −μeff�/Ek,

1

τ I
k

= nim
∗

2π

∫
dθk′−k|Vk−k′ |2(u2

k − v2
k

)2
∣∣∣∣Ek

ζk

∣∣∣∣, (46)

1

τ II
k

= nim
∗

2π

∫
dθk′−k|Vk−k′ |2(u2

k − v2
k

)
ukvk

∣∣∣∣Ek

ζk

∣∣∣∣, (47)

with θk being the angle of momentum k. It is noted that τ I
k

and τ II
k in Eqs. (46) and (47) come from ∂tρk|dscat and ∂tρk|off

scat
in Eq. (42), respectively. Accordingly, τ II

k directly breaks the
quasiparticle-number conservation [58]. Furthermore, τ I

k and
τ II

k are different from the conventional momentum-scattering
time τk [96,120], although the former being in the same
order as τk. Actually, from Eq. (47), τ II

k > 0 (τ II
k < 0) for the

electronlike (holelike) quasielectron with |k| > kF (|k| < kF ).
By further expanding ρh

k by the Pauli matrices in the Nambu
space, i.e., ρh

k = ρh
k,0τ0 + ∑3

i=1 ρh
k,iτi with τ0 = diag{1,1},

from Eq. (45), the kinetic equations for the components ρh
k,i

(i = 1,2,3) read as

∂

∂T

⎛
⎜⎝

ρh
k,1

ρh
k,2

ρh
k,3

⎞
⎟⎠ +

⎛
⎜⎝

2/τ I
k 2Ẽk 0

−2Ẽk 2/τ I
k 2μ̃eff

4/τ II
k −2μ̃eff 0

⎞
⎟⎠

⎛
⎜⎝

ρh
k,1

ρh
k,2

ρh
k,3

⎞
⎟⎠ = 0.

(48)
By using the components ρh

k,i of ρh
k , the charge-neutrality

condition [Eq. (30)] becomes

n0 =
∑

k

[
1 − ζk + μeff√

(ζk + μeff)2 + �2

+ ζk

Ek

(
1 + 2ρh

k,3

) − 2�

Ek
ρh

k,1

]
. (49)

Equation (48) can be further analyzed in the near-equilibrium
situation, in which the density matrix is composed of its
equilibrium and deviation parts. By writing ρh

k,i = ρ̄h
k,i + δρh

k,i

with ρ̄h
k,i and δρh

k,i being the equilibrium and deviation parts,
Eq. (48) is linearized to be

∂T δρh
k,1 + 2δρh

k,1/τ
I
k + 2Ekδρ

h
k,2 = 0, (50)

∂T δρh
k,2 − 2Ekδρ

h
k,1 + 2δρh

k,2/τ
I
k + μeff�/Ek = 0, (51)

∂T δρh
k,3 + 4δρh

k,1/τ
II
k = 0. (52)
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The features of the charge-imbalance relaxation without
and with impurities can be understood based on Eqs. (49)
and (50)–(52). We first analyze the impurity-free limit with
1/τ I

k = 1/τ II
k = 0 in Eqs. (50)–(52). From Eq. (52), one

observes that in the impurity-free limit, δρh
k,3 does not evolve

with time, which contributes the charge imbalance due to
the nonequilibrium quasiparticle population. Furthermore, in
the steady state with the effective chemical potential denoted
by μ∞

eff , from Eqs. (50) and (51), one obtains δρh
k,2 = 0

and δρh
k,1 = μ∞

eff�/(2E2
k). Then, from the charge-neutrality

condition [Eq. (49)], in the steady state,
∑

k[−�2

E3
k
(μ0

eff −
2μ∞

eff)] = 0 with μ0
eff being the initial effective chemical

potential. Hence, the steady-state effective chemical potential
μ∞

eff = μ0
eff/2, which explains the steady state found in the

numerical calculation (shown by the red solid curve in the
inset of Fig. 7).

When there exists the momentum scattering, we first
address the role of τ I

k in the charge-imbalance relaxation.
One notes that in Eq. (51), δρh

k,3 does not directly influence
the evolutions of δρh

k,1 and δρh
k,2, but rather influences them

through the influence on μeff . By neglecting 1/τ II
k in Eq. (52),

δρh
k,3 still does not evolve with the time. Then, from Eqs. (50)

and (51), one obtains that in the steady state, δρh
k,1 =

�

2E2
k
μ∞

eff/[1 + 1
(Ekτ I

k)2 ]. Furthermore, from the charge-neutrality

condition [Eq. (49)], one obtains
∑

k { − �2

E3
k
[μ0

eff − μ∞
eff(1 +

(Ekτ I
k)2

1+(Ekτ I
k)2 )]} = 0, which indicates that μ0

eff/2 < μ∞
eff < μ0

eff .

Specifically, this further indicates that when 〈Ekτ
I
k〉 � 1,

the charge-imbalance relaxation can be suppressed by τ I
k

by suppressing the induction of ρh
k,1, i.e., the correlation

between the quasielectron and quasihole. Moreover, from
Eq. (52), one finds that in the presence of τ II

k , the induction
of the quasiparticle correlation δρh

k,1 directly leads to the
fluctuation of the quasiparticle number δρh

k,3. Actually, this
directly induces the annihilation of the extra quasiparticles in
the quasielectron and quasihole bands into the Cooper pairs
[64,90,91,93].

Therefore, τ II
k can directly open a charge-imbalance relax-

ation channel by relaxing the charge imbalance due to the
quasiparticle population, whose rate of change also depends
on the value of the correlation between the quasielectron and
quasihole. Accordingly, there exists the competition between
the scattering terms (46) and (47), leading to the nonmonotonic
dependence on the momentum scattering for the CIRT.
Specifically, in the weak-scattering limit with 〈Ekτ

I
k〉 � 1,

one expects that the momentum scattering due to τ II
k can

directly open a charge-imbalance relaxation channel with the
CIRT proportional to the momentum-scattering strength. In
the strong-scattering regime with 〈Ekτ

I
k〉 � 1, the induction

of the quasielectron and quasihole correlation can be directly
suppressed by the impurity scattering, which can further
suppress the charge-imbalance relaxation through the quasi-
particle population. In this situation, the CIRT is enhanced with
the increase of the momentum-scattering strength. From this
physical picture, 〈Ekτ

I
k〉 ≈ �〈τ I

k〉 = 1 labels the boundaries
between the weak- and strong-scattering regimes. Thus, with
〈τ I

k〉 less influenced by the order parameter, the position of the
boundaries between the weak- and strong-scattering regimes

scales according to 1/� (refer to the blue dashed and red solid
curves in Fig. 8).

Finally, we summarize the physical picture for the charge-
imbalance relaxation channels provided by the elastic scat-
tering. It is emphasized that the quasiparticle correlation
between the quasielectron and quasihole states, i.e., 〈αk↑βk↓〉,
is responsible for the charge-imbalance relaxation, which is
often overlooked in the previous studies [2,31,63,64]. Here, the
existence of the nonequilibrium effective chemical potential
itself can cause the precession between the quasielectron
and quasihole states, directly inducing the quasiparticle cor-
relation. Once the quasiparticle correlation is induced, in
the presence of the electron-impurity scattering, the process
involving the annihilation of the quasielectron and quasihole
into the Cooper pairs, i.e., αk↑βk↓S†, is inevitably triggered
[refer to Eq. (52)] [58,64,90,91], whose rate of change is
directly determined by |τ II

k | defined in Eq. (47). This process
has been schematically presented in Fig. 2. Consequently, the
annihilation of the extra quasiparticles in the quasielectron
and quasihole bands directly causes the relaxation of charge
imbalance for the quasiparticles and contributes to the fluc-
tuation of the effective chemical potential for the condensate.
Nevertheless, although the presence of the impurity scattering
directly opens a charge-imbalance relaxation channel due to
the quasiparticle population, it also suppresses the induction
of the quasiparticle correlation. This competition between the
relaxation channels due to the quasiparticle correlation and
population leads to the nonmonotonic dependence on the
momentum scattering for the charge-imbalance relaxation.
Accordingly, although there exist the similarities in the
momentum-scattering dependence between the CIRT and SRT
in the DP mechanism, their relaxation mechanisms are totally
different.

IV. CONCLUSION AND DISCUSSION

In conclusion, we have investigated the quasiparticle
and condensate dynamics in response to the THz optical
pulses in the weak spin-orbit-coupled s-wave superconducting
semiconductor QWs. We set up the gauge-invariant opti-
cal Bloch equations in the quasiparticle approximation via
the gauge-invariant nonequilibrium Green function approach
[81,85,86], with the gauge structure revealed by Nambu
explicitly retained [32]. In the gauge-invariant Green function
approach, the gauge-invariant Green function with the Wilson
line is constructed [84,87,89]. By choosing the ps gauge,
in the gauge-invariant optical Bloch equations, not only can
the microscopic description for the quasiparticle dynamics be
realized, but also the dynamics of the condensate is included,
with the superfluid momentum ps and the effective chemical
potential μeff naturally incorporated. It is addressed that ps

directly contributes to the center-of-mass momentum and μeff

corresponds to the collective excitation revealed by Nambu
[32,34,37,38], evolving with time in the homogeneous limit.
We show that ps plays an important role in the dynamics of
quasiparticles. Its nonlinear term ∝p2

s contributes to the pump
of the quasiparticles (pump effect), and its rate of change
∂tps acts as a drive field to drift the quasiparticles (drive
effect). Specifically, the drive effect can contribute to the
formation of the blocking region [52–59] for the quasiparticle,
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which directly suppresses the anomalous correlation of Cooper
pairs (refer to Fig. 1). It is found that both the pump and
drive effects contribute to the excitation of the Higgs mode,
which oscillates with twice the frequency of the optical field.
However, it is shown that the contribution from the drive
effect to the excitation of Higgs mode is dominant as long
as the driven superconducting momentum is less than the
Fermi momentum. This is because in this condition, the
pump of the quasiparticle population is efficiently suppressed
thanks to the Pauli blocking. This is in sharp contrast to
the conclusions obtained from the Liouville [39,40,43] or
Bloch [42,44–47,49] equations in the literature, in which
the drive effect is overlooked with only the pump effect
considered. Actually, in these treatments [39,40,42–47,49], the
contribution of the Cooper-pair center-of-mass momentum to
the suppression of the anomalous correlation of Cooper pairs is
overlooked. In our framework, the role of the electron-impurity
scattering on the excitation of the superconducting state is also
revealed, which is found to further suppress the Cooper pairing
on the basis of the drive effect.

In the gauge-invariant optical Bloch equations, the charge-
neutrality condition is self-consistently considered based on
the two-component model for the charge. In this model, the
deviation from the equilibrium state for the quasiparticle, i.e.,
the charge imbalance, can cause the fluctuation of the effective
chemical potential μeff for the condensate [1–4,31,63–65].
This consideration is actually consistent with the one in the
determination of the collective mode based on the gauge
structure and charge conservation for the superconductivity
[32,34,37,38]. We predict that during the optical process, the
charge imbalance can be created by both the pump and drive
effects, with the former arising from the ac Stark effect and
the latter coming from the breaking of Cooper pairs by the
electrical field. Specifically, when |ps | is much smaller than
the Fermi momentum, the charge imbalance is contributed
by the pump and drive effects separately, through influencing
the quasiparticle correlation and quasiparticle population,
respectively.

The induction of the charge imbalance of quasiparticles di-
rectly causes the fluctuation of the effective chemical potential
of the condensate. This fluctuation of the effective chemical
potential is found to directly provide a charge-imbalance
relaxation channel even with the elastic scattering due to
impurities. This is in contrast to the previous understanding
in the literature that in the isotropic s-wave superconductivity,
the impurity scattering cannot cause any charge-imbalance
relaxation [2,31,63,64]. Actually, the previous understanding
is based on the framework with quasiparticle-number conser-
vation but not the charge conservation, in which the charge-
imbalance relaxation is induced by the direct scattering of
quasiparticles between the electronlike and holelike branches
in the presence of the impurities (refer to Fig. 2). This
interbranch scattering is forbidden for the electron-impurity
scattering in the isotropic s-wave superconductivity thanks to
the coherence factor (ukuk′ − vkvk′) in the scattering potential
[2,31,63,64]. Furthermore, the momentum-scattering depen-
dence of the charge-imbalance relaxation is revealed. When the
momentum scattering is weak (strong), the charge-imbalance
relaxation is enhanced (suppressed) by the momentum
scattering.

Although the above momentum-scattering dependencies of
the charge-imbalance relaxation seemingly resemble the ones
in the DP mechanism [96,110–117], we point out that the DP
mechanism cannot explain the charge-imbalance relaxation
in the presence of the elastic scattering [96,119,120]. In
fact, a new mechanism is revealed to be responsible for
the charge-imbalance relaxation here. We demonstrate that
the charge-imbalance relaxation here is caused by the direct
annihilation of the quasiparticles in the quasielectron and
quasihole bands (refer to Fig. 2), in which the quasiparticle-
number conservation is broken. The source of the breaking
of quasiparticle-number conservation is the quasiparticle
correlation between the quasielectron and quasihole states
[58], which is contributed by the quasiparticle precession
induced by the nonequilibrium chemical potential of the
condensate. Then, due to the electron-impurity scattering,
the induction of the quasiparticle correlation further triggers
the process of the condensation with two quasiparticles
binding into one Cooper pair in the condensate, or vice
versa [64,90,91].

These processes can directly cause the annihilation of
the extra quasiparticles in the quasielectron or quasihole
bands, due to which the charge-imbalance relaxation for the
quasiparticles is induced. Meanwhile, with the condensation or
breaking of the Cooper pairs in the condensate, the fluctuation
of the effective chemical potential is also induced. Thus,
through the quasiparticle correlation, the electron-impurity
scattering opens a charge-imbalance relaxation channel due to
the fluctuation of the quasiparticle population. Based on this
picture, it is emphasized that the creation and relaxation of
charge imbalance is a unique feature for the superconductivity
with nonzero order parameter, in which the particle-number
or quasiparticle-number fluctuation inherently exists due to
the breaking of the global U(1) symmetry. It is further found
that the induction of the quasiparticle correlation by μeff is
directly suppressed by the impurity scattering. Consequently,
the competition between the relaxation channels due to
the quasiparticle correlation and population leads to the
nonmonotonic dependence on the momentum scattering for
the charge-imbalance relaxation.

Although our calculations are performed in the two-
dimensional superconducting semiconductor QWs in par-
ticular materials with small and simple Fermi surfaces,
the obtained predictions can still shed light on the optical
response in the film of the superconducting metal, even with
complex Fermi surfaces. In our setup, the optical field and
the correspondingly induced superconducting velocity are
treated to be homogeneous in the whole material. This is
because with our material parameters, the London penetration
depth λL ≈

√
m∗/(ρse2) for the magnetic field [16] is in the

order of micrometer, much larger than the well width of the
QWs. In this situation, the Meissner effect can be neglected
and hence the optical field can efficiently penetrate into the
material. Actually, even in the superconducting film of metal,
the efficient penetration of the optical field is often considered
to be satisfied [20–29], to which the framework used in this
work can be extended.

From the experimental point of view, we remark the
possible experimental detections for our predictions, including
the Higgs mode induced by the drive effect, the induction
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of the charge imbalance by the optical method, and the
relaxation channel for the charge imbalance due to the elastic
scattering. Specifically, for the Higgs mode induced by the
drive effect, our calculation shows that its oscillation amplitude
is suppressed and plateau value after the pulse is enhanced by
the electron-impurity scattering. Particularly, the latter feature
is in contrast to the ones in the influence of the impurity on the
pump effect [121]. Thus, the experimental observation on the
impurity-density dependence of the Higgs-mode oscillation
can help to distinguish the contribution to the Higgs mode
from the drive and pump effects. For the charge imbalance
induced by the optical method, it can be directly detected either
through the voltage between the quasiparticle and condensate
measured in the setup of Clarke’s works [74,75] or through the
effective chemical potential measured in the Josephson effect
[23]. These techniques with time resolution can also be used to
measure the charge-imbalance relaxation due to the impurity
scattering, which should be performed at low temperature with
significant impurity density.

Finally, we remark the physical origin of the effective
chemical potential from another point of view, which has been
presented based on the consideration of the charge conserva-
tion in the two-component model for the charge [1–4,31,63–
66]. From the gauge structure in the superconductivity, the
effective chemical potential origins from the rate of change
of the superconducting phase. Actually, based on the work
of Ambegaokar and Kadanoff [34], in the long-wave limit, the
excited superconducting phase in the optical process is exactly
the collective mode revealed by Nambu with the consideration
of the gauge invariance in the superconductivity [32], which is
referred to as the Nambu-Goldstone mode in the quantum
field theory [31,33,89]. In both the experiment [122,123]
and theory [124], the Nambu-Goldstone mode was reported
to directly contribute to the optical absorption, especially
when the photon energy is below the superconducting gap.
Based on this understanding, we conjecture that the effective
chemical potential is contributed by the temporal variations of
the Nambu-Goldstone mode, which is excited by the optical
pulse. Therefore, the study on the effective chemical potential
not only helps to reveal the dynamics of the charge imbalance,
but also can shed light on the understanding of the optical
excitation for the Nambu-Goldstone mode.
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APPENDIX A: OPTICAL BLOCH EQUATIONS IN
QUASIPARTICLE SPACE

It is convenient to perform the analytical analysis for the
dynamical process of the quasiparticle by the optical Bloch
equations in the quasiparticle space. Here, we transform the
optical Bloch equations in the particle space, i.e., Eq. (22),
into the ones in the quasiparticle space by the unitary

transformation (27), which are written as

∂ρh
k

∂T
+ i

[
Ekτ3,ρ

h
k

] + i
[
μeff τ̃3,ρ

h
k

] + i

[
p2

s

2m∗ τ̃3,ρ
h
k

]

+ 1

2

{
∂ps

∂T
τ̃3,

∂ρh
k

∂k
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+ 1

2
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∂ps

∂T
τ̃3,

[
ρh

k ,
∂Uk

∂k
U †

k

]}

= i
∑

k′
Uk−k′

[
(Ukτ3U

†
k′)

(
ρh

k′ − ρ
h,0
k′

)
(Uk′τ3U

†
k ),ρh

k

] − πni

×
∑

k′η=±
|Vk−k′ |2δ(Ek′η − Ekη)

[
(Ukτ3U

†
k′)Qη(Uk′τ3U

†
k )

× Qηρ
h
k − (Ukτ3U

†
k′)ρh

k′Qη(Uk′τ3U
†

k )Qη + H.c.
]
,

(A1)

whose structure is analyzed as follows.
In the second and third terms in Eq. (A1), the diagonal

terms in τ̃3 renormalize the quasiparticle excitation energy,
whereas the off-diagonal terms cause the precession between
the quasielectron and quasihole states, which act as the pump
term similar to the interband optical excitation in the semi-
conductor [81–83]. Specifically, it can be seen that the
fluctuation of the condensate, i.e., μeff , can also contribute
to the pump term, which definitely influences the dynamics
of the quasiparticle. Moreover, in the quasiparticle space, the
drive term is contributed by the fourth and fifth terms, with
the latter originating from the Berry-phase effect [106–108].
Finally, in the scattering term, only the electron-impurity
scattering is presented here with the electron-phonon one
[Eq. (26)] negligible at the low temperature. Q± = 1/2 ± τ3/2
are the projection operators in the quasiparticle space. It is
noted that the derived scattering term here is different from
the one used in the Boltzmann equation for the Bogoliubov
quasiparticle, in which the contribution from the off-diagonal
terms in Ukτ3U

†
k′ = (ukuk′ − vkvk′)τ3 − (ukvk′ + vkuk′)τ1 is

neglected by neglecting the correlation between the quasielec-
tron and quasihole states [2,5,58,64].

Specifically, in the scattering term, the contributions from
the diagonal and off-diagonal terms in Ukτ3U

†
k′ can be

separated, which are represented by ∂tρk|dscat and ∂tρk|off
scat,

respectively. For the diagonal contribution,

∂tρk|dscat = −2πni

∑
k′

|Vk−k′ |2(ukuk′ − vkvk′)2

× δ(Ek′ − Ek)
(
ρh

k − τ3ρ
h
k′τ3

)
, (A2)

which recovers to the scattering term used in the Boltzmann
equation for the Bogoliubov quasiparticle when the off-
diagonal term in ρh

k is neglected [2,5,58,64]. For the off-
diagonal contribution,

∂tρk|off
scat = πni

∑
k′

|Vk−k′ |2(ukuk′ − vkvk′)(ukvk′ + uk′vk)

× δ(Ek′ − Ek)
(
τ1τ3ρ

h
k − τ1ρ

h
k′τ3 + H.c.

)
. (A3)

Obviously, for the equilibrium distribution for the quasipar-
ticle ρh

k,0 = 1/2 + [f0(Ek) − 1/2]τ3, Eqs. (A2) and (A3) are
exactly zero.
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APPENDIX B: QUASIPARTICLE AND SUPERFLUID
DENSITIES

In this appendix, we present the calculated quasiparticle
and superfluid densities under the optical THz pulse in the
s-wave superconducting GaAs QWs. In Fig. 9, the temporal
evolutions of the quasiparticle density ρq are plotted with
different impurity densities ni = 0 (blue dashed curve), 0.2n0

(red solid curve), and 0.5n0 (green chain curve). It is shown that
after the pulse τ � 5 ps, there exist plateaus in the quasiparticle
density, whose values increase with the increase of the impurity
density. This is because the existence of the impurity density
can enhance the optical absorption. These populations of the
hot quasiparticles can efficiently suppress the Cooper pairing.

Then, the normal-fluid and superfluid densities ρn and ρs

after the pulse are estimated based on the two-fluid model in the
equilibrium state [16,97]. Specifically, for the order parameter
� = |�|eiq·r with the center-of-mass momentum q = 2m∗vs

along the x̂ direction, the momentum supercurrent is calculated
to be [16,58]

Js = 2m∗vs

∑
k

[
v2

k + (
u2

k − v2
k

)
f0

(
k · vs +

√
�2

k + |�|2)]

+ 2
∑

k

kf0
(
k · vs +

√
�2

k + |�|2), (B1)

with �k = k2/(2m∗) − μ + m∗v2
s /2. For the linear response,

q is small, hence,

Js ≈ 2vs

∑
k

[
k2
x

∂f0(Ek)

∂Ek
+ m∗v2

k + m∗(u2
k − v2

k

)
f0(Ek)

]
.

(B2)
Thus, with Js ≡ vsm

∗ρs , one obtains

ρs = 2
∑

k

[
k2
x

m∗
∂f0(Ek)

∂Ek
+ v2

k + (
u2

k − v2
k

)
f0(Ek)

]
. (B3)
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FIG. 9. Temporal evolutions of the quasiparticle density ρq in
the s-wave superconducting GaAs QWs under the optical THz pulse
with different impurity densities ni = 0 (blue dashed curve), 0.2n0

(red solid curve), and 0.5n0 (green chain curve). E0 = 0.2 kV/cm
and ω = 2� ≈ 2.3 THz.

For the normal parts, by assuming the drift distribution
f0(Ek − k · vn) with vn = vnx̂ [97], the momentum normal-
current reads as

Jn = 2
∑

k

kf0(Ek − k · vn) ≈ 2vnx̂

[
−

∑
k

k2
x

∂f0(Ek)

∂Ek

]
.

Consequently, for the linear response with Jn = vnm
∗ρn,

one has

ρn = −2
∑

k

k2
x

m∗
∂f0(Ek)

∂Ek
. (B4)

Obviously, from Eqs. (B3) and (B4), ρs + ρn = 2
∑

k [v2
k +

(u2
k − v2

k)f0(Ek)], which is exactly the total particle density
conserved due to the charge neutrality [Eq. (30)].

It is noticed that Eqs. (B3) and (B4) are established
for the equilibrium state with f0(Ek) representing the equi-
librium quasiparticle distribution [16,97]. To estimate the
superfluid and normal-fluid densities at the nonequilibrium
state, Eqs. (B3) and (B4) are extended with f0(Ek) replaced
by the nonequilibrium quasiparticle distribution calculated by
optical Bloch equations [Eq. (22)], which is isotropic in the
momentum space after the pulse [20–22,24]. This extension
is based on the fact that after the pulse, the quasiparticle
distribution can be effectively described by an effective
temperature [103–105].

In Fig. 10, the impurity density dependencies of superfluid
density after the pulse are plotted with different electrical
fields E0 = 0.05 kV/cm (blue dashed curve with squares),
0.1 kV/cm (red solid curve with squares), and 0.2 kV/cm
(green chain curve with squares). It is shown that with
the increase of the impurity density, the superfluid density
decreases. This is consistent with the fact that with the optical
pulse, the presence of the impurity can further suppress the
Cooper pairing [refer to Fig. 4(c)]. Specifically, one sees that
although there exists a significant order parameter after the
pulse, the superfluid density can be extremely small at the
nonequilibrium state.
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FIG. 10. Impurity-density dependence of the superfluid density
ρs after the pulse, estimated from Eq. (B3), with different electrical
fields E0 = 0.05 kV/cm (blue dashed curve with squares), 0.1 kV/cm
(red solid curve with squares), and 0.2 kV/cm (green chain curve
with squares).
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